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Introduction
Over the last years, the incidence of oropharyn-
geal squamous cell carcinoma   (OPSCC) has shown 
a dramatic increase relative to other head and neck 
cancers, with a substantial proportion of OPSCC 

being linked to human papillomavirus (HPV)  
infections.1

HPV positive OPSCC is biologically and clinically different 
from HPV negative OPSCC, which is often related to 
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Objectives: Human papillomavirus (HPV) positive 
oropharyngeal cancer (oropharyngeal squamous cell 
carcinoma, OPSCC) is biologically and clinically different 
from HPV negative OPSCC. Here, we evaluate the use 
of a radiomic approach to identify the HPV status of 
OPSCC.
Methods: Four independent cohorts, totaling 778 OPSCC 
patients with HPV determined by p16 were collected. We 
randomly assigned 80% of all data for model training 
(N = 628) and 20% for validation (N = 150). On the 
pre-treatment CT images, 902 radiomic features were 
calculated from the gross tumor volume. Multivariable 
modeling was performed using least absolute shrinkage 
and selection operator. To assess the impact of CT arti-
facts in predicting HPV (p16), a model was developed 
on all training data (Mall) and on the artifact-free subset 
of training data (Mno art). Models were validated on all 

validation data (Vall), and the subgroups with (Vart) and 
without (Vno art) artifacts. Kaplan–Meier survival analysis 
was performed to compare HPV status based on p16 and 
radiomic model predictions.
Results: The area under the receiver operator curve for 
Mall and Mno art ranged between 0.70 and 0.80 and was 
not significantly different for all validation data  sets. 
There was a consistent and significant split between 
survival curves with HPV status determined by p16  
[p = 0.007; hazard ratio (HR): 0.46], Mall (p = 0.036; HR: 
0.55) and Mno art (p = 0.027; HR: 0.49).
Conclusion: This study provides proof of concept that 
molecular information can be derived from standard 
medical images and shows potential for radiomics as 
imaging biomarker of HPV status.
Advances in knowledge: Radiomics has the potential to 
identify clinically relevant molecular phenotypes.
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alcohol and tobacco consumption. HPV positive OPSCC has 
been shown to have superior response to radiochemotherapy. 
Approximately, 80% of HPV positive OPSCC patients achieve 
locoregional control and 5 years overall survival, in compar-
ison to less than 50% of patients with HPV negative OPSCC 
and non-oropharyngeal head and neck cancers.2,3 This favorable 
outcome makes HPV positive OPSCC in particular interesting 
for de-escalation protocols.4

Widely accepted methods for detection of HPV infection are  
in situ hybridization for viral DNA, HPV DNA or RNA PCR, and 
immunohistochemical investigation of the level of p16 expres-
sion, which strongly correlates with HPV infection.5

Radiomics is a rapidly emerging field, introduced in 2012, which 
concerns with the high-throughput mining of large amounts of 
quantitative features, derived from (standard-of-care) medical 
imaging, for knowledge extraction.6–9 Radiomics is in partic-
ular promising within decision support systems for precision 
medicine10–12 and its potential to predict HPV status in head 
and neck cancer has been recognized.13 Indeed, previous studies 
have reported radiologic differences between HPV positive and 
negative cases in terms of qualitative radiologist’s readout14 or 
perfusion CT.15 Furthermore, exploratory radiomic studies have 
shown that heterogeneity of image-based density is potentially 
associated with HPV in OPSCC.16,17

Most of the studies investigating imaging phenotypes of tumors 
are based on single center data, which introduce bias to a model 
and limits its applicability.8 In particular, factors such as CT 
scanner, tube voltage, tube current, reconstruction kernel and 
contrast agent influence the results of quantitative analysis. In 
this multicenter study, we further investigate if a quantitative 
CT-based radiomic approach can objectively identify the HPV 
(p16) status of OPSCC, by developing and validating a radiomic 
signature on a large and international collection of patient data 
from four different institutions. This study does not intend to 
develop methodology to replace existing HPV tests, yet aims to 
provide a proof of concept that radiomics is able to derive molec-
ular information from standard medical images.

Methods and materials
Patients and CT imaging
Four independent cohorts, with a total of 778 OPSCC patients 
with HPV status determined by p16 immunohistochemistry and 
treated with curative intent by radiation therapy with/without 
concurrent chemotherapy, were collected from the Princess 
Margaret Cancer Center (N = 427), the VU University Medical 
Center (N = 158), the University Hospital Zürich (N = 100) 
and MAASTRO clinic (N = 93). All patients underwent pre- 
treatment contrast enhanced CT imaging of the head and neck. 
The gross primary tumor volume (GTV) was manually delin-
eated for each patient for treatment planning purposes. The 
delineation was not standardized and was performed according 
to the clinical protocols, separate for each institute. Images were 
visually assessed for the presence of CT artifacts (e.g. streak arti-
facts due to dental fillings) within the GTV. A more detailed 
description of acquired CT images for each of the included 

cohorts can be found in the Supplementary Material 1. Institu-
tional review board approval was obtained for each of the partic-
ipating centers. Patients provided informed written consent, 
unless the need for written consent for this retrospective study 
was waived by the participating center.

