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Abstract: Globally, the incidence rate for breast cancer ranks first. Treatment for early-stage breast
cancer is highly cost effective. Five-year survival rate for stage 0–2 breast cancer exceeds 90%.
Screening mammography has been acknowledged as the most reliable way to diagnose breast cancer
at an early stage. Taiwan government has been urging women without any symptoms, aged between
45 and 69, to have a screening mammogram bi-yearly. This brings about a large workload for
radiologists. In light of this, this paper presents a deep neural network (DNN)-based model as an
efficient and reliable tool to assist radiologists with mammographic interpretation. For the first
time in the literature, mammograms are completely classified into BI-RADS categories 0, 1, 2, 3,
4A, 4B, 4C and 5. The proposed model was trained using block-based images segmented from
a mammogram dataset of our own. A block-based image was applied to the model as an input,
and a BI-RADS category was predicted as an output. At the end of this paper, the outperformance
of this work is demonstrated by an overall accuracy of 94.22%, an average sensitivity of 95.31%,
an average specificity of 99.15% and an area under curve (AUC) of 0.9723. When applied to breast
cancer screening for Asian women who are more likely to have dense breasts, this model is expected
to give a higher accuracy than others in the literature, since it was trained using mammograms taken
from Taiwanese women.

Keywords: screening mammography; breast imaging reporting and data system (BI-RADS); image
classification; deep neural network (DNN); deep learning

1. Introduction

Globally, the incidence rate for breast cancer ranks first [1]. A recent report [2] indicates
that more than 10,000 Taiwanese women are diagnosed as having breast cancer, and more than
2000 died of breast cancer in 2018. As a matter of fact, treatments for early-stage breast cancer
are effective. The 5-year survival rate for stage 0–2 breast cancer exceeds 90%, while it falls
below 25% for stage 4 [3]. Screening mammography has been acknowledged as the most
reliable way to detect breast cancer at an early stage, particularly in detecting grouped micro-
calcification lesions. For years, the Taiwanese government has been urging women without
any symptoms, aged between 45 and 69, to have a screening mammogram on a biennial
basis. A great number of mammograms are collected in a large-scale mammography
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screening program and need to be interpreted by well-qualified but overloaded radiologists.
Hence, there is definitely an unmet need to develop AI models to assist radiologists
with mammographic interpretation, and AI model development requires interdisciplinary
research that integrates medical science and engineering.

Routine screening mammography consists of the cranio-caudal (CC) view and the
mediolateral-oblique (MLO) view of each breast of a woman, that is, the LCC, RCC,
LMLO and RMLO views in total. Developed by the American College of Radiology
(ACR), the Breast Imaging Reporting and Data System (BI-RADS) [4] lexicon is used to
standardize the reporting of mammographic findings, assessment categories and follow-up
management, and communication between radiologists and referring physicians can be
facilitated accordingly.

As referenced previously, it takes radiologists an enormous amount of effort to in-
terpret screening mammograms. Therefore, a great amount of computer-aided detection
(CAD) systems have been developed to improve the efficiency of mammogram interpreta-
tion. Recently, deep learning models have been used to measure the likelihood of cancer
from a mammogram [5–22], some of which were designed to detect and classify micro-
calcifications or calcified lesions [8–10], mass lesions [11–14] and even all the contained
lesions [15–22]. Breast lesions found in mammograms are mainly classified into normal,
benign and malignant [15–20] and are further classified as normal, benign calcification,
benign mass, malignant calcification and malignant mass [21,22].

BI-RADS classification is frequently used in breast cancer screening. Therefore, there is
definitely a necessity to develop AI models for efficient and reliable BI-RADS classification.
However, little has been reported on this issue in the literature so far, mainly due to an
inadequate number of open-access mammogram datasets. For example, breast masses
were classified incompletely into BI-RADS categories 2–5 using a computer-aided diagnosis
system [13] where merely 300 mammograms were employed as training data, and another
200 mammograms were employed as testing data.

Accordingly, this paper presents a deep learning model to address the BI-RADS-
classification issue. Breast lesions were classified into categories 0, 1, 2, 3, 4A, 4B, 4C and
5, but excluding category 6, which indicates a known biopsy-proven malignancy. For the
first time in the literature, breast lesions can be completely classified using a deep learning
model that was well trained by a mammogram dataset of our own. For the purpose of
model training, all the lesions contained were labeled and classified by six well-qualified
radiologists, as will be detailed below.

