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ABSTRACT

Transcription regulation in multicellular eukaryotes
is orchestrated by a number of DNA functional el-
ements located at gene regulatory regions. Some
regulatory regions (e.g. enhancers) are located far
away from the gene they affect. Identification of distal
regulatory elements is a challenge for the bioinfor-
matics research. Although existing methodologies
increased the number of computationally predicted
enhancers, performance inconsistency of computa-
tional models across different cell-lines, class im-
balance within the learning sets and ad hoc rules
for selecting enhancer candidates for supervised
learning, are some key questions that require fur-
ther examination. In this study we developed DEEP,
a novel ensemble prediction framework. DEEP inte-
grates three components with diverse characteris-
tics that streamline the analysis of enhancer’s prop-
erties in a great variety of cellular conditions. In our
method we train many individual classification mod-
els that we combine to classify DNA regions as en-
hancers or non-enhancers. DEEP uses features de-
rived from histone modification marks or attributes
coming from sequence characteristics. Experimental
results indicate that DEEP performs better than four
state-of-the-art methods on the ENCODE data. We re-
port the first computational enhancer prediction re-
sults on FANTOM5 data where DEEP achieves 90.2%
accuracy and 90% geometric mean (GM) of speci-
ficity and sensitivity across 36 different tissues. We
further present results derived using in vivo-derived
enhancer data from VISTA database. DEEP-VISTA,
when tested on an independent test set, achieved GM

of 80.1% and accuracy of 89.64%. DEEP framework is
publicly available at http://cbrc.kaust.edu.sa/deep/.

INTRODUCTION

Transcription regulation in human genes is a complex pro-
cess (1,2). Promoters are cis-regulatory regions, which serve
as anchor points for recruiting multiprotein complexes re-
quired for transcription. Although these regions have been
extensively studied, their underlying transcriptional mech-
anism is not yet fully understood (3). Recent advances in
high-throughput experiments like the 3C technology indi-
cate that interactions between proximal and distal regula-
tory elements orchestrate gene expression between differ-
ent cell types. In contrast to proximal elements, distal el-
ements are not located near to the genes whose activity
they affect, and can be located 20 kb or further away, or
even can be located at different chromosomes. In addition,
their functional mechanism appears to be independent of
the upstream/downstream location of the genes they target.
The better-characterized distal regulatory elements in eu-
karyotes are enhancers, silencers and insulators (4,5). Pro-
viding an accurate definition for these regulatory elements
is not an easy task since they may have different roles de-
pending on the cellular state (i.e. can be active or inactive,
or can assume non-enhancer function) and their functional
mechanism is not yet fully known. In the line with (6) we
characterize enhancers as cis-acting DNA regulatory ele-
ments that increase the transcriptional output of the dis-
tal target genes. Enhancers activate gene transcription by
recruiting transcription factors (TFs) and their complexes.
For this reason, enhancer regions frequently contain clus-
ters of binding sites of various TFs that vary across differ-
ent cells and tissues. On the other hand, silencers, repressors
and insulators have practically negative effects on the cel-
lular transcriptional output either through recruitment of
transcriptional repressor proteins (7), or by preventing the
spread of heterochromatin (8).
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Recent experimental procedures shed light on distal reg-
ulatory element interactions and decipher parts of their
underlying operational mechanism. For instance, chro-
matin immunoprecipitation followed by massive sequenc-
ing (ChIP-Seq) determine the chromatin accessibility in dif-
ferent organisms, tissues and under different conditions. On
the other hand, Cap Analysis of Gene Expression (CAGE),
estimates the quantity of 5′ ends of messenger RNA in a cell.
Projects, such as the ENCODE (9) and the NIH Epigenome
Roadmap (10), released libraries of histone modification
marks in human genome, whereas the FANTOM5 project
(11) released CAGE-based transcription start sites (TSSs)
in different cell types and tissues and enabled for the com-
prehensive identification of functional regulatory elements.
Data that harbors the relevant information and the com-
plexity of this information itself make identification of en-
hancers a challenging bioinformatics problem (12). Thus,
the development of efficient computational models for pre-
dicting distal regulatory elements based on the recent high-
throughput data emerges as a necessary requirement for un-
derstanding gene control mechanisms.

The first category of computational approaches for en-
hancer identification has been based on evolutionary con-
servation (13). However, recent results indicate that human
regulatory elements show low conservation among different
species and consequently they cannot be effectively char-
acterized based on orthologous regions in other mammals
(14). The second category is based on more sophisticated al-
gorithms (15) that associate enhancers and promoters with
certain types of histone modification marks and transcrip-
tion regulators. However, since different types of histone
modifications and regulators characterize enhancers, the
developed models are not general enough. Other method-
ologies (16) use DNase I Hypersensitivity sites (DHSs) ex-
tracted from DNase-Seq data to characterize accessible
DNA regions in various human cell types. Usage of DHSs
combined with TF binding site (TFBS) motifs extracted
from well-known databases (Transfac (17), Jaspar (18), HO-
COMOCO (19)) is promising, but has several limitations.
Lack of specificity for predicting different elements (en-
hancers or silencers or promoters) is considered the main
drawback. In addition, strong dependency on sequence mo-
tifs may be problematic, since simultaneous binding of pro-
tein complexes to combinations of different motifs cannot
be easily captured (20). The third category of developed
methods utilizes machine learning (ML) algorithms and
histone modification marks derived data, to increase the
pool of candidate enhancers. ChromHMM (21) utilizes hid-
den Markov models (HMM) and unsupervised clustering of
profiles in nine cell lines, while Segway (22) offers an alter-
native genomic segmentation based on a Dynamic Bayesian
Network. CSI-ANN (23) introduces an Artificial Neural
Network approach, while ChromaGenSVM (24) applies a
support vector machines (SVM) classifier combined with a
genetic algorithm for optimizing several steps in the recog-
nition process. A Random Forest-based approach (RFECS)
that studies multiple cell lines (25) has also been proposed.
Recently, an SVM-based approach, EnhancerFinder (26),
is proposed that integrates various types of data to improve
enhancer prediction as compared to methods utilizing data
from a single source. Finally, a forth category of developed

methodologies utilizes FANTOM5 CAGE tags combined
with other high-throughput data to detect active in vivo-
transcribed enhancers across multiple tissues (27).

