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The circulating microRNAs (miRNAs) associated with type 2 diabetes (T2D) in elderly patients are still being defined. To identify
novel miRNA biomarker candidates for monitoring responses to sitagliptin in such patients, we prospectively studied 40 T2D
patients (age> 65) with HbA1c levels of 7.5–9.0% on metformin. After collection of baseline blood samples (t0), the dipeptidyl
peptidase-IV (DPP-IV) inhibitor (DPP-IVi) sitagliptin was added to the metformin regimen, and patients were followed for 15
months. Patients with HbA1c< 7.5% or HbA1c reduction> 0.5% after 3 and 15 months of therapy were classified as
“responders” (group R, n = 34); all others were classified as “nonresponders” (group NR, n = 6). Circulating miRNA profiling
was performed on plasma collected in each group before and after 15 months of therapy (t0 and t15). Intra- and intergroup
comparison of miRNA profiles pinpointed three miRNAs that correlated with responses to sitagliptin: miR-378, which is a
candidate biomarker of resistance to this DPP-IVi, and miR-126-3p and miR-223, which are associated with positive responses
to the drug. The translational implications are as immediate as evident, with the possibility to develop noninvasive diagnostic
tools to predict drug response and development of chronic complications.

1. Introduction

With >400 million patients worldwide, type 2 diabetes (T2D)
is among the most frequently diagnosed metabolic disorders.
T2D is a multifactorial disease: genetic, lifestyle, and envi-
ronmental factors combine to render target tissues insensi-
tive to insulin, resulting in increasingly high blood levels of
glucose. The disease is associated with serious and frequently
disabling long-term complications, including cardiovascular
disease, renal failure, neuropathy, and blindness, and it is
therefore one of the leading causes of the global increase
in morbidity and mortality [1–3]. Outcomes could be
improved by earlier diagnosis, while the disease is still in
the initial phase, and more rational use of currently avail-
able therapies (i.e., targeting drugs to the patients most

likely to benefit from them). For this reason, there is an
urgent need for new biomarkers with potential applica-
tions in the prevention and early diagnosis of T2D and
for predicting its response to therapy, especially for fragile
elderly patients [1, 2, 4].

Recently, microRNAs (miRNAs)—short (21-22 nucleo-
tides), single-stranded, noncodingRNAs—havebeendetected
in human plasma and other biological fluids, and in some
cases, their expression profiles prove to be disease-specific
[5–9]. Compared with many more conventional biomarkers,
miRNAs offer several advantages, such as high stability,
even under drastic conditions. In addition, miRNAs have
been identified as major regulators of pancreatic β-cell
mass and function, that is, the two key factors in the
pathogenesis of T2D [9–11]. For these reasons, they are
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considered a promising source of biomarkers for diagnosing
and staging T2D as well as for predicting their response to
therapy [1, 12].

Glucagon-like peptide-1 (GLP-1) is an incretin hor-
mone that stimulates insulin release by β-cells in a
glucose-dependent manner and, at the same time, reduces
glucagon secretion by alpha-cells. GLP-1-based therapeutic
strategies have an increasing role in T2D treatment and
consist of GLP-1 agonists and dipeptidyl peptidase-IV
(DPP-IV) inhibitors (gliptins) [13]. In detail, gliptins are
able to rapidly deactivate GLP-1, resulting in the decrease
in insulin production, and are a recent addition to the class
of oral glucose-lowering drugs used to treat T2D. Several
components of this class, including vildagliptin, sitagliptin,
saxagliptin, alogliptin, and linagliptin, have already been
approved for this indication by the US Food and Drug
Administration or by the European Medicines Agency;
others are awaiting for approval or still in development.
Gliptins can be used as single-agent therapy or combined
with other antidiabetic agents (e.g., metformin) when the
latter fail to produce or maintain adequate glycemic control
[14, 15]. DPP-IVi would indeed induce insulin secretion in
a glucose-dependent manner, with minimal risk of hypogly-
cemia; accordingly, DPP-IVi can produce a significant
reduction in HbA1c. Moreover, they are usually well toler-
ated, with no weight gain or gastrointestinal side effects
[15–18]. Interestingly, they also appear to offer added ben-
efits consisting of the epigenetically mediated restoration of
normal gene activity in dysfunctional pancreatic islets [19].
A recent study in diabetic CD1 mice also indicates that
gliptin therapy can ameliorate T2D-related kidney fibrosis
[20], an effect that was mediated by the drug’s induction
of the expression of miR-29.