Image analysis
Prior to analysis, all images were resampled to isotropic voxels 
of 2 mm, using linear interpolation.18 A total of 902 radiomic 
features were calculated, divided into five groups: tumor inten-
sity, shape, texture, Wavelet and Laplacian of Gaussian. All 
features were extracted using in-house developed software, 
using Matlab 2014a (MathWorks, Natick, MA). Feature descrip-
tions and mathematical definitions can be found elsewhere.8,19 
To calculate wavelet features, we used the low pass approxi-
mation and the high pass decomposition (i.e. applying either 
a low or high pass filter in each direction, respectively), since 
these decompositions are directionally invariant. For Laplacian 
of Gaussian features, the texture size (fine to coarse) was high-
lighted by modifying the Gaussian radius parameter from 2 to 
7 mm with 1 mm increments. Textural features were computed 
discretizing image intensities into bins, using both a bin width of 
10 and 25 Hounsfield unit.20

Statistical analysis
We randomly assigned 80% of all data for model training  
(N = 628) and 20% for validation (N = 150), with balanced 
HPV status, institution, and number of patients with visible CT 
artifacts.

Highly correlated features were first removed from further 
analysis by evaluating all pairwise correlations in the training 
data  set. For each highly correlated feature pair (Pearson 
correlation coefficient ρ >  0.9), the variable with the largest 
mean absolute correlation with all remaining features was  
removed.

Multivariable logistic regression was performed using the least 
absolute shrinkage and selection operator model selection 
technique,21 with 100 times repeated 10-fold cross-validation 
to select the optimal tuning parameter (λ). To further reduce 
the chance of overfitting on the training data, we selected the 
simplest candidate model (i.e. the model with fewest non-zero 
coefficients), i.e. within one standard error of the best performing 
model. The area (AUC) under the receiver operator curve (ROC) 
was used to assess model performance in predicting HPV (p16)  
status.

Finally, we compared Kaplan–Meier survival curves between 
patients with positive and negative HPV status, based on 
conventional p16 immunohistochemistry and based on 
radiomic model HPV predictions, for all validation patients. 
Model class predictions were made with a probability cutoff 
of 0.5. Overall survival was defined as the time from start 
of treatment to death as a result of any cause. A log-rank test 
was applied to test for significant differences between survival  
curves.
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To assess the impact of CT artifacts, a model was also developed 
on the subset of patients in the training cohort for which there 
were no visible CT artifacts within the GTV. All model valida-
tion was subsequently performed on the entire validation data 
(Vall), and the subgroups of validation patients with (Vart) and 
without (Vno art) CT artifacts. AUC values for paired ROC curves 
were compared using DeLong’s test.22 Model calibration was 
measured by the intercept and slope of the logistic calibration 
curve.23

To further compare the two models, confusion matrices for HPV 
(p16) predictions by Mall and Mno art on all validation data Vall 
were determined.

Statistical analysis was performed in R (R Foundation for Statis-
tical Computing;v. 3.3.3).

Results
Radiomic models for HPV prediction
Patient characteristics, including HPV status, pres-
ence of CT artifacts, and follow-up time are summarized  
in Table 1.

A subset of 165 uncorrelated features was preselected for the full 
training cohort, whereas a subset of 173 uncorrelated features was 
identified for the training data without CT artifacts. The models 
developed on all training data (Mall; 37 degrees of freedom) 
and on the subset of training data without CT artifacts (Mno art;  
50 degrees of freedom). For model performance on the training 
data, we observed an AUC of 0.824 [95% CI (0.791–0.856)]. and 
0.868 [95% CI (0.830–0.906)] for Mall and Mno art, respectively. 
Both models were subsequently validated on Vall, Vno art and Vart. 
The resulting AUC values, logistic calibration intercepts and 

Table 1. HPV status, presence of CT artifacts and median follow-up time for the PMH, the VUmc, the USZ, MAASTRO clinic 
(MAASTRO), the 80% training data (training) and the 20% validation data (validation)

Variable PMH 
(n = 427)

VUmc 
(n = 158)

USZ 
(n = 100)

MAASTRO 
(n = 93)

