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Abstract

Background and Aim

Mesenchymal precursor cells (MPC) are reported to possess immunomodulatory properties

that may prove beneficial in autoimmune and other inflammatory conditions. However, their

mechanism of action is poorly understood. A collagen-induced arthritis model has been pre-

viously developed which demonstrates local joint inflammation and systemic inflammatory

changes. These include not only increased levels of inflammatory markers, but also vascu-

lar endothelial cell dysfunction, characterised by reduced endothelium-dependent vasodila-

tion. This study aimed to characterise the changes in systemic inflammatory markers and

endothelial function following the intravenous administration of MPC, in the ovine model.

Methods

Arthritis was induced in sixteen adult sheep by administration of bovine type II collagen into

the hock joint following initial sensitisation. After 24h, sheep were administered either 150

million allogeneic ovine MPCs intravenously, or saline only. Fibrinogen and serum amyloid-

A were measured in plasma to assess systemic inflammation, along with pro-inflammatory

and anti-inflammatory cytokines. Animals were necropsied two weeks following arthritis in-

duction. Coronary and digital arterial segments were mounted in a Mulvaney-Halpern wire

myograph. The relaxant response to endothelium-dependent and endothelium-indepen-

dent vasodilators was used to assess endothelial dysfunction.

Results and Conclusion

Arthritic sheep treated with MPC demonstrated a marked spike in plasma IL-10, 24h follow-

ing MPC administration. They also showed significantly reduced plasma levels of the in-

flammatory markers, fibrinogen and serum amyloid A, and increased HDL. Coronary

arteries from RA sheep treated with MPCs demonstrated a significantly greater maximal
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relaxation to bradykinin when compared to untreated RA sheep (253.6 ± 17.1% of pre-con-

tracted tone vs. 182.3 ± 27.3% in controls), and digital arteries also demonstrated greater

endothelium-dependent vasodilation. This study demonstrated that MPCs given intrave-

nously are able to attenuate systemic inflammatory changes associated with a monoarthri-

tis, including the development of endothelial dysfunction.

Introduction
Mesenchymal stem cells (MSCs) are a type of adult stem cell able to differentiate into cells of
the mesodermal lineage [1,2]. In addition to their potential regenerative capability, MSCs have
also been found to possess broad immunomodulatory properties; they are capable of interact-
ing with a range of immune effector cells to induce peripheral tolerance and exert an anti-in-
flammatory effect [3]. Mesenchymal precursor cells (MPC) are a subset population of MSCs
which are STRO-1bright STRO-3bright and exhibit the capacity for multi-differentiation and ex-
tensive proliferation [4]. MPC have been used allogeneically in animal models and in human
trials; including applications such as acute myocardial infarction and intervertebral disc disease
[5,6,7]. MPC hold promise for the development of an ‘off the shelf’ stem cell product which
could be stored on site and administered intravenously when needed. The anti-inflammatory
mechanism of action of MSCs is poorly understood; in particular, the interactions between
MSC and immune cells is the subject of current research. Important mediators may include
PGE2 and indoleamine which are thought to modulate T cells, monocytes and dendritic cells
[3].

Many chronic inflammatory conditions, such as rheumatoid arthritis (RA), obesity and dia-
betes, are associated with a low-grade systemic inflammatory response which affects many
body systems directly and indirectly; particularly the cardiovascular system. For example, in
RA patients, cardiovascular diseases represent an important co-morbidity and contribute to an
increased mortality rate amongst this patient population [8,9,10]. Systemic inflammation con-
tributes to the initiation and development of cardiovascular diseases through a number of
mechanisms, including direct actions of circulating mediators on endothelial cells, and modu-
lation of lipid phenotype [11,12].

Endothelial dysfunction is a general term describing an abnormal response of the endotheli-
um to physiological stimuli, and may be characterised by reduced endothelium-dependent va-
sodilation [13]. This is thought to be due primarily to a reduction in the bioavailability of the
important endothelium-derived vasodilator nitric oxide (NO). Endothelial dysfunction is
thought to be one of the earliest detectable cardiovascular changes in the development of ath-
erosclerosis, and is assessed clinically in human patients by flow-mediated dilation of the bra-
chial artery [14,15,16]. Endothelial dysfunction has been linked to an increased risk of the
development of clinical cardiovascular disease in the short and long term [17,18,19,20].