These findings prompted us to investigate the circulat-
ing miRNA profile of elderly patients with poorly con-
trolled T2D and to identify the changes it undergoes
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Figure 2: Glycemic control statuses of the patients at baseline and 3
and 15 months after initiation of metformin + sitagliptin. All 40
patients in poor metabolic control were enrolled. HbA1c levels
were evaluated after 3 and 15 months from the addition of
sitagliptin. On the basis of HbA1c values, patients were divided
into responders and nonresponders. All patients showed an initial
metabolic response to therapy (t3), whereas after 15 months (t15),
34/40 were responders. Based on this information, patients were
divided into five groups: (1) t0 responder samples (R-t0), (2) t0
nonresponder samples (NR-t0), (3) t3 responder samples (R-t3), (4)
t15 responder samples (R-t15), and (5) t15 nonresponder samples
(NR-t15). miRNA profiling was performed at baseline and after 15
months of sitagliptin addition.
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Figure 1: Experimental design for the identification of circulating miRNAs in T2D patients. The duration of the study was 2 years. The blue
horizontal arrow indicates the duration of the different phases of the project. The red vertical arrows indicate the main study periods.
In year 1, patients were enrolled and started on metformin + sitagliptin (see Materials and Methods for details). After 3 and 15 months of
treatment (t3 and t15), HbA1c values were reassessed and patients were classified as nonresponders (NR) or responders (R). Plasma
miRNA levels at baseline (t0) and t15 from groups R and NR were compared as indicated. Comparison of plasma pools: (1) NR-t0 versus
R-t0, (2) R-t15 versus R-t0, (3) NR-t15 versus NR-t0, and (4) NR-t15 versus R-t15.
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during DPP-IVi therapy with sitagliptin. The plasma levels
of three miRNAs (miR-1208, miR-550a-3p, and miR-30c-5p)
displayed directionally similar trends in responders and non-
responders during the 15 months of sitagliptin treatment.
These miRNAs thus appear to be modulated by sitagliptin,
but not correlated with metabolic response. In contrast,
three other miRNAs emerged as promising candidates for
use as positive (miR-126-3p and miR-223) and negative
(miR-378) biomarkers of responses to sitagliptin therapy
in this elderly patient population.

2. Materials and Methods

2.1. Patients. The Ethics Committee of the Tor Vergata
University of Rome Medical Center approved this study pro-
tocol, and written informed consent was obtained from all
patients involved in the study. Patients (males and females)
were eligible for enrollment in the study if they met all the
following criteria: (1) age> 65 years, (2) a ≥1-year history of
T2D, and (3) poor glycemic control (HbA1c levels ranging
from 7.5% to 9.0%) on current treatment with maximum-

Table 1: Characteristics of R and NR patients enrolled in the study.

Parameters Responders (R) Nonresponders (NR)

Age (y) 66.62± 2.31 67.89± 2.24
Gender, males/females (n) 17/17 4/2

Time since T2D diagnosis (y) 11± 2 10± 3
Time points (in months) t0 t3 t15 t0 t3 t15
Body weight (kg) 72.30± 4.92 70.36± 4.89 70.43± 5.23 79.10± 12.19 78.57± 13.25 79.33± 12.99
HbA1c (%) 7.75± 0.38 6.38± 0.18 7.10± 0.28 7.59± 0.16 6.73± 0.39 7.81± 0.51
Data are means ± SD unless indicated otherwise.
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Figure 3: Venn diagram of circulating miRNAs detected in the elderly T2D cohort and in the R and NR subcohorts. Patients were classified as
responders (R) or nonresponders (NR) based on their glycemic control status after 15 months of treatment with metformin + sitagliptin (t15).
Venn diagrams show the number of miRNAs detected in NR and R plasma samples collected (a) before the start of combined therapy
(baseline, t0) and (b) at t15 and (c) at both t0 and t15.
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dose metformin. The following exclusion criteria were
applied at baseline and during follow-up: insulin therapy,
major organ failure (e.g., congestive heart failure and respira-
tory and/or hepatic insufficiency), positive history for atrial
fibrillation or a coronary or cerebrovascular event during
the previous 6 months, known neoplastic disease, and/or
acute infections.