It is worth mentioning that this work can provide at least three benefits for medical
industries. First, this developed tool can assist radiologists with mammographic interpre-
tation in clinical works and can improve the efficiency of mammogram interpretation as
well. Second, the workload of radiologists can be significantly eased, particularly when
interpreting mammograms in a large-scale breast cancer screening program. Third, the tool
can assist general physicians to interpret mammograms due to there being a shortage of
radiologists or breast surgeons in most remote areas.

This paper is outlined as follows. Section 2 describes a labeled and annotated mammo-
gram dataset for training purposes. Section 3 presents a deep neural network (DNN)-based
model for BI-RADS classification. Experimental results and discussions are given in Sec-
tion 4. Finally, Section 5 concludes this study.

2. Materials and Lesion Annotation

Firstly, Table 1 gives the complete BI-RADS categories, the respective description and
assessment of mammography [23]. As can be found therein, category 4 is further sub-
categorized into categories 4A, 4B and 4C to indicate the different levels of malignancy
suspicion.

The digital mammogram dataset employed in this work is provided by the E-Da
hospital, Taiwan. The dataset is composed of up to 5733 mammograms of 1490 patients,
including 1434 LCC, 1436 RCC, 1433 LMLO and 1430 RMLO views, within the time frame
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of 2004 and 2010. This study was approved by a local institutional review board (EMRP-
108-142), and informed consent was waived. This is simply because there is no personal
identifiable data in the dataset, since all the personal data were deleted.

Table 1. Description and assessment of BI-RADS categories for mammograms.

BI-RADS Definition Management Likelihood of
Cancer

0 Incomplete, need additional
imaging evaluation

Recall for additional
imaging and/or awaiting
prior examinations

–

1 Negative (normal) Routine screening 0%

2 Benign Routine screening 0%

3 Probably benign Short-interval follow-up or
continued >0% to ≤2%

4A Low suspicion of malignancy Tissue diagnosis >2% to ≤10%

4B Moderate suspicion of
malignancy Tissue diagnosis >10% to ≤50%

4C High suspicion of
malignancy Tissue diagnosis >50% to <95%

5 Highly suggestive of
malignancy Tissue diagnosis ≥95%

6 Known biopsy-proven
malignancy

Surgical excision when
clinically appropriate 100%

To facilitate data preprocessing, an easy-to-use tool was exclusively developed for
users to label the lesion in each mammogram. Once the image labeling was completed, an
interface, as illustrated in Figure 1, appeared to give users detailed annotation. In this work,
all the lesions in the mammograms were labeled by a total of six qualified radiologists
of the E-Da hospital. The annotation was saved as a JSON file. For illustrative purposes,
Figure 2 gives a BI-RADS category 4C mammogram with a labeled lesion and shows a
JSON file that saved the annotation in Figure 1.
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saved the annotation in (a).

Table 2 gives the statistics on the number of lesion annotations. As can be found therein,
there is no annotation in BI-RADS category 1, simply because category 1 means that the
breast tissue looked healthy, and there was no need to annotate accordingly. Additionally,
there is a maximum of 8 annotations in a mammogram and a total of 4557 annotations for
all the mammograms in this work.

Table 2. Number of lesion annotations in each BI-RADS category.

BI-RADS Number of Annotations

0 520
1 0
2 2125
3 847

4A 367
4B 277
4C 217
5 204

Overall 4557

3. Methodology and Model

This paper presents a DNN-based model to classify mammograms into categories 0,
1, 2, 3, 4A, 4B, 4C and 5, but excluding category 6, since category 6 is used to represent
a female diagnosed with breast cancer. As illustrated in Figure 3, the model was trained
using block-based images segmented from the dataset. A block-based image was applied
to the model as an input, and a category was assigned as an output. In this manner, the
feature maps of the block-based images were correlated with the BI-RADS categories.
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The DNN-based model has the following advantages. It was well trained using a
multitude of block images, and it is the first time that mammograms were classified into
eight BI-RADS categories for the sake of completeness in the literature. Finally, breast
lesions can be reliably located and efficiently classified to allow the radiologists to speed up
mammogram interpretation. The training data and the flowchart of the presented model
are described as follows.

3.1. Block Images as Training Data

As referenced previously, the presented model was trained using a multitude of block-
based images of size 224 × 224 pixels in this work. Figure 4 illustrates block images and a
lesion contained in a block image. As illustrated in Figure 4a,b, the white portions represent
the same view of a breast, and a mammogram is segmented into overlapping block images
from right to left and then top to bottom, with a stride of 36 pixels. Furthermore, a block
image where a contained breast occupies no less than 90% of the block area is chosen as a
piece of training data.