Training 
(n = 628)

Validation 
(n = 150)

HPV (p16) status

Positive 303 (71%) 34 (22%) 56 (56%) 33 (35%) 344 (55%) 82 (55%)

Negative 124 (29%) 124 (78%) 44 (44%) 60 (65%) 284 (45%) 68 (45%)

CT artifacts

Yes 219 (51%) 69 (44%) 57 (57%) 26 (28%) 300 (48%) 71 (47%)

No 208 (49%) 89 (56%) 43 (43%) 67 (72%) 328 (52%) 79 (53%)

Overall survival

Median follow-up (months) 71.6 74 44.5 51.8 69.4 65.1

Cohort

PMH – – – – 343 (55%) 84 (56%)

VUmc – – – – 128 (20%) 30 (20%)

USZ – – – – 82 (13%) 18 (12%)

MAASTRO – – – – 75 (12%) 18 (12%)

PMH, Princess Margaret Cancer Center; UHZ, University Hospital Zürich; VUmc, VU University Medical Center.
For the training and validation data sets, the amount of patients from each individual cohort are given as well. Median follow-up for overall survival 
was determined by “reverse” Kaplan–Meier analysis (i.e. inversed censoring).

Table 2. AUC values, logistic calibration intercepts and slopes for the model developed on all training data (Mall) and the model 
developed on the subset of training patients without CT artifacts (Mno art), validated in all validation data (Vall), the subset of vali-
dation data without CT artifacts (Vno art) and the subset of validation data with CT artifacts (Vart)

Model Validation dataset AUC Intercept Slope
Mall  Vall 0.7636 [95% CI (0.6874–0.8399)] 0.034 1.041

Vno art 0.7658 [95% CI 0.6592–0.8724)] −0.238 1.191

Vart 0.7521 [95% CI (0.6378–0.8665)] 0.37 0.852

Mno art  Vall 0.7391 [95% CI (0.6582–0.8199)] 0.408 0.561

Vno art 0.8005 [95% CI (0.6967–0.9044)] 0.057 1.103

Vart 0.7017 [95% CI (0.5775–0.8259)] 0.767 0.341

AUC, area under the curve.
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slopes are summarized in Table 2. The corresponding ROC plots 
are shown in Figure 1.

Kaplan–Meier survival curves, including numbers at risk, for all 
validation data Vall are shown in Figure 2. For HPV determined 
by p16, there was a significant split between survival curves for 
HPV (p16) positive and negative cases (p = 0.007), with a hazard 
ratio of 0.46 [95% CI (0.26–0.82)]. For HPV (p16) predictions 
by Mall (p = 0.036) and Mno art (p = 0.027), we observed a similar 
significant split between survival curves, with hazard ratios 
of 0.55 [95% CI (0.31–0.97)] and 0.49 [95% CI (0.26–0.93)], 
respectively.

Comparison of HPV models based on training data 
with and without CT artifacts
AUC values for HPV (p16) predictions made by Mall and Mno 

art were not significantly different for all validation data  sets. 

Confusion matrices for HPV (p16) predictions by Mall and Mno 

art on all validation data Vall are shown in Tables 3 and 4.

Discussion
In this multicenter study, we developed and validated a CT based 
radiomic signature to predict the HPV status of OPSCC patients. 
In the context of radiogenomics,24,25 our study provides a proof 
of concept that molecular information can be inferred from stan-
dard medical images by means of radiomics.

Previous exploratory radiomic studies that indicated a correla-
tion between HPV infection and heterogeneity of imaging-based 
tumor density in OPSCC16,17 either were performed on small 
populations without validation, or only used single institution 
data for both model development and validation. This is a major 
issue in radiomic studies, as can be learned from recent litera-
ture describing the process and challenges of radiomics.8,13,26–28 

Figure 1. ROC plots for the model developed on all training data Mall and the model developed on the subset of training data with-
out CT artifacts Mno art, validated on all validation data Vall (a), the subset of validation data without CT artifacts Vno art (b) and the 
subset of validation data with CT artifacts Vart (c). AUC, area under the curve; ROC, receiver operator curve.

Figure 2. Kaplan–Meier curves and number of patients at risk for HPV predictions by Mall  vs  p16 (a) and Mno art  vs  p16 (b). Survival 
times are in months. HPV, human papilloma virus.

http://birpublications.org/bjr
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In this multicenter study, we used a large collection of imaging 
data from four different institutions for model development and 
validation.