Blood samples for HbA1c measurement and circulating
miRNA profiling (details below) were drawn upon enroll-
ment (t0), and the patients were then started on sitagliptin
(100mg once daily) as an adjunct to their metformin therapy.
Glycemic control was assessed 3 and 15 months later (t3 and
t15, resp.) (as shown in Figure 1). Patients were classified as
“responders” (R) if they exhibited good glycemic control at
both time points, reflected by an HbA1c level of <7.5% or
an HbA1c reduction of >0.5% relative to the level recorded
at t0. Patients who failed to meet these criteria were classified
as “nonresponders” (NR). On the basis of these findings,
plasma samples were pooled into the following five groups:
(1) baseline samples frompatients that emerged as responders
(R-t0 pool), (2) baseline samples from nonresponders (NR-t0
pool), (3) t3 samples from responders (R-t3 pool), (4) t15
samples from responders (R-t15 pool), and (5) t15 samples
from nonresponders (NR-t15 pool) (Figure 2). Characteristics
of the patients enrolled in the study are reported in Table 1.

2.2. Isolation and Profiling of Circulating miRNAs. For
miRNA studies, 5mL of blood was collected from each
patient in EDTA-treated tubes. Within 30 minutes of collec-
tion, the samples were centrifuged for 10 minutes at 2000×g
at room temperature (RT), and the plasma thus obtained was
divided into 250μL aliquots and stored at −80°C. To
eliminate the risk of bias related to hemolysis [21], all plasma
samples were visually assessed and those that were hemo-
lyzed, icteric, or lipemic were excluded from the analysis.
We also evaluated the expression of miRNAs susceptible to
hemolysis, such as miR-324-3p, miR-454, and miR-652
[21]. Indeed, these miRNAs were not detected in our sam-
ples, confirming that none of the samples utilized in the study
were hemolyzed.

Plasma samples from all patients in a given group (see
above) were thawed on ice and pooled. A miRNA ABC
purification kit (Applied Biosystems, Thermo Scientific)
was used, according to the manufacturer’s instructions.
Briefly, 50μL of each plasma pool was mixed with 100μL
of lysis buffer and centrifuged briefly before the addition of
100nM of ath-miR-159a (used as a positive external control).
Samples were then mixed with freshly prepared magnetic
beads (80× 106) and incubated in a magnetic rack (40min
at 30°C). Bead-hybridized miRNAs were then washed to
remove any contaminants. Elution buffer (50μL) was added,
and the sample was incubated for 3 minutes in a Thermo-
Mixer (1200 rpm, 70°C) and placed for 1 minute in a
magnetic rack to clear solutions. The supernatants were then
transferred into clean tubes and placed on ice.

miRNAs were reverse-transcribed using specific primers
according to Applied Biosystems protocols. The cDNAs
were preamplified using reagents from Applied Biosystems
(Thermo Scientific), and the products were subjected to

miRNA expression profiling. The latter was performed by
RT-qPCR with Taqman Low-Density Array microfluidic
cards (Human miR v3.0, Applied Biosystems), as previously
described [22].

2.3. miRNA Expression Analysis. Statistical analysis was per-
formed with StatMiner™ software, v. 5.0 (Integromics™)
[23]. miRNA expression levels in plasma pools were subjected

Table 2: miRNAs with known links to T2D found in baseline (t0)
plasma pools from groups NR and R.