Previous studies by our group have demonstrated that in an ovine model of collagen-in-
duced arthritis (CIA) involving just the left hock joint, there is evidence of systemic inflamma-
tion that also produces endothelial dysfunction in both the coronary and peripheral vascular
bed [21,22]. This model therefore provides an opportunity to study the earliest cardiovascular
changes associated with mild systemic inflammation. It was hypothesised that the immuno-
modulatory actions of MPC, which target multiple immune and inflammatory mechanisms,
may provide superior therapeutic effects to current biological therapies which target only a
very specific part of the inflammatory response (for example, anti-TNF-αmedications).
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Additionally, it is proposed that these cells will also have favourable cardiovascular effects in
systemic inflammatory diseases through a reduction in inflammation-driven endothelial
dysfunction.

This study aimed to assess the effect of allogeneic bone marrow derived ovine MPCs, ad-
ministered intravenously, on circulating inflammatory mediators and the development of en-
dothelial dysfunction in a previously validated ovine model of rheumatoid arthritis. The
specific hypothesis for this study was that intravenous MPCs would prevent or reduce the de-
velopment of systemic inflammation associated with arthritis and also prevent the subsequent
vascular endothelial dysfunction in the heart and peripheral circulation.

Methods

Animals
Sixteen merino ewes, 12–18 months of age were obtained from a local supplier. They were
housed in mesh floor pens and given access to pelleted food and water ad libitum. Sheep were
acclimatized to housing for 2 weeks before the commencement of experiments, during which
time they underwent a clinical veterinary examination. Blood samples were taken to ensure
that all animals were free of any inflammatory conditions that may have impacted the results
of the study. Sheep were allocated randomly into groups. All procedures were carried out with
the permission of the Melbourne University Animal Ethics Committee (ID 1212422.2).

Induction of arthritis
Bovine type II collagen solutions were prepared as previously described [23]. Arthritis was in-
duced using a 6 week protocol, as previously described [21,22]. Sheep initially received a subcu-
taneous injection of bovine type II collagen solution (5mg/mL) in Freund’s complete adjuvant.
Two weeks later, the sheep received another subcutaneous injection of bovine type II collagen
(5mg/mL) in Freund’s incomplete adjuvant. Two weeks following this second subcutaneous in-
jection, 100 ug of bovine type II collagen in sterile phosphate buffered saline (total volume
0.5mL) was administered into the left tibiotarsal joint, at which time clinical arthritis is induced
(day 0). Sheep were killed and necropsied two weeks following their intra-articular injection.
Euthanasia was performed using a lethal dose of intravenous pentobarbitone (Lethabarb, Vir-
bac, Australia).

Mesenchymal Precursor Cell treatment
Allogeneic ovine mesenchymal precursor cells (MPC) were provided by Mesoblast Ltd. The
cells were cryopreserved in ampoules containing 30 million MPC/mL of a solution comprising
ProFreeze, DMSO and modified Eagle’s medium (αMEM). MPC treatment was administered
to the sheep 24h following arthritis induction (day 1). Ampoules were thawed rapidly, and cell
number and viability assessed using trypan blue staining and a Neubauer haemocytometer.
The appropriate volume for a dose of 150 million viable MPCs was calculated and injected
(using an 18g needle) into a sterile 100mL bag of 0.9% sodium chloride connected to a giving
and extension set including a 40/150 micron dual screen filter to trap any cell clumps. This was
delivered as a constant rate infusion using a fluid pump over a period of 30 minutes. Treat-
ments were administered intravenously via a 14G catheter placed in the jugular vein. Control
sheep received an equivalent volume of sterile saline delivered in an identical manner via injec-
tion into a 100mL bag of 0.9% Sodium Chloride. Investigators involved in data collection re-
mained blinded to treatment group allocations for the duration of the study. The dose of 150
million MPC was derived from previous studies in sheep conducted in our laboratory [24].
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Blood sampling and measurement of inflammatory mediators
Blood was collected from the jugular vein on the day of arthritis induction (day 0, immediately
prior to the intra-articular injection), then days 1, 2, 3, 4, 6, 8, 9, and 14 (the day of euthanasia).
Plasma fibrinogen was measured using the modified heat precipitation method at a commer-
cial veterinary laboratory (Australian Specialised Animal Laboratories, Australia). Serum sam-
ples were also submitted to a commercial veterinary laboratory for measurement of high
density lipoprotein (HDL) and low density lipoprotein (LDL) (Gribbles Pathology, Australia).
Serum amyloid-A (SAA) was measured using a commercial ELISA according to manufactur-
er’s instructions (Multispecies SAA ELISA kit, Tridelta Development Limited, Ireland).