Although the ML-based methodologies increased the
pool of predicted enhancers in various ENCODE cell lines,
some key questions require further examination. These in-
clude lack of systematic analysis in enhancer’s usage, perfor-
mance inconsistency of computational models across dif-
ferent cell lines, class imbalance within the learning sets re-
quired for development of enhancer prediction models, lim-
ited number of training samples, data availability, strong de-
pendencies on ad hoc rules from chromatin signatures and
dominant dependencies on p300 binding sites and DHSs.
Some of the above-mentioned problems are tackled by
RFECS method. However, RFECS, as well as CSI-ANN
and ChromGenSVM, rely strongly on p300 binding sites
and/or DHSs for selecting positive training examples. Due
to the above-mentioned reasons the existing computational
models are often not general enough and sometimes show
inconsistent performance across different data sets. One the
other hand, EnhancerFinder (26) is trained on a small set
of developmental enhancers data from the VISTA enhancer
browser (28). The method shows improved performance
and we believe that this can be attributed to a great extent
to the use of variety of data types.

In this study we developed DEEP, a general ML frame-
work for predicting enhancers. The DEEP framework
contains three components, DEEP-ENCODE, DEEP-
FANTOM5 and DEEP-VISTA. The components of DEEP
are trained on data with diverse properties that describe en-
hancer’s activity under different cellular conditions. From
the technical point of view, DEEP utilizes a two-phase al-
gorithm that reformulates the prediction problem into a
binary classification task of chromosomal regions as be-
ing enhancer candidates or not. The first phase of DEEP
uses an ensemble of SVMs, where many SVM models
are trained using different subsets of the original data.
In the second phase, decisions are aggregated and a sim-
ple ANN is used for deriving the final prediction. DEEP-
ENCODE selects (from a big pool of available attributes)
histone marks (ChIP-Seq) derived features from multiple
ENCODE cell lines, DEEP-FANTOM5 uses tissue-specific
sequence characteristics derived from FANTOM5 experi-
mental data, while DEEP-VISTA uses sequence character-
istics derived from developmental enhancer data achieved
in VISTA database. Experimental results across different
cell lines/tissues and comparison analysis with state-of-the-
art methods convincingly demonstrate that DEEP is a gen-
eral and robust framework for predicting enhancers, and
can be used to complement other methods in enhancer pre-
diction tasks.

MATERIALS AND METHODS

The DEEP-ENCODE model

DEEP framework builds two models derived from
different data sources that relate to different experi-
mental conditions and characterize diverse regulatory
functions. The DEEP-ENCODE model specializes to
predict enhancers from data coming from the ENCODE
repository (http://genome.ucsc.edu/ENCODE/dataMatrix/
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encodeChipMatrixHuman.html) from where we con-
structed the training and testing sets. For the training
sets we used Gm12878, Hep, H1-hesc and Huvec cell
lines data. For testing the performance of the developed
models and for exploring the generalization capabilities
in a genome-wide manner, we used data from Hela and
K562 cell lines. All the above-mentioned data sets are well
studied and annotation maps for them also exist (29). The
construction of the enhancer set (positive set) was based on
the ENCODE integrative genomic annotation (30). This
annotation utilizes unsupervised clustering techniques, as
well as experimental data (TFs like CTCF or Pol2, DNase
data and FAIRE arrays) to label non-overlapping genomic
segments according to their functionality described by
a total of 25 states. From this annotation we chose for
training the set of most confident regions characterized
as strong enhancers (enh). On the other hand, the non-
enhancers (negative) data set contains random genomic
loci (10 × the number of enhancer bins) not annotated as
promoters or enhancers. Since there is no ‘gold standard’ of
experimentally verified enhancers across variety of cellular
conditions, cell types and tissues, we used as the reference
the ENCODE annotation proposed by Hoffman et al.
(30) as it is widely accepted by the research community
and complements recent findings presented by Andersson
et al. in (27). We kept a ratio 1:10 between positive and
negative samples/bins and the data generation process
followed the procedure proposed by CSI-ANN model (23).
However, the original CSI-ANN model was trained using
only 394 positive data samples from (31,32), while we used
all strong enhancers from the training cell lines. For the
construction of DEEP-ENCODE model we performed
experiments with different sets of attributes including
11 histones and 351 sequence characteristics (described
in the next section and summarized in Supplementary
Table S4). We found that models trained using mixture
of sequence and histone-derived attributes were not as
effective as those obtained using only histone mark-derived
characteristics. In addition, the small set of histone marks
enabled for the application of a feature selection based
on an exhaustive search that identified optimal set of
attributes that differentiates considerably between different
cell lines (Supplementary Table S5). Our final feature
vector was compiled from ENCODE ChIP-Seq data
containing the following 11 histone modification marks:
H2AFZ, H3K27ac, H3K27me3, H3K36me3, H3K4me1
H3K4me2, H3K4me3, H3K79me2, H3K9ac, H3K9me3,
H4K20me1. During data pre-processing we generated bins
corresponding to 200 bp regions. Each row (histone mark)
in a feature vector was scaled using min–max normalization
to the [0,1] interval. This normalization technique does
not affect the scaling of the testing data since it is applied
independently to each cell line. Thus, the quality of the
results is unbiased. Note that the results obtained from our
experimentation with histone marks are in agreement with
recent findings, which manifest that, the chromatin states
that describe enhancers present cell-specific properties that
vary across different cell lines (33). The DEEP-ENCODE
model trained with sequence characteristics is also available
(although it has lower performance) and it has advantages

for new cell lines where histone modification mark data are
not provided.