T2D-linked microRNAs at t0
hsa-let-7d

hsa-miR-103

hsa-miR-126

hsa-miR-130b

hsa-miR-142-3p

hsa-miR-144

hsa-miR-145

hsa-miR-146a

hsa-miR-155

hsa-miR-17-5p

hsa-miR-186

hsa-miR-191

hsa-miR-192

hsa-miR-195

hsa-miR-197

hsa-miR-20b

hsa-miR-21

hsa-miR-222

hsa-miR-223

hsa-miR-23a

hsa-miR-26a

hsa-miR-27a

hsa-miR-29a

hsa-miR-30d

hsa-miR-30e

hsa-miR-342

hsa-miR-34a

hsa-miR-375

hsa-miR-378

hsa-miR-423-5p

hsa-miR-451a

hsa-miR-483-3p

hsa-miR-486

hsa-miR-571

hsa-miR-572

hsa-miR-593

hsa-miR-661

hsa-miR-770-5p

hsa-miR-9

hsa-miR-92a
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to global expression normalization, and relative levels were
calculated with the comparative threshold cycle (Ct) method.
miRNAs with Ct values> 33 were excluded. Differential
expression between groups was assessed with the limma
test and considered statistically significant when P values
were <0.05. Heat maps were generated in the R environment
(http://www.r-project.org/), using differentially expressed
miRNAs as input. The Bray-Curtis and average linkage
methods were used to cluster samples (hclust) and generate
heat maps (heatmap.2).

3. Results and Discussion

All 40 enrolled patients completed 15 months of treatment
with metformin+ sitagliptin without occurrence of adverse
events. After three months of the study treatment, all patients
met the predefined criteria for good metabolic control. In
contrast, at t15, only 34/40 (85%) were still in good metabolic
control; the remaining six (15%) had HbA1c levels that
exceeded 7.5% (n = 6). On the basis of these findings, patients
were divided into responders (group R), which included the
34 patients in good glycemic control at t3 and t15, and nonre-
sponders (group NR, 6/40), whose initial response to the
addition of sitagliptin at t3 was not maintained at t15.

3.1. Circulating miRNA Profiles of Groups R and NR.We then
compared groups R and NR in terms of miRNA expression
profiles in their t0 plasma sample pools. Of the 754 miRNAs
analyzed, 203 (27%) were detected in group NR and 229
(30%) in group R (Supplementary Tables 1 and 2, resp.).
The reliability of our findings is supported by the fact that
173 miRNAs found in both groups of plasma samples
(Figure 3(a)) included several miRNAs previously known to
be associated with T2D; specifically, 36% of those were found
in the BioM2MetDisease database (http://www.bio-bigdata.
com/BioM2MetDisease/browse) and identified in a recent
systematic review by He et al. [24] (Table 2). Similar findings
emerged when we compared circulating miRNA profiles
after 15 months of combined metformin+ sitagliptin ther-
apy. Indeed, the number of detectable miRNAs in the NR
group (213/754, 28%) was comparable to that in the R group
(234/754, 31%) (Supplementary Tables 3 and 4). In addition,
the subset of miRNAs found in both t15 pools (Figure 3(b))
comprised many of those with known links to T2D (39%
in BioM2MetDisease and He et al. [24]) (Table 3). Finally,
151 miRNAs were detected in the plasma pools for both
groups, before (t0) and after the addition of sitagliptin (t15)
(Figure 3(c), Supplementary Table 6). Notably, miRNAs
described to be linked to T2D in previous studies were
detected also in our cohort of elderly T2D patients, further
strengthening their potential role as T2D biomarkers.

Table 3: miRNAs with known links to T2D found in t15 plasma
pools from groups NR and R.

T2D-linked miRNAs at t15
hsa-let-7d

hsa-miR-103

hsa-miR-106b

hsa-miR-122

hsa-miR-126

hsa-miR-130b

hsa-miR-132

hsa-miR-140

hsa-miR-140-3p

hsa-miR-142-3p

hsa-miR-144

hsa-miR-145

hsa-miR-146a

hsa-miR-155

hsa-miR-17-5p

hsa-miR-181a

hsa-miR-186

hsa-miR-18a

hsa-miR-191

hsa-miR-192

hsa-miR-195

hsa-miR-197

hsa-miR-20b

hsa-miR-21

hsa-miR-221

hsa-miR-222

hsa-miR-223

hsa-miR-23a

hsa-miR-24

hsa-miR-26a

hsa-miR-27a

hsa-miR-28-3p

hsa-miR-30d

hsa-miR-30e

hsa-miR-320

hsa-miR-342

hsa-miR-34a

hsa-miR-375

hsa-miR-378

hsa-miR-423-5p

hsa-miR-451a

hsa-miR-483-3p

hsa-miR-486

hsa-miR-571

hsa-miR-572

hsa-miR-593

hsa-miR-661

Table 3: Continued.