The concentrations of IL-6, IL-10, and TNF-α were measured by sandwich ELISA. IL-6 was
estimated using anti-ovine IL-6 (4B6, AbD Serotec) and rabbit anti-ovine IL-6 (AHP424, AbD
Serotec) followed by goat anti-rabbit-HRP (Life Technologies, Waltham, MA, USA). The stan-
dard was recombinant ovine IL-6 (RP0014B, Kingfisher Biotech, St Paul, MN, USA). IL-10 was
estimated using anti-bovine IL-10 (cc318, AbD Serotec) and biotinylated anti-bovine IL-10
(cc320, AbD Serotec) followed by ExtrAvidin-HRP (Sigma-Aldrich). The standard was recom-
binant ovine IL-10, produced as described previously [25]. TNF-α was estimated using anti-
ovine TNF-α (6.06, obtained from A/Prof. Scheerlinck, Centre for Animal Biotechnology, The
University of Melbourne, Australia) [26] and biotinylated anti-bovine TNF-α (cc328, AbD Ser-
otec) followed by ExtrAvidin-HRP (Sigma-Aldrich). The standard was recombinant bovine
TNF-α (2279-BT, R&D Systems, Minneapolis, MN, USA). The intra-assay coefficients of varia-
tion for these assays were<6% and the inter-assay coefficients of variation were<19%.

Wire Myography: Arterial Preparation
Arterial segments were prepared as described previously [22]. Following euthanasia, tissues
were collected and placed in ice-cold oxygenated modified Krebs-Henseleit solution (KHS,
118.0mM/L NaCl, 4.7mM/L KCl, 1.2 mM/L MgSO4, 1.2mM/L KH2PO4, 25.0 mM/L NaHCO3,
11.1mM/L D-glucose and 2.5mM/L CaCl2). A dissecting microscope (Olympus SZ61, Olympus
Australia) was used to identify a second order branch of the left descending coronary artery
and dissect it free from surrounding tissue. Digital artery segments were collected from the first
branch of the palmar digital artery from the left forelimb. Arteries were cut into 1–2mm seg-
ments and mounted on 40 μm wires in a Mulvaney-Halpern wire myograph (Danish Myo
Technologies, Denmark) coupled to a data acquisition system (Power Lab, ADI Instruments,
Oxfordshire, UK) to enable isometric tension recording. This apparatus is used to measure the
force generated by small blood vessels maintained under physiological tension in a bath of
Krebs-Henseleit solution. The segment of blood vessel (up to 2mm long) is restrained on wires,
one of which is connected to a force transducer and the other to a variable micrometer. Once
the blood vessel is equilibrated and tension is normalized to a point of passive stretch suitable
for the development of active tension, it can be contracted with suitable vasoconstrictor media-
tors in a dose-dependent manner, and then vasorelaxation may be subsequently induced.

Arteries were maintained in oxygenated (95%O2 and 5%CO2) KHS at 37°C. Preparations
were allowed to equilibrate for 30 minutes before a normalization procedure was performed to
determine the optimal internal circumference. The viability of each vessel segment was assessed
initially by measurement of the contractile response to standard depolarizing Krebs solution
(DKS; 118mM KCl).

Wire Myography: Coronary arteries
Two coronary artery segments were mounted for each individual animal. Segments were con-
tracted with endothelin-1 (10–8 M; Sigma-Aldrich). Indomethacin (10-5M) was added to the
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KHS solution. Once the contractile tension had reached a plateau, one vessel segment from
each individual was dilated with the endothelium-dependent vasodilator, bradykinin (10-11M -
3x10-6M; Sigma-Aldrich, Australia) and another segment dilated with sodium nitroprusside
(SNP, 10-9M - 3x10-4M; Sigma-Aldrich). Arterial responses were recorded using Chart soft-
ware (version 5.0).

Wire Myography- Digital arteries
Two digital artery segments were mounted for each individual animal. Segments were contracted
with incremental doses of 5-hydroxytryptamine (5HT; 10-8M - 10-4M; Sigma Aldrich, Australia)
to establish maximal arterial contraction. This was followed by a wash-out period, in which ves-
sels were allowed to re-equilibrate to resting tension. 5HT was then added at a concentration
appropriate to produce a contraction of approximately 75% of maximal contraction for the
individual arterial segment. Once the contractile tension had reached a plateau, one vessel
segment from each individual was dilated with the endothelium-dependent vasodilator, car-
bachol (10-8M - 10-3M; Sigma-Aldrich) and another segment dilated with SNP (10-9M - 3x10-4M;
Sigma-Aldrich).