As illustrated in Figure 4c, part of a lesion is contained in the block image. Next, a
BI-RADS category is assigned to the block image according to the ratio of the areas of the
contained lesion to the area of the block, which can be categorized as follows. In Case 1, a
block image does not contain a lesion and is assigned as BI-RADS category 1 accordingly.
Otherwise, two quantities, ratioB and ratioL are, respectively defined in Case 2 as

ratioB =
AreaB ∩ AreaL

AreaB
(1)

ratioL =
AreaB ∩ AreaL

AreaL
(2)
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where AreaB and AreaL represent the areas of the block image and the lesion, respectively.
Subsequently, if the condition

Condition: (ratioB ≥ thrB) or (ratioL ≥ thrL) (3)

where thrB = thrL = 0.5 are two user-specified thresholds, is true, the block image is then
classified as the category of the contained lesion. In Case 3, where there are multiple
findings in a block image, check whether the condition in Expression (3) is satisfied. If
satisfied, the block image is assigned the highest category in the following hierarchy, from
highest to lowest: 5, 4C, 4B, 4A, 0, 3, 2. Otherwise, the block image is assigned as BI-RADS
category 1. All the block images were divided into two parts, as the training and test data,
respectively, and Table 3 gives the numbers of these data for each BI-RADS category.
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Table 3. Numbers of training and test data.

BI-RADS Number of Training Data Number of Test Data

0 42,565 10,641
1 51,964 14,847
2 48,294 13,322
3 47,470 12,566

4A 25,475 6369
4B 28,993 7248
4C 36,021 9005
5 46,741 11,685

Sum 327,523 85,683

3.2. Model Architecture

The model was built based on one of the state-of-the-art models, EfficientNet [24]. As
illustrated in Figure 5, the model, made up of a stem, a body, a head and an output mode,
takes a mammogram of size 224 × 224 pixels as an input, that is, an input image shape of
224 × 224 × 1. In the Stem module, the input image is firstly normalized to lie between 0
and 1, and then feature maps are extracted using a 3 × 3 convolution layer. Subsequently,
high-level feature maps are extracted in the Body module, consisting of 16 mobile inverted
bottleneck convolution (MBConv) blocks [25]. Finally, the feature maps are classified in the
Head and Output modules.
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A Swish activation function [26], expressed as

Swish(x, β) = x · sigmoid(βx) =
x

1 + e−βx (4)

is used in the Activation-Swish block. As compared with ReLU, the performance of a
neural network can be improved in most cases using a Swish activation function. Table 4
summarizes all the modules contained in Figure 5.

Table 4. Summary of each module in the presented model.

Module Kernel Size Stride Expansion Ratio Parameters Output Shape

Stem 3 × 3 2 − 416 (None, 112, 112, 32)
MBConv-A 3 × 3 1 1 1544 (None, 112, 112, 16)
MBConv-A 3 × 3 2 6 6436 (None, 56, 56, 24)
MBConv-B 3 × 3 1 6 11,334 (None, 56, 56, 24)
MBConv-A 5 × 5 2 6 16,006 (None, 28, 28, 40)
MBConv-B 5 × 5 1 6 32,330 (None, 28, 28, 40)
MBConv-A 3 × 3 2 6 38,250 (None, 14, 14, 80)

2 ×MBConv-B 3 × 3 1 6 209,960 (None, 14, 14, 80)
MBConv-A 5 × 5 1 6 128,148 (None, 14, 14, 112)

2 ×MBConv-B 5 × 5 1 6 422,968 (None, 14, 14, 112)
MBConv-A 5 × 5 2 6 265,564 (None, 7, 7, 192)

3 ×MBConv-B 5 × 5 1 6 1,778,832 (None, 7, 7, 192)
MBConv-A 3 × 3 1 6 722,480 (None, 7, 7, 320)