T2D-linked miRNAs at t15
hsa-miR-770-5p

hsa-miR-92a

hsa-miR-96
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3.2. Circulating miRNAs in Elderly T2D Patients: Differential
Expression between Responders and Nonresponders at
Baseline. Our next goal was to identify circulating miRNAs
that might be correlated with a positive metabolic response
to therapy. To this end, we first compared the plasma levels
of the 173 miRNAs found in the t0 plasma pools from
groups R and NR. This analysis revealed 20 miRNAs that
were differentially expressed in the two groups (Table 4,
Figure 4(a)) and might thus be potentially useful for pre-
dicting the response to therapy. As noted in Table 4,
plasma levels of eight of these 20 miRNAs are known to be
potentially influenced by blood cell contamination [21].
However, this factor is unlikely to have played a role in this
analysis, since occurrence of hemolysis was excluded in all
plasma samples analyzed.

Expression of 10 miRNAs was significantly lower in
plasma from NR-t0 versus R-t0 (Table 4, Figure 4(a)); these
included three miRNAs of particular interest: let-7d, miR-
223, and miR-23a, whose expression was reported to be
downregulated in T2D patients when compared to healthy
individuals [6, 12, 25, 26]. Reduced expression of let-7d,
miR-223, and miR-23a in NR patients suggests that these
miRNAs may represent potential biomarkers of response to
sitagliptin therapy.

Other miRNAs resulted to be significantly more
expressed in NR-t0 plasma samples. These included miR-

375, whose high expression has been associated with β-cell
dysfunction [27, 28]; miR-571, previously reported to be
hyperexpressed in plasma samples from T2D patients
compared to healthy controls [29]; and miR-378, which was
associated with obesity-related insulin resistance [30, 31].

Increasing evidence has shown the involvement of
miRNAs in the development of the endocrine pancreas,
as well as in the regulation of insulin secretion, insulin signal-
ing, and insulin gene transcription. Indeed, in Dicer-1 condi-
tional knockout mice, loss of miRNAs in β-cells causes major
defects in glucose homeostasis and in insulin secretion, with a
marked reduction in insulin content. Moreover, studies in
rodent models of T2D have revealed changes in miRNA
expression in β-cells [32].

In this context, our data provide evidence that some
miRNAs previously reported as regulators of glucose homeo-
stasis in critical tissues (e.g., endocrine pancreas) may also
represent circulating biomarkers for disease staging and/or
for predicting response to glucose-lowering therapy.

3.3. Circulating miRNAs in the Elderly T2D Patients Who
Responded to Sitagliptin Treatment. To identify miRNAs
potentially modulated by sitagliptin therapy, we compared
miRNA expression levels at t0 and at t15 in plasma samples
from the R group of patients. Twenty-one miRNAs were dif-
ferentially expressed between the two plasma pools (Table 5,
Figure 4(b)). Of note, expression levels of miR-222, previ-
ously reported to be hyperexpressed in plasma samples from
T2D patients versus healthy controls [33], were reduced at
t15 versus t0.

Conversely, three miRNAs were found significantly
upregulated in the R-t15 plasma pool (Table 5). These
included miR-126-3p, which was reported to be decreased
in T2D patients (with or without complications) versus
healthy controls [34] and in T2D patients with major cardio-
vascular events [35]. Moreover, this miRNA has been pro-
posed as a biomarker for the detection of prediabetes and
diabetes. miR-30c, another miRNA significantly upregulated
in the R-t15 plasma pool, was recently shown to exert protec-
tive effects on diabetic nephropathy [36] and cardiomyopa-
thy [37]. Interestingly, gliptins inhibit the degradation of
several peptides and chemokines and reduce tissue inflam-
mation by suppressing macrophage activation and M2 mac-
rophage response. These findings suggest that glucagon-like
peptide-1- (GLP-1-) based treatments provide additional
benefits beyond glycemic control, including vascular protec-
tion and improved bone health [38].

3.4. Circulating miRNAs in Elderly T2D Patients Who Did
Not Respond to Sitagliptin Treatment. We then compared
miRNA expression levels at t0 and at t15 in plasma samples
from the NR group of patients. As shown in Table 6 and in
Figure 4(c), 21 miRNAs were differentially expressed
between the two time points, with 5/21 (miR-1208,
miR-550a-3p,miR-30c-5p,miR-1260a, andmiR-1291) show-
ing similar posttreatment changes to groupR (Tables 4 and 5).
Consequently, this observation suggests the exclusion of
these five miRNAs as possible biomarkers of response to
sitagliptin therapy. Nevertheless, the protective effects of

Table 4: miRNAs that were differentially expressed in t0 plasma
pools from groups NR and R.