The DEEP-FANTOM5 model

The DEEP-FANTOM5 model was implemented to predict
enhancers that are specifically expressed in various organs
and tissues. We used ‘genuine‘ enhancers recently published
by the FANTOM5 consortium (27). The data is publicly
available at http://enhancer.binf.ku.dk/Pre-defined tracks.
html. For training models we chose without loss of gener-
ality enhancers coming from five vital organs: heart, brain,
liver, lung and kidney. For testing the performance of the
developed model we made predictions to all the other avail-
able FANTOM5 tissues. The negative set (non-enhancers)
contains random genomic regions with the same mini-
mum, maximum and mean length of the previous tissue-
specific enhancers (10 × the number of enhancers) not in-
cluded in any other list of enhancers published by the FAN-
TOM5 consortium. For describing enhancers, we used 351
attributes derived from the sequences themselves. These in-
clude frequencies of 4 mono-nucleotides, 16 di-nucleotides,
64 tri-nucleotides, 256 tetra-nucleotides, as well as infor-
mation on GpC islands, 2 aggregate frequencies for C+G,
A+T, sequence length, number of bp and other 6 attributes
coming from suitable combinations of the above-mentioned
characteristics. The detailed description of the feature vec-
tor is provided in the Supplementary Materials. It is worth
noting that in this model we did not apply any normaliza-
tion procedure in the training and testing processes. For the
construction of DEEP-FANTOM5 model we did not in-
clude histone marks information. The reason is that such
data for the organs and tissues we studied is not available.

The DEEP-VISTA model

The DEEP-VISTA model was trained on human in vivo-
derived developmental enhancers that present extreme evo-
lutionary conservation with mouse. We used enhancer
data archived in VISTA enhancer browser (28). Data sets
are publicly available at http://enhancer.lbl.gov/frnt page n.
shtml. For training SVM models we selected all 1729 hu-
man enhancers. The negative set (non-enhancers) contains
random genomic regions with the same minimum, maxi-
mum and mean length of the selected human enhancer re-
gions (10 × the number of enhancers) not included in any
list of enhancers published in VISTA. Similarly to DEEP-
FANTOM5 model, we used 351 attributes derived from the
sequences themselves. We did not apply any normalization
procedure in the training and testing processes. Again we
note that we did not include histone mark information since
such data for the developmental enhancers set is not avail-
able.

Implementing DEEP

Ensemble techniques have been successfully applied for
training classifiers with highly unbalanced classes (34). Typ-
ically, in the ensemble approaches the majority class is par-
titioned into several subsets such that each of them has ap-
proximately equal number of samples as the minority class.

http://genome.ucsc.edu/ENCODE/dataMatrix/encodeChipMatrixHuman.html
http://enhancer.binf.ku.dk/Pre-defined_tracks.html
http://enhancer.lbl.gov/frnt_page_n.shtml
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When dealing with millions of samples in the minority class,
a well-know variant partitions the minority class as well into
disjoint subsets such that each of them contains the same
ratio between positive and negative samples. Our DEEP-
FANTOM5 and DEEP-VISTA models follow the first ap-
proach and partitions the majority class (non-enhancers)
into 10 disjoint subsets. In order to achieve faster train-
ing and to handle millions of positive and negative sam-
ples, the DEEP-ENCODE model follows the second vari-
ant and partitions both positive and negative training sam-
ples into 1000 disjoint subsets so that each learning sub-
set contains positive and negative samples in the propor-
tion 1:10. For data sampling and partitioning we used sim-
ple random sampling without replacement. After data par-
titioning, each of the learning subsets is used to develop
an SVM model with Gaussian kernel function. The de-
velopment of multiple classifiers covering different parti-
tions of the original data provides a better approximation
of the original data distribution (35). Predictions of indi-
vidual SVM classifiers are combined through an ANN to
generate a final prediction. The inputs to this ANN are
confidence scores (confidence scores are defined as the pro-
portion of positive votes versus all votes for models from
each cell line) obtained in the first layer of DEEP from the
four cell line-/tissue-specific ensemble models. For DEEP-
ENCODE 4 confidence scores are aggregated, whereas for
DEEP-FANTOM5 we collect 5 scores from the underlying
tissue-specific models. In the case of DEEP-VISTA, since
we do not use data from multiple tissues/cell lines, the con-
fidence scores are the votes aggregated from an individual
ensemble SVMs. For tuning the ANN topology and select
the optimal number of neurons we applied 5-fold cross-
validation to the union of the data we used for training. For
DEEP-ENCODE we trained on the union of data derived
from Gm12878, H1, Hep and Huvec, whereas for DEEP-
FANTOM5 we utilized brain, heart, lung, liver and kid-
ney tissue data. The DEEP-VISTA model is trained on the
union of subsets used for training individual SVMs. The
best-trained model in terms of classification performance
was utilized further for taking final decisions for all the
cell lines and tissues we tested. We also experimented with
other simple decision-making mechanisms like the majority
voting and the experimental results for this version can be
found in Supplementary Materials.