Data analysis
Myograph data is presented as cumulative concentration response curves, with results express-
ed as mean ± SEM. For each experiment n indicates the number of individual sheep used. A
curve-fitting program (Graph Pad Prism, Version 6.02) was used to calculate the maximal re-
sponse value for each individual curve. The equation used to fit the dose response curves was:
E = [Emax A

nH/ (AnH + EC50)]. Emax is the maximum response and nH represents the Hill
slope.

The maximal response values of the two groups were compared using an unpaired t-test,
with significance accepted at p� 0.05. Inflammatory markers measured in plasma over days
0–14 following arthritis induction are presented as mean ± SEM at each time point. The statis-
tical program Graph Pad Prism (Version 6.02) was used to compare the two groups using a 2
way ANOVA with Bonferroni’s post-hoc test (SAA, Fibrinogen, HDL) or Sidak’s multiple
comparison test (IL-10, IL-6). Normality was determined using the Shapiro-Wilk test.

Results

Pro- and anti-inflammatory mediators
The most striking effect of MPC treatment on plasma cytokine levels was in the response of
anti-inflammatory IL-10. There was a significant spike in plasma IL-10 of sheep treated with
MPC, one day after MPC treatment, where it reached a mean concentration of over 600 ng/ml
(Fig 1A). This peak was absent in the saline treated sheep. IL-6 levels in plasma peaked in the
two days following IA collagen administration (Fig1B). Although levels became undetectable
in the treated group by day 31, earlier than the non-treated animals (day 34), there was consid-
erable variability and no significant difference was found between the MPC treated and saline
control groups. Levels of TNF-α were very low and close to the limit of detection of the assay.
No significant differences were observed between the two groups.

Following the induction of arthritis (day 0), all sheep showed an increase in plasma fibrino-
gen consistent with a systemic inflammatory response (Fig 2A). Arthritic sheep treated with
150 million allogenic MPC on day 1 following arthritis induction demonstrated significantly
lower plasma fibrinogen levels on days 2 (mean of 3.8 vs 5.8g/L for treated and untreated sheep
respectively), 3 (mean of 3.4 vs 5.9g/L treated and untreated sheep respectively), 4 (mean of 3.8
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vs 6.0g/L for treated and untreated sheep respectively) and 6 (mean of 2.8 vs 5.3g/L for treated
and untreated sheep respectively) following arthritis induction.

All sheep showed a rapid increase in circulating serum amyloid-A over the first 4 days fol-
lowing arthritis induction, which waned by day 6–8. Arthritic sheep treated with 150 million
allogenic MPCs on day 1 following arthritis induction demonstrated significantly lower serum
amyloid-A levels on day 3 following arthritis induction (mean of 297.8 vs 577.7ug/mL for treat-
ed and untreated sheep respectively, Fig 2B).

Following arthritis induction, most sheep displayed a small increase in serum HDL over the
first 3–4 days before displaying a gradual decline in HDL over the subsequent 10 days (Fig 2C).
At day 8 following arthritis induction, the arthritic sheep treated with 150 million MPC intra-
venously showed a significantly higher plasma HDL than arthritic sheep treated with saline
only (mean of 0.8 vs 0.6mmol/L for treated and untreated sheep respectively, Fig 2C). Serum
LDL levels showed an approximately inverse trend to HDL levels, however there was no signifi-
cant difference between the two groups (data not shown).

Coronary arteries
Coronary arteries from arthritic sheep treated allogeneically with 150 million MPC intrave-
nously showed a significant increase in their maximal response to the endothelium-dependent
vasodilator bradykinin (253.6 ± 17.1% of pre-contracted tone vs 182.3 ± 27.3% for treated and
untreated sheep respectively, p = 0.044, Table 1, Fig 3). There was no significant difference in
the maximal response of the coronary arteries to the endothelium independent dilator SNP be-
tween the treated and untreated groups.