Regulation miRNA
Linear fold
change

P value

Upregulated
in NR-t0

hsa-miR-1208 2.05 1 84E − 02
hsa-miR-1225-3p 2.27 1 20E − 02
hsa-miR-1252-5p 901.88 4 52E − 02
hsa-miR-338-5p 7.56 4 22E − 02
hsa-miR-375 68.83 4 35E − 02
hsa-miR-378∗ 15.26 3 81E − 02
hsa-miR-571 2.39 1 32E − 02
hsa-miR-595 540.84 4 66E − 02
hsa-miR-601∗ 14179.56 4 97E − 02
hsa-miR-885-5p 4.58 3 00E − 02

Downregulated
in NR-t0

hsa-let-7b-5p∗ 0.18 1 53E − 03
hsa-let-7d-5p 0.19 1 11E − 02

hsa-miR-1247-5p 0.20 9 91E − 03
hsa-miR-16-5p∗ 0.21 1 51E − 03
hsa-miR-223-5p 0.32 1 83E − 02
hsa-miR-23a-5p∗ 0.20 8 79E − 03
hsa-miR-30b-5p∗ 0.36 2 74E − 02
hsa-miR-320a 0.23 5 22E − 03
hsa-miR-451a∗ 0.31 3 88E − 03
hsa-miR-93-5p∗ 0.09 2 03E − 02

∗Hemolysis-susceptible miRNAs as reported in Kirschner et al. [21].
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R-t0 samples NR-t0 samples

hsa-miR-16-5p 
hsa-miR-451a 
hsa-miR-1225-3p 
hsa-miR-885-5p 
hsa-miR-375 
hsa-miR-1208 
hsa-let-7b-5p 
hsa-miR-571 
hsa-miR-595 
hsa-miR-338-5p 
hsa-miR-1252-5p 
hsa-let-7d-5p 
hsa-miR-23a-5p 
hsa-miR-1247-5p 
hsa-miR-320a 
hsa-miR-93-5p 
hsa-miR-223-5p 
hsa-miR-601 
hsa-miR-30b-5p 
hsa-miR-378 

−1.5 −0.5 1.50.5 1
Row Z-Score

(a)

R-t15 samples R-t0 samples

hsa-miR-1208 
hsa-miR-215-5P 
hsa-miR-23a-5p 
hsa-miR-765 
hsa-miR-25-5p 
hsa-miR-1291 
hsa-miR-1300 
hsa-miR-1226-5p 
hsa-miR-550a-3p 
hsa-miR-222-5p 
hsa-miR-628-5p 
hsa-miR-30c-5p 
hsa-miR-126-3p 
hsa-miR-720 
hsa-miR-1275 
hsa-miR-451a 
hsa-miR-16-5p 
hsa-miR-1260a 
hsa-miR-331-3p 
hsa-miR-1825 
hsa-miR-605-5p 

Row Z-score
−1 0 1

(b)

NR-t0 samplesNR-t15 samples

hsa-miR-30a-3p 
hsa-miR-1247-5p 
hsa-miR-564 
hsa-miR-320a 
hsa-miR-222-3p 
hsa-miR-30b-5p 
hsa-miR-30c-5p 
hsa-miR-151a-5p 
hsa-miR-93-5p 
hsa-miR-181a-2-3p 
hsa-miR-1260a 
hsa-miR-1291 
hsa-miR-1208 
hsa-miR-550a-3p 
hsa-miR-378 
hsa-miR-30a-5p 
hsa-miR-345-5p 
hsa-miR-99b-3p 
hsa-miR-151a-3p 
hsa-miR-766-3p 
hsa-miR-126-5p 

Row Z-score
−1.5 −0.5 1.50.5

(c)

hsa-miR-17-5p 
hsa-miR-106a-5p 
hsa-miR-645 
hsa-miR-10b-3p 
hsa-miR-942-5p 
hsa-miR-572 
has-miR-573 
hsa-miR-520d-3p 
hsa-miR-30c-5p 
hsa-miR-126-3p 
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Figure 4: Heat maps showing circulating microRNAs that were differentially expressed in plasma samples from (a) R and NR patients at
baseline (t0), prior to the addition of sitagliptin to the maximum-dose metformin regimen; (b) R at t0 and after 15 months of sitagliptin
(t15); (c) NR patients at t15 and t0; and (d) R and NR patients at t15.
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miR-30c-5p on diabetic nephropathy and cardiomyopathy
[36, 37] underline the need for further investigation on
the functional role of miR-30c in elderly T2D patients.