For the DEEP-ENCODE component, an ensemble SVM
classifier was constructed for four cell lines (Gm12878, H1-
hesc, Huvec and Hep). In total we trained 4000 (4 × 1000)
classifiers. To do that, we partitioned the data randomly and
we selected 20% of the samples for training and for tuning
the model-specific classification parameters, while the re-
maining 80% of samples was kept for evaluating the perfor-
mance of each individual ensemble model. For the DEEP-
FANTOM5 component we followed the same logic and we
trained an ensemble model with 10 classifiers for each of
the lung, brain, heart, kidney and liver tissues (in total we
trained 5 × 10 = 50 classifiers). We chose 40% of the orig-
inal data for training and tuning and 60% for testing. For
the DEEP-VISTA component again we followed the same
approach and we trained an ensemble model with 10 classi-
fiers using 20% of the original data for training and tuning
and 80% for testing. The ratio between training and testing

sets for each model was experimentally tuned taking into
account the run time required for training DEEP model.
A more detailed description is provided in the Supplemen-
tary Materials. Each model derived from one of the train-
ing data partitions utilizes an SVM classifier with Gaussian
kernel function. When dealing with data containing unbal-
anced classes, SVM tend to be biased toward the majority
class (34), but since we used an ensemble approach in both
components of DEEP, this problem is reduced.

Tuning the SVM regularization parameter ‘C’ and the
Gaussian kernel parameter ‘gamma’ was accomplished us-
ing a simple grid search algorithm (36). For every training
round for simplicity and for saving time (note that we are
training multiple SVM models) we selected randomly 70%
of the training data for optimizing these two parameters.
We computed all grid combinations of parameters and then
we performed classification. We selected the case that max-
imizes the geometric mean (GM) of Specificity and Sensi-
tivity. GM is a performance metric suitable for imbalanced
data sets (37). In the second round of optimization, the same
idea is applied to a fine-grained search space by increas-
ing 10 times the step resolution. In the first step of the op-
timization technique the resolution of grid search was set
to 0.2. Note that we applied logarithmic resolution in the
range of (1,500) for parameter C and (0,50000) for param-
eter gamma, but any other resolution could also been ap-
plied. Figure 1 presents the DEEP workflow and describes
DEEP utilization for classifying unknown data items.

A drawback we faced during the development of DEEP
was the computational time required for training and tun-
ing multiple individual SVM models. Similarly, the time re-
quired for predictions in unknown samples is significant
because it requires classification over multiple individual
SVM models. However, since the training data subsets and
the models are totally independent, the implementation is
fully parallelized. The most expensive part of our work was
the training of DEEP-ENCODE component, because it re-
quires training of 1000 individual models coming from each
cell line (4000 in total). The computational time for training
sequentially a cell-specific DEEP-ENCODE model is on av-
erage 12.8 h, which can be reduced to an average of 1.9 h in
a workstation with 8 CPU cores and 196 GB RAM (Intel
Xeon 2.6 GHz). Similarly, an optimized implementation for
testing includes efficient partitioning of the data in chunks
that fit into the main memory and can be fully parallelized
as well.

The fact that we incorporated models derived from dif-
ferent ENCODE cell lines, various FANTOM5 tissues and
developmental enhancers from VISTA into a unified frame-
work for predicting enhancers increases the generalization
ability and maximizes the capability of predicting enhancers
in new cell lines, tissues and cellular conditions. The imple-
mentation of DEEP was made in Matlab R2012b and the
standalone programs with the data sets used in this study
are available at http://cbrc.kaust.edu.sa/deep/.

RESULTS AND DISCUSSION

Studying the performance of DEEP-ENCODE component

To explore the effectiveness of individual models trained
on information form one cell line to predict enhancers in

http://cbrc.kaust.edu.sa/deep/


PAGE 5 OF 14 Nucleic Acids Research, 2015, Vol. 43, No. 1 e6

Figure 1. DEEP framework. The input to DEEP is either ChIP-Seq data for 11 histone marks or DNA sequences. After the feature vector computation,
DEEP classifies the unknown instances using cell line-specific multiple SVM models or tissue-specific multiple SVM model. For each sample a confidence
score is created based on the number of votes derived from each model. These confidence scores are passed to an ANN that takes the final decision and
classifies each sample as candidate enhancer or not.

other cell lines, we tested the performance of Gm12878, H1-
hesc, Hep and Huvec ensemble classifiers on data from Hela
and K562. The data normalization process required for the
testing data has a limitation that it requires whole-genome
ChIP-Seq signals in bigwig format for the unknown data
items for testing (or an equivalent data format to convert).
However, this is allowed because the ENCODE project re-
leases whole-genome ChIP-Seq signals for the studied cell
lines. Figure 2 present the ROC performance curve for
these cell line-specific trained models for different decision
thresholds.

A more thorough analysis of the generalization capabil-
ities of individually deployed models revealed that few cell
lines share a lot of the common properties and thus gener-
alization becomes easier for such cases. In these situations,
a prediction model derived for one cell line can be used to
predict enhancers in such other cell lines. However, this is
not a general property. For example, Gm12878 cell line has
better predicting capabilities in K562 rather than in Hela.
On the other hand, model derived from Huvec data gen-
eralizes well on data from Hela cell line, but achieves very
poor performance on K562 data. Surprisingly, the H1 cell
line-derived model generalizes well according to the ROC
curve on data from both test cell lines, but more exten-
sive analysis revealed very poor positive predictive value
(PPV). The complete experimental setup that contains all
the performance indicators accompanied with Precision–

Recall curves is presented in Supplementary Material and
is available at http://cbrc.kaust.edu.sa/deep. It becomes ap-
parent that no model derived from single cell line data (of
the type and within the framework we used) can effectively
predict enhancers in all the other cell lines. That fact sug-
gests a significant performance consistency challenge across
various cell lines.