Head 1 × 1 1 − 424,968 (None, 8)
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Figure 6 gives detailed flowcharts of the MBConv-A and B blocks in Figure 5. An MB-
Conv block is mainly composed of an expansion layer, a depthwise layer and a squeeze-and-
excitation network (SENet) [27] where Ce = Ci × Re, and Re represents the expansion ratio,
as tabulated in Table 4. Accordingly, Cd = Ci if Re = 1, and Cd = Ce otherwise. Additionally,
Table 4 gives the kernel size and the stride for each DepthwiseConv. For stride = 1, the
output shape is equal to the input shape of a feature map, that is, (Wd, Hd) = (Wi, Hi). For
stride = 2, the output shape is half of the input shape. The values of the parameters Wd, Hd
and Co can be referenced in Table 4.
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The SENet module is detailed in Figure 7. A feature map is downsized from W×H× C
to 1 × 1 × C in the squeeze module. To take arbitrary-sized feature map as an input, two
fully connected layers are replaced with two convolutional layers with a kernel size of 1 × 1
in the excitation module, and Cs = Ci × Rs where Ci represents the one in the MBConv
block, and Rs represents a user-specified ratio that is set to 0.25. Each channel of the input is
weighted non-uniformly by multiplying the input and the output of the excitation module,
so as to reflect the significance of each channel feature.
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Finally, a categorical cross-entropy loss function was used to train the model with a
batch size of 128 and an epoch of 350, and a Ranger optimizer [28] was also used to improve
the training performance. Table 5 lists the development environment of this work.

Table 5. Development environment.

Programing Language Python

Library TensorFlow, Keras, numpy, OpenCV, etc.

Hardware PC (Windows 10 64-bit, Intel i7-10700 2.9 GHz CPU,
128 GB RAM), graphics card (GeForce RTX 3090)

4. Experimental Results

A confusion matrix for an eight-class classification system and four performance
metrics for each class, including the sensitivity, specificity, precision and F1-score, were
evaluated to quantify the model performance. Then, the mean value of each performance
metric and the overall accuracy were found.

In Figure 8, an 8 × 8 confusion matrix is used to illustrate how all the performance
metrics were evaluated in the case of type 6 (BI-RADS category 4B). True positive (TP) and
false positive (FP) are used to represent a lesion that is accurately classified or misclassified
as category 4B, respectively. Likewise, true negative (TN) and false negative (FN) are used
to represent a lesion that is accurately classified or misidentified as a category, other than
category 4B, respectively.
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Accordingly, all the performance metrics are given, respectively, by

Sensitivityk = TPRk = TPk/(TPk + FNk) (5)

Specificityk = TNRk = TNk/(TNk + FPk) (6)

Precisionk = PPVk = TPk/(TPk + FPk) (7)

F1-scorek = 2 × (Precisionk × Sensitivityk)/(Precisionk + Sensitivityk) (8)

where 1 ≤ k ≤ CNum = 8 and is used to represent that a lesion is classified as category
l = the kth element of the hierarchy: 0, 1, 2, 3, 4A, 4B, 4C, 5, e.g., category 2 for k = 3. The
sensitivity, specificity and precision are also referred to as the true positive rate (TPR), true
negative rate (TNR) and positive predictive value (PPV), respectively. The mean values
of the performance metrics in Equations (5)–(8) and the overall accuracy are respectively
given by

mean(x) =
1

CNum

CNum

∑
k=1

xk, x ∈ {Sensitivity, Speci f icity, Precision, F1− score} (9)

Accuracy =
∑CNum

k=1 TPk

TNum
=

∑CNum
k=1 TPk

∑CNum
k=1 (TPk + FNk)

(10)

where TNum represents the number of the test data.
Performance testing was conducted using the 85,683 pieces of test data, as tabulated in

Table 3, and led to the confusion matrix in Figure 9 and the performance metrics in Table 6.
Subsequently, a receiver operating characteristic (ROC) curve was plotted for each BI-RADS
category in Figure 10, and the corresponding area under curve (AUC) value was shown
therein. The outperformance of this work was clearly indicated by an average sensitivity
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of 95.31%, an average specificity of 99.15%, an average precision of 94.93%, an average
F1-score of 95.11%, an average AUC of 97.23% and an overall accuracy of up to 94.22%.
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Table 6. Performance metrics of the proposed model.

BI-RADS Sensitivity (%) Specificity (%) Precision (%) F1-Score (%)

0 98.7031 99.4803 96.4197 97.5481
1 81.2218 97.2090 85.9148 83.5024
2 92.6513 98.6761 92.7975 92.7243
3 94.4772 98.8334 93.2967 93.8832

4A 98.0845 99.8084 97.6246 97.8540
4B 98.7997 99.7858 97.7077 98.2507
4C 99.1560 99.7731 98.0885 98.6194
5 99.3924 99.6176 97.6212 98.4989

Mean 95.3107 99.1480 94.9339 95.1101

Accuracy (%) 94.2171

In each case of BI-RADS category 0, 4A, 4B, 4C and 5 lesions, the sensitivity, specificity
and precision exceeded 98%, 99% and 96%, respectively. This validates that such lesions
can be well classified using this work, and early-stage breast cancer can be diagnosed more
accurately.