Previously published studies report that HPV positive tumors 
are more homogenous in CT density.16,17 Although a full inter-
pretation of the complex radiomic signature for HPV is difficult, 
we have analyzed the meaning of several features selected both in 
the model trained on all training data and the model trained on 
the subset of training data with no CT artifacts. We have summa-
rized our observations in Table 5. Our models selected different 
features than the ones previously published. However, as many 
radiomic features are correlated with each other, it is more rele-
vant to compare features interpretation than name. Our multi-
center results confirm that HPV tumors are more homogenous 
in CT density. This study provides also an additional insight into 
HPV imaging phenotype. We have observed that the HPV posi-
tive tumors seem to be characterized by lower contrast uptake, 
lower minimum density, and higher changes in the intensity of 
adjacent voxels.

Histopathology analysis shows differences between HPV+  and 
HPV- microscopic traits. For example, HPV+ tumors are char-
acterized by lobular growth, infiltrating lymphocytes and well 
differentiated cells.29 A direct link between these histopathology 
traits and radiomic signature of HPV positive tumors is not 
possible at this stage, and would require further investigation on 
a surgical cohort with full histology data.

Including data from different institutions introduces variety in 
image acquisition and reconstruction, which has been shown 
to affect radiomic features.30,31 Shafiq-ul-Hassan et al18 inves-
tigated voxel-size dependency of radiomic features and found 
that the robustness of radiomic analyses can be improved by 
resampling to a nominal voxel size or by normalizing the voxel 
size. All images in this study were, therefore, resampled to 
isotropic voxels of 2 mm, which was approximately the average 
slice spacing, using linear interpolation. Furthermore, as shown 

previously, textural features and their interpretation are affected 
by the bin width used to discretize image intensities20 . There-
fore, features calculated for different bin widths may provide 
additional predictive information. To account for this, textural 
features were computed using both a bin width of 10 and 25 
Hounsfield unit. In our HPV radiomic signatures, features calcu-
lated using both bin sizes were selected and no preference for a 
bin size was observed.

Besides variability in CT imaging, demographic differences also 
have to be considered. Developing a model on a single, indepen-
dent cohort is, therefore, unlikely to sufficiently capture the vari-
ability that exists across datasets, resulting in a model with poor 
generalizability. We, therefore, performed our model develop-
ment on more heterogeneous data, by randomly assigning 80% 
of all included data for model training and 20% for testing, with 
balanced HPV (p16) status, institution and number of patients 
with visible CT artifacts.

A common concern in the analysis of CT images of head and 
neck cancer are metallic dental fillings or other high atomic 
number material implants, which result in imaging artifacts.32 
An existing radiomic signature for overall survival7 has previ-
ously been shown to have prognostic power regardless of CT 
artifacts.33 Another recent study exploring the link between HPV 
status and CT radiomics, preprocessed images by completely 
removing artifacts affected slices from analysis.17 However, such 
a process neglects potentially relevant three-dimensional infor-
mation. To investigate the impact of CT artifacts on HPV predic-
tion, we developed a model on all data (Mall) and a model on the 
subset of data without artifacts (Mno art). What can be observed 
from our results is that there is no significant difference in 
discriminative power of both models. However, overall calibra-
tion of Mall was better than that of Mno art. It has to be noted that 
the extent of CT artifacts and the impact on radiomic features 
will vary between patients. For an individual patient, model 
accuracy will, therefore most likely depend on the amount of the 
tumor region that is obscured by artifacts. This would have to 
be further investigated, preferably including techniques for metal 
artifact reduction in CT.

Since HPV-related OPSCC have been shown to have superior 
response to radio-chemotherapy,2,3 we compared Kaplan–Meier 
survival curves between patients with positive and negative HPV 
status, based on p16 and model class predictions by Mall and 
Mno art for all validation patients. Indeed, we observed a signif-
icant split (p < 0.05) between HPV positive and HPV negative 
patients based on p16. For HPV (p16) predictions based on both 
models, we obtained survival curves similar to that of p16, with 
significantly different survival for HPV positive and HPV nega-
tive patients, indicating that model predictions are indeed in line 
with p16.

It has previously been shown that part of the OPSCC patients 
that test positive for p16 immunohistochemistry are in fact HPV 
DNA negative.34,35 Since HPV testing for patients included in 
our study was performed by p16, the likelihood of false-positives 
has to be acknowledged. Furthermore, model class predictions 

Table 3. Confusion matrix for HPV (p16) predictions by Mall on 
all validation data Vall

Reference

HPV– HPV+
Predictions HPV– 44 19

HPV+ 24 63

HPV, human papillomavirus.

Table 4. Confusion matrix for HPV (p16) predictions by Mno art 
on all validation data Vall

Reference

HPV– HPV+
Predictions HPV– 57 34

HPV+ 11 48

HPV, human papillomavirus.
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