The DEEP-ENCODE component resolves the above-
mentioned issues and manifests greater generalization ca-
pabilities in both cell lines we used for testing. Figure 3
presents the ROC curve and the Precision and Recall perfor-
mance curve. The decision-making schema we used, offers
a threshold-free decision mechanism (threshold-free here
refers to the thresholds that can be applied in steps 1 and
2 of the framework) by utilizing a simple ANN as the fi-
nal output block of the DEEP-ENCODE component. The
results illustrate that the combined two-layers framework
with an ANN as the final decision maker generalizes better
than individual models and achieves on average much bet-
ter performance than other decision-making schemas that
we evaluated. Comparing the results of DEEP-ENCODE
with those obtained by the cell-specific models, we conclude
that the combination of models achieves much better gener-
alization capabilities. This advantage makes DEEP a robust
tool for predicting enhancers in multiple cell lines.

http://cbrc.kaust.edu.sa/deep
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Figure 2. ROC performance curve for ensemble models trained on ENCODE cell line-specific data and tested on independent data coming from Hela and
K562 cell lines.

Figure 3. ROC and Precision–Recall performance curves for DEEP-ENCODE component tested on independent data coming from Hela and K562 cell
lines.

Performance comparison of DEEP-ENCODE with existing
methods

To assess the capability of DEEP-ENCODE to predict ef-
fectively enhancers in a genome-wide manner, we used Hela
and K562 cell line data and associated annotation from the
ENCODE repository. These two cell line data were not used
in the training process at all, so they are independent testing

data for our evaluation. Here, in order to eliminate potential
performance overestimation we eliminated enhancers that
are common across the training sets of Gm12878, H1-hesc,
Hep and Huvec models and the enhancer sets of Hela and
K562 cell line data. Supplementary Table S12 presents the
number of pairwise overlapped enhancer bases for all the
data sets deployed in this study. To eliminate the overesti-
mation of performance we excluded common bins between
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any of the Gm12878, H1, Hep and Huvec, training sets and
the Hela and K562 testing sets. We also excluded from all
training data sets, the enhancer regions that are described
by exactly the same feature vectors as the enhancer regions
in the test sets. After that filtering, we obtained 23 666 553
bp (0.764% of the genome) of enhancer predictions for Hela
and 28 238 758 bp of enhancer predictions (0.912% of the
genome) for K562. Since there is no baseline set of experi-
mentally verified enhancers for these ENCODE cell lines, in
order to have a fair comparison with respect to other meth-
ods, we evaluated predictions of enhancers through their
overlap with experimental data that includes p300 ChIP-
Seq peaks, DHS markers support (23–25) as well as RNA
Polymerase II (Pol II) and TATA-binding protein (TBP)
ChIP-Seq peaks. We computed different performance indi-
cators. To provide a clear definition for them, first, we define
the following sets:

A = the number of predicted enhancer bases that have
p300/DHS experimental support

B = the total number of predicted enhancer bases
C = the total number of bases for p300/DHS experimental

data
D = the number of predicted enhancer bases that overlap

with promoters

Using the above annotation we determine the following
performance indicators:

a/ Positive Predictive Value (PPV) = A/B
b/ Jaccard Index = A/(B + C − A)
c/ F1-score = 2*A/(B + C)
d/ Promoter overlap fraction (POF) = D/B

There are certain problems with the POF indicator since
it is not straightforward to identify the promoter. The only
real difference between the enhancers and promoters is the
distance from the target genes, but in most cases we do not
know the targets of enhancers. One should note that an en-
hancer that has remote target genes can contain a promoter
of a proximal non-protein coding RNA (eRNA) genes (38),
thus making it impossible in such cases to distinguish be-
tween the two. In fact, a large fraction of Pol II targets tran-
scription in enhancers (38) resulting in this overlap. In addi-
tion, DNA regions characterized as promoters or enhancers
in one phenotype could change in another phenotype (33)
as chromatin states change. Further, there is no clear def-
inition of the promoter boundaries. The upstream bound-
ary of a promoter could be from 400 bp up to 15 000 bp
upstream of TSS as used across different studies. To com-
plicate the problem even more, there is no unique TSS for
a gene (11), so it is difficult to define promoter relative to a
gene loci. Due to all above-mentioned reasons, we measured
the overlap through ChIP-Seq data for Pol II and TBP. All
human protein-coding genes and many non-coding RNA
genes are transcribed via Pol II, which positions over TSS.
TBP binds to TATA-box and it is found in ∼24% of human
genes in their core promoters (39). Therefore, we combined
the presence of both Pol II ChIP-peak signals with TBP
ChIP-peak signals to have a stronger evidence of promoter
type regions. Next, we mapped the candidate promoter re-

gions we found to the predictions obtained by the studied
programs. However, the results should be considered with
caution as the POF indicator defined using Pol II and TBP
data has above-mentioned weaknesses. Note that in Sup-
plementary Table S21 we present the additional results that
measure overlap with candidate promoter regions defined
based on Pol II ChIP-Seq peaks and well-annotated TSS
set of RefSeq genes (accessed at 29 September 2014).

Note that, for the Hela cell line we used ENCODE p300
ChIP-Seq peaks (set C for p300) covering 8 199 111 bp,
DHS markers (set C for DHS) covering 38 580 135 bp and
4 078 010 bp belonging to Pol2 and TBP ChIP-Seq peaks.
Regarding the K562 cell line, 987 378 856 bp belong to p300
ChIP-Seq peaks (set C for p300), 43 893 777 bp belong to
DHS markers (set C for DHS) and 3 747 145 bp belong to
Pol2 and TBP ChIP-Seq peaks.