In the cases of BI-RADS category 2 and 3 lesions, all the performance metrics lay
above 92%, which was slightly below those in the above-referred five cases. The worst
performance occurred in the case of BI-RADS category 1 lesions, and the sensitivity and
precision hit 81.22% and 85.91%, respectively, for the following reason. All the lesion-free
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block images were classified as BI-RADS category 1, leading to non-distinctive features
that were difficult to diagnose.
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A deeper investigation revealed that the sensitivity in the BI-RADS category 1 case
was actually a function of the thresholds thrB and thrL in Equation (3). This is because
a block image, classified as BI-RADS category 1, in fact contained a small portion of a
lesion in some cases, leading to a negative effect on the training of the presented model.
Additionally, each performance metric is also a function of thrB and thrL.

The outperformance of this model was indicated by an overall accuracy of 94.22%,
an average sensitivity of 95.31% and an average specificity of 99.15%. As can be found in
Figure 11, there is a good agreement between the red framed ground truth and the blocks,
highlighted in color, in each of the mammograms in Figure 11a–f, where findings were
classified as BI-RADS categories 2–5, respectively.

Finally, Table 7 lists the task and performance comparisons between the presented
study and previous studies on breast cancer detection in order to reveal the contribution
of this work. The Ave_Sen, Ave_Spe and Acc represent the average sensitivity, average
specificity and accuracy, respectively.
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Table 7. Task and performance comparisons between the presented study and previous studies on
breast cancer detection.

Reference
(Year) Task Dataset Used Ave_Sen

(%)
Ave_Spe

(%)
Acc
(%) AUC

This study
(2022)

Classification of BI-RADS 0, 1, 2, 3, 4A, 4B,
4C, 5

(8 categories)
Private (1490 cases, 5733 images) 95.31 99.15 94.22 0.972

[8]
(2021)

Malignancy prediction of BI-RADS 4
micro-calcifications

(2 classes)
Private (384 cases, 824 images) 85.3 91.9 - 0.910

[11]
(2021)

Mass malignancy classification
(2 classes)

DDSM (2578 cases, 10,312 images) 89.8 @ 2
FPPI 1 - - -

Private (2807 cases, 11,228 images) 96.2 @ 2
FPPI - - -

[13]
(2020)

BI-RADS 2-5 classification for breast
masses

(4 categories)

DDSM
(500 images) 84.5 94.25 84.5 -

[22]
(2019)

Normal, benign calcification,
benign mass, malignant calcification,

malignant mass
(5 classes)

DDSM +
CBIS-DDSM

(2339 images)
- - 91 0.98

1 FPPI: false positive per image.
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5. Conclusions

This paper presented a DNN-based model to efficiently and reliably locate and classify
breast lesions from mammograms. Block-based images, segmented from collected mam-
mograms, were used to adequately train the model, by which the workload of radiologists
can be significantly eased, particularly when interpreting mammograms in a large-scale
breast cancer screening program. For the first time in the literature, breast lesions can be
completely classified into BI-RADS categories 0, 1, 2, 3, 4A, 4B, 4C and 5. The outperfor-
mance of this model was indicated by an overall accuracy of 94.22%, an average sensitivity
of 95.31%, an average specificity of 99.15% and an average AUC of 0.9723. When applied
to breast cancer screening for Asian women, who are more likely to have dense breasts,
this model is expected to give a higher accuracy than others in the literature, since it was
trained using mammograms taken from Taiwanese women.

It is worth mentioning that this work can provide three benefits for healthcare indus-
tries. First, the developed tool can help radiologists with mammographic interpretation
in clinical works and can improve the efficiency of mammogram interpretation as well.
Second, the workload of radiologists can be reduced remarkably. Third, the tool can assist
general physicians with interpreting mammograms due to a shortage of radiologists or
breast surgeons in most remote areas.

As the next step, our team aims to upsize the collected dataset so as to better train
the model and advance the generalization ability as well. In the meantime, we are making
continuous efforts to improve the model performance, particularly in the worst BI-RADS
category 1 case. Finally, we will test the generalization ability of this model as an inter-
hospital project.
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