Digital arteries
Digital arteries from arthritic sheep treated allogeneically with 150 million MPC intravenously
showed a significant increase in their maximal response to the endothelium-dependent vasodi-
lator carbachol (57.0 ± 7.9% of pre-contracted tone vs. 35.6 ± 5.2% for treated and untreated
sheep respectively; p = 0.037; Table 2 and Fig 4). Carbachol data from one sheep in the treated
group was excluded due to damage during dissection. There was no significant difference in

Fig 1. Comparison of plasma concentrations of (A) IL-10 and (B) IL-6 measured over time in arthritic sheep treated and untreated with
mesenchymal precursor cells (MPC). Each point represents the mean ± SEM of 7–8 sheep.**** Indicates a statistically significant difference between
groups at that time point, p� 0.0001.

doi:10.1371/journal.pone.0124144.g001
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Fig 2. Comparison of plasma concentrations of (A) Fibrinogen, (B) Serum amyloid-A (SAA), (C) High
density lipoprotein (HDL) measured over time in arthritic sheep treated and untreated with
mesenchymal precursor cells (MPC). Each point represents the mean ±SEM from 8 animals. * Indicates a
statistically significant difference between groups at that time point, p< 0.05, ** indicates a statistically
significant difference between groups at that time point, p< 0.01.

doi:10.1371/journal.pone.0124144.g002
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the maximal response of the digital arteries to the endothelium independent dilator SNP be-
tween the treated and untreated groups.

Discussion
Trafficking studies have indicated that MSCs are able to home to sites of inflammation follow-
ing systemic administration, however only a very small proportion of cells reach the inflamed
target tissue [27,28,29]. It has therefore been postulated that following intravenous administra-
tion these cells may act systemically, by modulating the actions of recipient immune cells. It is
therefore hoped that MPCs may have beneficial effects not only on local inflammation, but
also the systemic sequelae related to inflammation in remote tissues.

This study evaluated the acute anti-inflammatory activities of immunoselected allogeneic
STRO-3+ ovine Mesenchymal Precursor Cells (MPCs) in an ovine model of CIA. This colla-
gen-induced arthritis model in the sheep causes initially moderate lameness, which steadily de-
clines over a few days, and it is associated with an influx of inflammatory cells into the
synovium of the affected hock joint [21]. The T cell subsets (CD4+, CD8+ and γδ T cells), B

Table 1. EC50 values andmaximum responses derived from arthritic sheep coronary artery responses, showing the effect of mesenchymal pre-
cursor cell treatment on dilation caused by endothelium-dependent and-independent vasodilators.

Vasodilator Group n EC50 value (Molar;
mean ± SEM)

P
value

Max response (% of pre-contracted tone;
mean ± SEM)

P
value

Hill slope
(mean ± SEM)

Bradykinin Treated 8 3.7 ± 0.9 x 10–8 253.6 ± 17.1 1.2 ± 0.1

Untreated 8 2.9 ± 1.1 x 10–8 0.579 182.3 ± 27.3 * 0.044 1.1 ± 0.2

SNP Treated 8 2.1 ± 1.2 x 10–6 122.6 ± 7.6 1.1 ± 0.1

Untreated 8 8.4 ± 2.2 x 10–7 0.302 130.6 ± 7.9 0.475 0.8 ± 0.1

* Indicates significant difference between groups; unpaired t-test. SNP, sodium nitroprusside.

doi:10.1371/journal.pone.0124144.t001

Fig 3. Comparison of vasorelaxation in ovine coronary arteries in arthritic sheep treated and untreated with mesenchymal precursor cells (MPC).
Arterial rings were contracted with endothelin-1, and relaxation responses to cumulatively increasing concentrations of (A) Bradykinin (BK), (B) Sodium
nitroprusside (SNP), were expressed as a percentage relaxation of pre-contracted tone. Each point represents the mean ±SEM from 8 animals. * Indicates
statistically significant difference (p < 0.05) in the maximum response for the dilation to bradykinin between treated and untreated animals (see Table 1).

doi:10.1371/journal.pone.0124144.g003
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cells and particularly CD14+ monocytes/macrophages are all increased significantly in the ar-
thritic synovial membrane of the collagen-injected joints compared to the contralateral right
hock joints and those of the normal control sheep [21,23]. The present study demonstrated a
systemic anti-inflammatory effect of MPCs following IV administration. In rodent CIA mod-
els, where systemic administration of MSCs has reduced disease severity, it has been associated
with the suppression of T cell activation, a reduction in serum pro-inflammatory cytokine ex-
pression, and the induction of Foxp3+ regulatory T cells with an immunosuppressive pheno-
type [30,31,32]. However, it remains unknown whether systemically administered MSCs (and
MPCs) directly interact with T cell populations, or act indirectly via other cell populations and
anti-inflammatory cytokines.