Next, we compared our predictions with those gener-
ated by four state-of-the-art predictors, namely, CSI-ANN,
RFECS, ChromHMM and Segway on the same cell lines
(Hela, K562) that represent independent test data for our
method. For CSI-ANN, all predictions were obtained based
on the optimal model proposed by the authors, trained
on CD4+T cell line data (32). For RFECS the best model
was based on the optimal subset of histone marks derived
from H1-hesc cell line data. Predictions of Segway and
ChromHMM can be found at http://www.broadinstitute.
org/∼jernst/ROUND8 ChromHMM/. However, the way
these ML-based methods generated their training sets (ex-
cept for ChromHMM and Segway that use unsupervised
learning) does not guarantee that there is no overlap of ‘gen-
uine’ enhancer regions between their deployed training sets
and the Hela and K562 testing sets used in our study. We
are aware of this potential overestimation of performance
for these two methods.

For the Hela cell line, CSI-ANN made 26 721 354 bp en-
hancer predictions covering 0.863% of the genome; RFECS
predictions covered 87 487 722 bp (2.826% of the genome
size), ChromHMM predicted 71 098 730 bp (2.296%) and
Segway 125 256 834 bp (4.046%). For K562 cell line, CSI-
ANN predicted 34 635 309 bp (1.118% of the genome size),
RFECS predicted 130 723 329 bp (4.222%), ChromHMM
predicted 111 659 937 bp (3.606%) and Segway predicted
283 814 425 bp (9.168%). The comparison analysis is sum-
marized in Tables 1–7.

The comparison of the performances revealed that
DEEP-ENCODE covers the smallest portion of the
genome for both test cell lines followed by CSI-ANN,
ChromHMM, RFECS and Segway. Based on PPV, DEEP-
ENCODE always performs better than all the other meth-
ods relative to p300 and DHS support in both evaluated
cell lines. Based on Jaccard Index, DEEP-ENCODE and
ChromHMM share the best results followed by CSI-ANN,
Segway and RFECS. Based on F1-score, DEEP-ENCODE
and ChromHMM again are ranked first followed by CSI-
ANN, RFECS and Segway in both evaluated cell lines. Fi-
nally, the smallest POF is achieved by ChromHMM method
followed by RFECS and Segway.

Since, using different performance indicators the studied
programs present advantages and disadvantages we rank
their performance according to the four metrics described
earlier. In total, 14 different tests were made (including 5

http://www.broadinstitute.org/~jernst/ROUND8_ChromHMM/
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Figure 4. Number (%) of enhancer predictions (in bins) for Hela cell line that have at least one TFBS divided by the total number of enhancer predictions
(PWM with threshold 0.0005).

Figure 5. Number (%) of enhancer predictions (in bins) for K562 cell line that have at least one TFBS divided by the total number of enhancer predictions
(PWM with threshold 0.0005).



PAGE 9 OF 14 Nucleic Acids Research, 2015, Vol. 43, No. 1 e6

Figure 6. ROC performance curve for ensemble models trained on FANTOM5 tissue-specific data and tested on independent data coming from adipose
and salivary.

Figure 7. ROC and Precision–Recall performance curves for DEEP-FANTOM5 component tested on independent data coming from adipose and salivary.
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Figure 8. ROC and Precision–Recall performance curves for DEEP-VISTA component tested on independent data.

Table 1. PPV with p300/DHS data for Hela cell line

Program

E = number of
predicted enhancer
bases

E overlapped with
p300 peaks

PPV based on the
overlap with p300
peaks (%)

E overlapped with
DHS peaks

PPV based on the
overlap with DHS peaks
(%)

DEEP-ENCODE 23 666 553 1 925 158 8.13 11 795 822 49.84
CSI-ANN 26 721 354 1 475 323 5.52 12 088 783 45.24
RFECS 87 487 722 5 241 662 5.99 18 149 583 20.74
ChromHMM 71 098 730 5 697 282 8.01 19 195 950 26.99
Segway 125 256 834 7 345 767 5.86 26 772 699 21.37

Table 2. PPV with p300/DHS data for K562 cell line

Program

E = number of
predicted enhancer
bases

E overlapped with
p300 peaks

PPV based on the
overlap with p300
peaks (%)

E overlapped with
DHS peaks

PPV based on the
overlap with DHS peaks
(%)

DEEP-ENCODE 28 238 758 22 884 991 81.04 14 743 218 52.20
CSI-ANN 34 635 309 29 524 533 85.24 17 977 798 51.90
RFECS 130 723 329 92 392 750 70.67 19 082 602 14.59
ChromHMM 111 659 937 77 861 594 69.73 20 037 473 17.94
Segway 283 814 425 181 013 092 63.77 29 728 154 10.47

Table 3. Jaccard Index with p300/DHS data for Hela cell line

Program
Jaccard Index based on the overlap with p300
peaks

Jaccard Index based on the overlap with DHS
peaks

DEEP-ENCODE 0.064 0.233
CSI-ANN 0.041 0.226
RFECS 0.055 0.161
ChromHMM 0.077 0.212
Segway 0.058 0.195
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Table 4. Jaccard Index with p300/DHS data for K562 cell line

Program
Jaccard Index based on the overlap with p300
peaks

Jaccard Index based on the overlap with DHS
peaks

DEEP-ENCODE 0.023 0.256
CSI-ANN 0.029 0.296
RFECS 0.090 0.122
ChromHMM 0.076 0.147
Segway 0.166 0.099

Table 5. F1-score for genome-wide predictions in ENCODE Hela cell line

Program
F1-score based on the overlap with p300 peaks
(%) F1-score based on the overlap with DHS peaks (%)

DEEP-ENCODE 12.12 37.90
CSI-ANN 7.99 37.02
RFECS 10.87 28.49
ChromHMM 14.36 35.00
Segway 11.00 32.68