A comparison between the differentially expressed miR-
NAs of NR versus R at baseline (Table 4) and NR at t15 versus
baseline (Table 6) allowed us to observe that one of the miR-
NAs that were more abundant in NR plasma than in R
plasma at baseline, miR-378, increased during the treatment
period, reaching levels in the NR-t15 plasma pool that were
significantly higher than those in the NR-t0 pool. This result
allowed us to propose miR-378 as a negative biomarker
candidate for response to sitagliptin therapy.

In this context, our results could open new perspectives
providing the basis for further investigations of the reported
dysregulated miRNAs as markers of response to gliptins.

3.5. Circulating miRNAs in Elderly T2D Patients after 15
Months of Sitagliptin Treatment. To identify miRNAs that
might be affected by sitagliptin treatment, we compared
circulating miRNA levels in plasma samples at t15 from
the two subgroups. Twenty miRNAs were differentially
expressed in plasma from NR versus R patients (Table 7,
Figure 4(d)). Ten of the 20 miRNAs were significantly more
expressed in the plasma samples from the NR group. Among
the upregulated miRNAs, we observed an increased

expression of miR-661 and miR-572 in NR-t15, in accordance
with previous studies performed in T2D patients [26, 39].

miRNAs that were hypoexpressed in the NR-t15 pool
included two of particular interest: miR-126-3p and miR-
223. In the previous analysis of group R, miR-126-3p levels
at t15 were higher than those in the t0 plasma pool, suggesting
that this miRNA is a good candidate biomarker of successful
metabolic response to therapy. Additionally, our previous
comparison of t0 plasma pools from the two groups revealed
substantially lower levels of miR-223 in NR. This miRNA has
already been associated with pancreatic islet β-cell function
and glycemic control, and its expression is reportedly higher
in individuals with pre-T2D and normal controls than in
T2D patients [40, 41]. In light of these results, miR-223
appears to be a possible positive biomarker for monitoring
patients’ responsiveness to sitagliptin therapy.

Finally, we checked for a possible correlation between
differentially expressed miRNAs, miR-126-3p, miR-223,
and miR-378, and the patients’ clinical features. We did not
observe any statistically significant correlation between
miR-126-3p, miR-223, and miR-378 and age, time from
T2D diagnosis, body weight, and HbA1c levels.

An increasing body of evidence has linked diabetes to
cardiovascular disease, renal failure, neuropathy, and osteo-
porosis, especially in elderly individuals, with a consequent

Table 5: miRNAs that were differentially expressed in t0 and t15
plasma pools from group R.

Regulation miRNA
Linear fold
change

P value

Upregulated
in R-t15

hsa-miR-126-3p 3.30 2 05E − 02
hsa-miR-30c-5p 3.44 4 71E − 03
hsa-miR-331-3p∗ 163.08 3 12E − 02

Downregulated
in R-t15

hsa-miR-1208 0.53 3 55E − 02
hsa-miR-1226-5p 0.42 2 78E − 02
hsa-miR-1260a 0.35 4 07E − 02
hsa-miR-1275 0.24 1 93E − 03
hsa-miR-1291 0.15 3 98E − 02
hsa-miR-1300 0.29 2 08E − 02
hsa-miR-16-5p∗ 0.27 2 23E − 02
hsa-miR-1825 0.50 4 13E − 02
hsa-miR-215-5p 0.05 3 76E − 02
hsa-miR-222-5p 0.26 3 66E − 02
hsa-miR-23a-5p∗ 0.18 4 28E − 03
hsa-miR-25-5p∗ 0.03 3 26E − 02
hsa-miR-451a∗ 0.35 9 49E − 03
hsa-miR-550a-3p 0.34 1 27E − 02
hsa-miR-605-5p 0.19 1 34E − 02
hsa-miR-628-5p 0.00 3 07E − 02
hsa-miR-720 0.41 5 80E − 03
hsa-miR-765 0.01 4 16E − 02

∗Hemolysis-susceptible miRNAs as reported in Kirschner et al. [21].