MPC treatment was associated with a marked increase in plasma IL-10 observed 24 hrs fol-
lowing IV administration of cells. IL-10 is a functional feedback regulator of immune responses
that inhibits a wide range of inflammatory and immune responses, down regulates the expres-
sion of TH1 cytokines [33,34,35], inhibits TH2 and allergy responses [34], sustains the expan-
sion of Treg cells [36,37] and is known to reduce the severity of RA [33]. It is reported that IL-

Table 2. EC50 values andmaximum responses derived from arthritic sheep digital artery responses, showing the effect of mesenchymal precursor
cell treatment on dilation caused by endothelium-dependent and-independent vasodilators.

Vasodilator Group n EC50 value (Molar;
mean ± SEM)

P
value

Max response (% of pre-contracted tone;
mean ± SEM)

P
value

Hill slope
(mean ± SEM)

Carbachol Treated 7 1.6 ± 0.8 x 10–6 57.0 ± 7.9 1.4 ± 0.6

Untreated 8 3.7 ± 1.7 x 10–6 0.328 35.6 ± 5.2 * 0.037 1.4 ± 0.4

SNP Treated 8 5.7 ± 1.9 x 10–7 97.8 ± 6.3 0.7 ± 0.1

Untreated 8 1.7 ± 0.6 x 10–6 0.098 105.5 ± 8.0 0.461 0.8 ± 0.1

* Indicates significant difference between groups; unpaired t-test. SNP, sodium nitroprusside.

doi:10.1371/journal.pone.0124144.t002

Fig 4. Comparison of vasorelaxation in ovine digital arteries in arthritic sheep treated and untreated with mesenchymal precursor cells (MPC).
Arterial rings were contracted with 5-hydroxytryptamine (5-HT), and relaxation responses to cumulatively increasing concentrations of (A) Carbachol and (B)
Sodium Nitroprusside (SNP) were expressed as a percentage relaxation of pre-contracted tone. Each point represents the mean ±SEM from 7–8 animals. *
Indicates statistically significant difference (p < 0.05) in the maximum response for the dilation to carbachol between treated and untreated animals (See
Table 2).

doi:10.1371/journal.pone.0124144.g004
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10 achieves this by acting directly on the genes of pro-inflammatory cytokines at the level of
transcription [38]. IL-10 is expressed by synovial mononuclear cells in RA [39], has potent
anti-inflammatory effects on synovial fluid mononuclear cells derived from patients with RA
[40] and IL-10 deficient mice have more severe responses to CIA [41]. IL-10 is produced by
many immune cells and expressed by a number of immune cells, particularly monocytes and
macrophages and to a lesser extent lymphocytes [42]. It may also be produced by MSC [43].
The current study did not address which cell types produced the peak of IL-10 in blood; al-
though MPC themselves may have produced some of the IL-10, given such a high concentra-
tion it is more likely that MPC were inducing monocytes or macrophages to produce this
cytokine [44].

IL-6 is a multifunctional cytokine with wide-ranging effects on immune and inflammatory
processes [45]. IL-6 induces B cell differentiation and immunoglobulin production, acute
phase protein synthesis, T cell activation and differentiation, and macrophage differentiation.
This pro-inflammatory cytokine is a key stimulator of the acute inflammatory response
through the production of acute phase proteins, but also plays a role in the transition from
acute to chronic inflammatory responses [46]. During acute inflammation, leukocyte infiltra-
tion is dominated by neutrophils, however chronic inflammatory processes are associated with
the infiltration of mononuclear cells such as macrophages. When IL-6 is complexed to its solu-
ble receptor sIL-6Rα it activates endothelial cells to produce IL-8 and monocyte chemoattrac-
tant protein-1, which attract circulating monocytes [46,47]. This initiates the transition from
neutrophil to monocyte recruitment at the site of inflammation. For this reason, IL-6 is thought
to play a crucial role in both the initiation and persistence of chronic inflammatory diseases.

Following IA collagen administration (day 28), the levels of IL-6 rose rapidly in the blood in
all sheep, but there was no significant difference in plasma IL-6 levels between treated and un-
treated sheep post treatment. While we hypothesised that plasma IL-6 levels might decrease in
MPC treated sheep, we were unable to demonstrate this clearly in our model. Possible factors
affecting the levels of IL-6 in blood include binding of IL-6 to sIL-6Rα, which is also implicated
in the pathogenesis of RA [48,49], and other kinetic factors relating to production, removal
and retention in blood [50]. Plasma TNF-α was also measured in this study, using ovine and
bovine specific antibodies, however any spike in plasma levels may have been very short lived
(<24h). Measured levels were close to the limit of detection in this study, and there were no
significant differences detected between treatment groups.