Table 6. F1-score for genome-wide predictions in ENCODE K562 cell line

Program
F1-score based on the overlap with p300 peaks
(%) F1-score based on the overlap with DHS peaks (%)

DEEP-ENCODE 4.51 40.88
CSI-ANN 5.78 45.78
RFECS 16.52 21.84
ChromHMM 14.17 25.76
Segway 28.48 18.14

Table 7. Promoter overlap fraction in actual number of bases. In the parenthesis we report% fraction

Program
Percentage of predicted enhancer bases with
Pol II+TBP regions in Hela

Percentage of predicted enhancer bases with Pol
II+TBP regions in K562

DEEP-ENCODE 1 934 940 (8.17%) 1 831 793 (6.84%)
CSI-ANN 3 047 118 (11.40%) 2 785 755 (8.04%)
RFECS 620 220 (0.70%) 299 129 (0.22%)
ChromHMM 430 345 (0.60%) 160 847 (0.14%)
Segway 1 579 545 (1.26%) 1 330 238 (0.46%)

methods, 2 cell lines and 4 performance indicators). Follow-
ing the ideas of (40) we averaged the ranked position of each
of the five methods used in comparison in all of the 14 tests.
Table 8 shows the overall score and average rank position
for each of the methods. The lower the average rank position
the better is the method. The analysis revealed that across
the different performance tests DEEP-ENCODE is ranked
first, followed by ChromHMM, CSI-ANN, Segway and
RFECS. This fact convincingly demonstrates that DEEP-
ENCODE performs well relative to the existing methods for
enhancer predictions and can usefully complement them in
this challenging task. Additional comparisons that measure
the performance of the studied methods based on the same
number of predictions (we used predefined thresholds and
with random subsampling we selected the same amount of
predicted enhancers) can be found in Supplementary Fig-
ures S3–S6. The performance curves for the overlap of pre-
dicted enhancer bases (obtained by the studied programs)
with the ‘gold-standard enhancers’ obtained from (30) in a
genome-wide manner can be found in Supplementary Fig-
ures S7 and S8.

All p300 data, TBP data, DHS markers, candidate pro-
moter regions, predictions obtained by the different pro-

grams, as well as scripts for reproducing the results are pro-
vided at http://cbrc.kaust.edu.sa/deep/.

Validating DEEP-ENCODE genome-wide predictions using
enhancer-related TF binding models

Another indirect way of validating predicted enhancers
involves enrichment of specific TFs described by posi-
tional weight matrixes (PWM) that bind to enhancer-
predicted regions. Here, we tested binding of several TFs
to genome-wide predictions obtained by DEEP-ENCODE
model for Hela and K562 cell lines. We utilized HO-
COMOCO database, which contains PWM models for
476 distinct TFs. From them, we selected a small sub-
set that contains well known enhancer-related TFs like
Oct2 (PO5F1), Sox2, Nanog, p300 (EP300), CBP (Creb1),
TEAD1, TEAD2, TEAD3, TEAD4 (TEAD family), STA1,
STAT2, STAT3, STAT4 (STAT family), TRAP220 (ESR1).
Next, we mapped the enhancer sequences (and their reverse
complements) against the subset of TFs using MOODS
software (41). Figures 4 and 5 present an overview of the
results for Hela and K562 cell lines. We reported% propor-
tion of enhancer predictions in bins that have at least one
TF hit as obtained by the PWM models divided by the total

http://cbrc.kaust.edu.sa/deep/
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Table 8. Relative ranking of ML methods that took part in the comparison study

DEEP-ENCODE CSI-ANN RFECS ChromHMM Segway

PPV p300 (Hela) 1 5 3 2 4
PPV p300 (K562) 1 2 3 4 5
PPV DHS
(Hela) 1 2 5 3 4
PPV DHS (K562) 1 2 4 3 5
Jaccard Index p300
(Hela)

2 5 4 1 3

Jaccard Index p300
(K562)

5 4 2 3 1

Jaccard Index DHS
(Hela)

1 2 5 3 4

Jaccard Index DHS
(K562)

2 1 4 3 5

F1-score p300 (Hela) 2 5 4 1 3
F1-score p300 (K562) 5 4 4 3 5
F1-score
DHS (Hela) 1 2 5 3 4
F1-score
DHS (K562) 2 1 4 3 5
POF (Hela) 4 5 2 1 3
POF (K562) 4 5 2 1 5
OVERALL
RANKING

1st (32), 2.2 3rd (45), 3.2 5th (51), 3.6 2nd (34), 2.4 5th (56), 4

number of predicted bins. These results were obtained us-
ing a P-value threshold for binding equal to 0.0005. Results
for P-value equal to 0.005 as well as the detailed list of hits
are available in our web repository http://cbrc.kaust.edu.sa/
deep/. We found that predictions obtained for both cell lines
are enriched with putative binding sites of all selected TFs
which all have been found in more than 5% of cases, with
p300, STAT family TFs and TRAP220 being most promi-
nent and being present in at least 15% of the cases.