Table 6: miRNAs that were differentially expressed in t0 and t15
plasma pools from group NR.

Regulation miRNA
Linear fold
change

P value

Upregulated
in NR-t15

hsa-miR-1247-5p 4.57 2 50E − 02
hsa-miR-126-5p 1.62 4 72E − 02
hsa-miR-151a-3p 2.50 1 87E − 02
hsa-miR-151a-5p 3.73 9 29E − 03
hsa-miR-181a-2-3p 134.20 1 75E − 02
hsa-miR-222-3p 1.85 1 94E − 02
hsa-miR-30a-3p∗ 1.70 4 95E − 02
hsa-miR-30a-5p 1.59 4 80E − 02
hsa-miR-30b-5p 2.18 2 63E − 02
hsa-miR-30c-5p 2.08 3 87E − 02
hsa-miR-320a 2.95 3 40E − 02
hsa-miR-378∗ 2.05 4 62E − 02
hsa-miR-564 3.39 1 41E − 02

hsa-miR-766-3p 3.46 4 62E − 02
hsa-miR-93-5p∗ 6.81 2 63E − 02

Downregulated
in NR-t15

hsa-miR-1208 0.23 3 70E − 03
hsa-miR-1260a 0.37 8 75E − 03
hsa-miR-1291 0.28 1 11E − 02
hsa-miR-345-5p 0.15 9 84E − 03
hsa-miR-550a-3p 0.48 4 08E − 02
hsa-miR-99b-3p∗ 0.29 7 73E − 03

∗Hemolysis-susceptible miRNAs as reported in Kirschner et al. [21].
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increase in mortality, morbidity, and socioeconomic costs.
Reliable biomarkers to predict drug response in these
patients are urgently needed but still lacking. Glucose-
lowering drugs, such as DPP-IVi, are known to differentially
impact metabolic control and disease-related complications.

Our study is the first to provide a description of the circu-
lating miRNAs that can be used as novel biomarkers for
monitoring response to therapy in elderly T2D patients.

4. Conclusion

The results we obtained suggest that miR-378, miR-126-3p,
and miR-223 represent candidate plasma biomarkers for
disease staging and for predicting response to therapy in
T2D elderly patients. High circulating levels of miR-378
appear to be a negative predictor of response to sitagliptin
in elderly T2D patients. Indeed, miR-378 was more
expressed in the NR-t0 plasma pool than in the R-t0 pool.
In addition, its levels in the NR-t15 plasma were even
higher than those found in the NR-t0 pool, and this result
highlights its possible role as a biomarker of resistance to
sitagliptin. In contrast, miR-126-3p and miR-223 seem to
be markers of response to the drug. miR-126-3p levels
have been reported to be lower in T2D patients than in
healthy individuals [34]. Consistently, this miRNA was
not differentially expressed in the plasma of R and NR

patients at baseline. After 15 months of sitagliptin therapy,
however, plasma levels in responders were significantly
higher than those found in the NR group, suggesting that
the addition of the DPP-IVi may have restored miR-126-3p
levels to the range found in healthy subjects. As for
miR-223, its expression at baseline was already signifi-
cantly higher in the R group, and this difference persisted
after 15 months of sitagliptin addition. This behavior is
consistent with its potential role as a positive predictor
of response to the drug.

Further work is needed to validate the role of these
miRNAs as biomarkers in T2D patients, since this was a
discovery study and the number of NR patients was limited.
Interestingly, circulating miRNAs may reflect phenomena
occurring at the level of those organs involved in T2D
pathophysiology (e.g., endocrine pancreas, liver, and adipose
tissue). Therefore, our data provide a snapshot of the circulat-
ing miRNAs that deserve further studies.

The translational relevance of our findings is immediate;
in fact, data regarding miRNA profiles can produce results of
potential impact not only predicting drug response of T2D
elderly patients but also helping in selecting patients that
could be suitable candidates to this therapy.
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