In this study, plasma fibrinogen and serum amyloid-A were used as biomarkers of the sys-
temic inflammatory response. These acute phase proteins have been well characterised in veter-
inary medicine, and have been utilised in other sheep inflammatory models [51,52,53]. In this
study, sheep treated with 150 million MPC intravenously displayed a significant reduction in
the magnitude of their fibrinogen level elevations following arthritis induction, but the therapy
did not completely ameliorate the fibrinogen spike following induction. The arthritic sheep
treated with MPC also experienced a significantly lower peak of serum amyloid-A in the circu-
lation. Taken together, these results suggest that MPC administration attenuated the develop-
ment of the acute systemic inflammatory response following arthritis induction.

Systemic inflammation also results in a series of structural changes in lipoproteins, produc-
ing a lipid profile known as the atherogenic lipid phenotype, which has a demonstrated link to
increased risk of CV disease [54,55]. A number of studies have reported lipid alterations in RA
patients; however in the largest such study to date, the only parameter reaching statistical sig-
nificance was lowered HDL levels in RA patients [56]. HDL is generally thought to have a pro-
tective effect on endothelial function [57,58,59]. Therefore, reduced HDL levels in RA patients
may be an underlying mechanism contributing to the development of endothelial dysfunction.
In this study, arthritic sheep treated with MPC displayed significant attenuation of the decline
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in HDL experienced following arthritis induction. This difference was most significant at day 8
following arthritis induction, however HDL levels in treated sheep continued to decline
through the course of the study and by day 14 following arthritis induction, there was no differ-
ence between treated and untreated sheep. When considered together with the other results in
this study, this data suggests that the HDL decline observed in this model in the early period
(first 10 days) following arthritis induction is likely to be driven by the acute systemic inflam-
matory response (which was significantly attenuated by MPC administration), however the
continued decline in HDL beyond this period may be propagated through a different pathway,
on which MPC administration had a lesser effect. Extended studies will be required to deter-
mine if MPC administration has a longer term effect on the lipid profile phenotype in this
animal model.

In chronic inflammatory diseases such as rheumatoid arthritis, it is believed that systemic
inflammation is a key modulator of their increased risk of cardiovascular diseases [12,60]. En-
dothelial dysfunction has been extensively characterised in human RA patients [61,62], as well
as in animal models of RA [22,63,64,65,66,67]. Dysfunctional endothelial cells are the first de-
tectable cardiovascular change, and are a key effector cell type involved in the development of
atherosclerotic lesions that predispose patients to acute coronary events [20,54,68,69]. Endo-
thelial dysfunction is both an initial pathological step and a biomarker of the risk of future clin-
ical cardiovascular disease, and is therefore of interest in the assessment of current and future
therapeutics for RA and other chronic inflammatory diseases.

Intravenous administration of MPC to arthritic sheep significantly attenuated the develop-
ment of endothelial dysfunction of the coronary artery in this study. Coronary endothelial dys-
function has been strongly associated with the development of cardiovascular disease in
humans; and a number of studies have reported that poor coronary endothelium-dependent
vasodilator function is a predictor of future cardiovascular events [68,70,71]. Our previous
studies established that the ovine collagen-induced arthritis model produces coronary endothe-
lial dysfunction two weeks following arthritis induction [22]. In this study, the maximal re-
sponse of coronary artery segments to bradykinin in sheep treated with MPC was significantly
improved. We have previously reported that bradykinin is an endothelium-dependent vasodi-
lator in sheep coronary arteries, which exerts its effect primarily through the induction of NO
production in endothelial cells [22]. This result therefore suggests that the systemic effect of
MPC administration has restored the production of NO by endothelial cells in response to bra-
dykinin stimulation. Although this response is most likely to be due to increased endothelial ni-
tric oxide synthase (eNOS) enzyme activity and/or expression, for logistical reasons the
intracellular mechanisms could not be investigated in more detail (using cell signaling inhibi-
tors) in this study. Other potential mechanisms may be alterations in the expression of bradyki-
nin receptors, or increased bioavailability of NO in MPC treated sheep (due to reduced reactive
oxygen species production). Because of the relatively modest numbers of cells administered in
these experiments, the effect of MPCs on endothelial cells is likely to be indirect; via modula-
tion of key immune cell function in this animal model.