The performance of DEEP-FANTOM5 component on all the
available FANTOM5 tissues

Similarly to DEEP-ENCODE experiments, we explored the
capacity of individual models trained in one tissue to pre-
dict enhancers in other tissues. To do so, we tested the per-
formance of ensemble classifiers developed separately from
brain, heart, lung, kidney and liver data, on data coming
from adipose and salivary tissues. Figure 6 presents ROC
performance curves for models trained on tissue-specific
data for different decision thresholds. Note that the adipose
and salivary tissues were chosen randomly for illustration
purposes for Figures 6 and 7. Later, to assess the generaliza-
tion capabilities of DEEP-FANTOM5 trained on data from
a small subset of vital organs, we tested the performance
on all the other available tissues from FANTOM5 reposi-
tory and we present the detailed results in Supplementary
Files. All the tested tissues are independent data sets and
they did not take part in any training process deployed in
DEEP. Moreover, in order to avoid potential overestimation
of performance, we excluded enhancers regions of the tested
tissues that overlap with enhancers from the training data.
Supplementary Table S13 presents the number of enhancer
regions before and after this filtering process. We applied
strict filtering criteria meaning that we removed enhancer
samples from the testing sets if they have at least 1 bp over-
lap with an enhancer regions used for training. It is worth

noting that we did not apply any normalization procedure
in the training and testing data. Then, we performed classifi-
cation using the best models obtained for brain, heart, lung
liver and kidney and we utilized the best-performing ANN
model for making the final prediction. Figure 7 shows the
ROC and Precision–Recall performance curves for DEEP-
FANTOM5 model tested on adipose and salivary tissues.

For comparison purposes and in order to assess the pre-
dictive power of the developed models we used the max-
imum GM and accuracy that the models achieve and we
computed the mean value across the 36 tested cases. DEEP-
FANTOM5 is ranked first and achieves 90% (±0.047) GM
and 90.2% (±0.046) accuracy. From the individual tissue-
specific models the one trained on lung data is ranked sec-
ond and achieves 89.9% GM (±0.067) and 90% (±0.064)
accuracy followed by the model trained on kidney data that
presents 89.1% (±0.061) GM and 89.3% (±0.059) accu-
racy on average. Although the measures of performance
of GM and accuracy do not show much difference be-
tween the models derived from single tissue/organ data and
DEEP-FANTOM5, we observe that DEEP-FANTOM5
models achieve almost always specificity and PPV of 1
accompanied with high sensitivity, which was not possi-
ble with the models derived from single tissue/organ data.
Thus, the beneficial effect of models derived form mul-
tiple tissue/organs is that in many cases the number of
false positive predictions will be significantly smaller with
DEEP-FANTOM5. As compared to the ENCODE cell
line-derived models, we observe that for FANTOM5 data
models derived from single tissue/organ data are perform-
ing much better in predicting enhancers in other tissues.
This fact somehow contradicts to the results we obtained
with the ENCODE cell line-specific ensemble models which
predict enhancers in other cell lines with much lower per-
formance. In summary, DEEP-FANTOM5 extends predic-
tions to a set of enhancers with much more diverse proper-
ties as compared to the ENCODE-derived enhancer data.

http://cbrc.kaust.edu.sa/deep/
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Studying the performance of the DEEP-VISTA component

Similarly to the previous sections, here we explored the
capability of DEEP-VISTA to predict developmental en-
hancers and discriminate them from other genomic regions.
In the absence of multiple cell lines or tissues, we did not
add multiple ensemble models in the first layer of DEEP-
VISTA. In simpler words, DEEP-VISTA in its current im-
plementation has only one ensemble SVM in its first layer
(i.e. 10 individual SVMs) and the scores of these SVM mod-
els are aggregated through the second ANN layer to gener-
ate a prediction. Under this relation, we did not test the ca-
pability of DEEP-VISTA to predict enhancers in multiple
tissues/cell lines as we did before. Figure 8 presents ROC
performance curve and Precision–Recall curve. For this, we
partitioned the original data to 20% for training and 80%
for testing and we utilized the 20% for training and tun-
ing SVM and ANN architectures. On the testing set DEEP-
VISTA achieved GM of 80.1% and accuracy of 89.64%. Op-
timizing further the DEEP-VISTA component is an inter-
esting task for the future when data from other cellular con-
ditions become available.

CONCLUSIONS

A novel computational framework involving three indepen-
dent models is introduced for predicting enhancers based on
ENCODE histone modification profiles and FANTOM5-
or VISTA-derived sequence characteristics. To increase the
generalization capabilities of the enhancer prediction mod-
els, we used, when available, either multiple cell lines/cell
types or multiple tissues/organ as the training data, con-
trary to all previous enhancer predictors that used only
single cell line/cell type data. The core component of the
framework is the utilization of a two-layer ensemble classi-
fier that trains multiple SVM cell line or tissue/organ mod-
els under the ensemble setting. The combination of differ-
ent classification models under the ensemble setting pro-
vides greater generalization properties, reduces the class-
imbalance problem, guarantees faster execution than train-
ing single models sequentially and achieves reliable per-
formance across different data sets. Experimental results
demonstrate that the DEEP framework applied on ChIP-
Seq ENCODE data achieves higher performance than indi-
vidual cell-specific ensemble models. Also, when it is applied
for genome-wide predictions, it identifies enhancer candi-
dates with higher precision than predictions obtained by
four state-of-the-art programs. Moreover, DEEP integrates
two additional components called DEEP-FANTOM5 and
DEEP-VISTA, which streamline the analysis of enhancer’s
properties in multiple FANTOM5 tissues/organs and a spe-
cific set of developmental enhancers, respectively. DEEP-
FANTOM5, when tested on identified enhancers regions
from 36 different tissues achieves 90% GM and 90.2% ac-
curacy on average. When tested on an independent test
set, DEEP-VISTA achieved GM of 80.1% and accuracy of
89.64%. The incorporation of tissue-specific expressed en-
hancers in the DEEP framework shows that DEEP could
have useful application in human genetics. Nonetheless,
there is a room for further improvements. Adding more
cell line-specific and tissue-specific models in the first layer
of DEEP-ENCODE, DEEP-FANTOM5 or DEEP-VISTA

components is anticipated to enhance further the general-
ization capabilities of DEEP. The performance of DEEP-
FANTOM5 or DEEP-VISTA may be improved with an ef-
fective feature selection technique. Finally, the implementa-
tion of a web-based version of DEEP will also be an impor-
tant task for the future development.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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