MPC treatment also significantly attenuated the development of endothelial dysfunction of
the digital artery in this study. Digital arteries were investigated in this study to provide an ex-
ample of a peripheral artery. Peripheral vascular disease has also been reported in the RA pa-
tient population [72]. This additional data also suggests that the effect of MPC treatment on
endothelial function is systemic. In this study, the digital arterial segments from those sheep
treated with MPC showed a significantly increased maximal response to the dilator carbachol.
Our previous sheep studies have shown that carbachol is an endothelium-dependent dilator in
sheep digital arteries, which (like bradykinin) exerts its effect through the induction of NO pro-
duction in endothelial cells [22]. In both digital and coronary arteries, arthritic sheep treated
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with MPC showed no alterations in their response to the endothelium-independent dilator,
SNP. This result indicates that MPC administration had no effect on vascular smooth muscle
function, and that the difference observed in response to the dilators bradykinin and carbachol
is due to selective functional differences in endothelial cells.

We propose that both the increase in plasma IL-10 and the decrease in pro-inflammatory
cytokines such as IL-6 and TNF-α are directly associated with the maintenance of the endothe-
lial function in the MPC-treated sheep. Pro-inflammatory cytokines have been shown to cause
reduced production of nitric oxide from endothelial cells by down-regulating the expression
and activity of nitric oxide synthase (eNOS), which may involve activation of the transcription
factor NFkB and also the generation of reactive oxygen species which uncouple the eNOS en-
zyme [73]. Interleukin-10 has been shown to protect and restore eNOS expression (in part by
inhibiting NFkB activity) and therefore prevents the impairment in endothelium-dependent
vasorelaxation caused by pro-inflammatory cytokines [73].

No previous studies have examined the effect of MSC or MPC administration on endotheli-
al cell function. In this model, endothelial function can be seen as a surrogate marker of the
overall level of systemic inflammation over the course of the study. Our study provides the first
evidence that MPC are able to modulate the development of the early cardiovascular sequelae
of low-grade systemic inflammation. Although the mechanisms by which the MPC achieved
this alteration will be the subject of future investigations, together the results suggest that the
improvements in endothelial function with MPC treatment are likely to have been achieved in-
directly through the modulation of the systemic inflammatory response following arthritis
induction.

The mechanisms by which MPC are able to modulate inflammation in this animal model
remain unclear. Many reviews have described the profound immunomodulatory properties of
these cells in the context of autoimmune and inflammatory diseases [3,74,75,76,77]. However,
much still remains unknown about the behaviour of these cells in animal models of disease.
Following intravenous administration, one possibility was that the MPC trafficked to the in-
flamed synovial joint and directly inactivated key pro-inflammatory cell types. Alternatively,
the cells may primarily interact with circulating leukocytes and/or with a remote population of
leukocytes to reduce activation and cytokine production; or MPCs may produce their own sol-
uble mediators which circulate and have far-reaching anti-inflammatory actions.

Studies tracking labelled MSCs to various organs after systemic administration have shown
that the great majority of cells are initially trapped within the capillary beds of the lung; howev-
er significant numbers of cells also traffic to the spleen and liver [27,29,78,79]. The spleen
(more specifically the subcapsular red pulp) is a site of residence for a significant reservoir pop-
ulation of monocytes which are mobilised into the circulation during inflammation [80]. The
marked spike in plasma IL-10 levels observed 24h after the IV administration of MPC in the
present study could be explained by the activation of significant numbers of anti-inflammatory
(‘M2’) monocytes, or perhaps the conversion of quiescent monocytes or pro-inflammatory
monocytes (M1) into M2 cells. Many of the subsequent anti-inflammatory effects of MPC may
be driven indirectly via the actions of anti-inflammatory monocytes and cytokines such as IL-
10. Similarly, if significant numbers of MSCs traffic to the liver, they might interact with Kupf-
fer cells (macophages) lining the liver sinusoids. Further studies should be directed towards
better understanding the fate of intravenously administered stem cells and the mechanisms by
which they exert their immunomodulatory effect.

In conclusion, this is the first study to report the capacity of MPC to attenuate systemic in-
flammation and endothelial dysfunction associated with an animal model of arthritis. This im-
portant finding suggests that MPC show significant promise in modulating not only local
disease activity in chronic inflammation such as a poly or mono-arthritis, but also the systemic
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sequelae of the condition. Further pre-clinical and mechanistic studies of the pathways in-
volved in MPC modulation of systemic inflammatory diseases will inform the development
this novel anti-inflammatory therapy.
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