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Abstract
The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)
continues to scale up around the world, costing severe health and economic losses. The development of an effective COVID-19
vaccine is of utmost importance. Most vaccine designs can be classified into three camps: protein based (inactivated vaccines,
protein subunit, VLP and T-cell based vaccines), gene based (DNA or RNA vaccines, replicating or non-replicating viral/bacterial
vectored vaccines), and a combination of both protein-based and gene-based (live-attenuated virus vaccines). Up to now, 237
candidate vaccines against SARS-CoV-2 are in development worldwide, of which 63 have been approved for clinical trials and 27
are evaluated in phase 3 clinical trials. Six candidate vaccines have been authorized for emergency use or conditional licensed, based
on their efficacy data in phase 3 trials. This review summarizes the strengths and weaknesses of the candidate COVID-19 vaccines
from various platforms, compares, and discusses their protective efficacy, safety, and immunogenicity according to the published
clinical trials results.
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Introduction

Coronavirus disease 2019 (COVID-19) pandemic caused by
severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)
continues to scale up around the world. Over 105 million
COVID-19 cases and 2.3 million deaths have been reported
globally till 6 February, 2021, according to WHO.[1] Approxi-
mately 40% to 45% of those infected with SARS-CoV-2 will
remain asymptomatic,[2,3] and most people (about 80%) can
recover from the disease without treatment.[4] Thus, the actual
number of COVID-19 infected cases is supposed to be much
higher than what have been reported.[5,6] Nevertheless, the level
of antibody seropositivity in the general population was still
low,[7,8] indicating that most of the population in the world
remain susceptible.

Most patients displayed an antibody response after infection
with SARS-CoV-2,[7] and reinfection incidents with valid
evidence were few.[9] Convalescent plasma transfusion has been
indicated as an effective therapy against COVID-19.[10] These
evidences together highlighted the necessity and feasibility of
COVID-19 vaccine development.
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The SARS-CoV-2 genome contains four main structural
proteins: the spike (S), membrane (M), envelope (E) and
nucleocapsid (N) protein. The main target for antigen epitopes
of COVID-19 vaccine is S protein[11]: the S1 domain, which
contains the receptor-binding domain (RBD) for the host cell
receptor angiotensin-converting enzyme-2 (ACE2),[12] the N-
terminal domain (NTD), which has been proven as another site
with potent neutralizing activity[13–15] and the S2 domain
containing the fusion peptide.[16,17] Currently, 237 candidate
vaccines against SARS-CoV-2 are in development worldwide
according to the survey of WHO.[18] Among them, 63 vaccines
have been approved for clinical trials and 27 are evaluated in
phase 3 clinical trials. Up to now, six COVID-19 vaccines,
including twomRNA vaccines, two inactivated vaccines, and two
viral-vectored vaccines have been authorized for emergency use
or conditional licensed in some countries or regions, based on
their efficacy data in phase 3 trials.[18]
Platforms for COVID-19 candidate vaccines

Currently, COVID-19 candidate vaccines canbe classified into three
camps: protein based (inactivated vaccines, protein subunit, VLP
and T-cell based vaccines), gene based (DNA or RNA vaccines,
replicating or non-replicating viral/bacterial vectored vaccines), and
a combination of both protein-based and gene-based (live-
attenuated virus vaccines).[19] Most of the COVID-19 candidate
vaccines underdevelopment belong to the first two camps.
Protein based vaccines

Many of the vaccines in clinical use today fall into this category.
This approach utilizes the entire or a part of the pathogen as
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antigen to elicit protective immune responses. This type of
vaccine is generally well tolerated, safe and can be used to most
people, even the elderly or people with immunodeficiency.[20,21]

Besides, the immunogenicity of vaccines from protein-based
platform were stable, fluctuates very little due to the stability of
the protein content. At the time of writing, the number of protein
subunit vaccines is the most among the candidate vaccines being
clinically studied (n=21). There are ten inactivated vaccines
evaluated in clinical trials, and six of which have been evaluated
at phase 3 study.

In the production of inactivated vaccines, conserving the viral
antigen of high quality is the key to induce protective
immunity.[21] In general, inactivated vaccines are highly
immunogenic. However, in the case of COVID-19, the
inactivated vaccine’s immunogenicity could be jeopardized by
the immune evasion capacity of SARS-CoV-2, such as “Glycan
shield” and the lying-down of RBD.[22–25] In addition, non-
neutralizing epitopes contained in the inactivated whole virus
might be able to induce high level of non-neutralizing antibodies,
which have the potential to cause antibody dependent enhance-
ment (ADE).

Protein subunit or VLP designed vaccines may address the
concern of ADE, by removing as much non-neutralizing epitopes
as possible, however, this would be accompanied by a long
production time.[26] Furthermore, protein subunit vaccine can
hardly induce cellular immune response with the traditional
adjuvant of alum, and thus an appropriate adjuvant may in
need.[27]
Gene based vaccines

Gene based vaccines have the potential to elicit broad immune
responses and are easier to achieve mass production compared
with protein-based vaccines.[28] To date, there are 11 non-
replicating viral vectored vaccines (4 at phase 3), five replicating
viral vectored vaccines, seven RNA-based vaccines (3 at phase 3),
and eight DNA-based vaccines (3 at phase 3) are evaluated in
clinical trials.

The RNA or DNA-based vaccine could be swiftly advanced
towards the targeted antigen and be manufactured massively.
Therefore, even it’s a relative new platform for vaccine
development, and never been approved for marketing before
this pandemic, this platform is expected to contribute to
accelerating COVID-19 vaccine development. However, the
efficacy of an RNA or DNA-based vaccine in human strongly
depends on its formulation and the delivery system for
introducing the target genes into cells, which may vary a lot in
different individuals.

Viral vectored vaccines deliver the target gene into the cells for
compilation and expression through an infectious attenuated
vector virus. For replication-incompetent vectored vaccines, the
pre-existing immunity to the vectors could affect the efficiency of
deliver significantly, with reduced the vaccine-induced immune
responses in those with pre-exposure to vector at baseline. While,
using replication-competent adenovirus as a vector would raise a
safety concern that the vector virus may recombine or revert to a
parental or wild-type phenotype at a low frequency, or cause
clinical infections in some immunocompromised populations.[29]

Though most of the viral vectored vaccines underdevelopment
are administrate intramuscularly, there is a potential advantage
for this type vaccine to be is given by inhalation or intranasal
administration. Intranasal vaccination is supposed to provide a
better protection compared to subcutaneous inoculation in terms
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of respiratory pathogens, due to the ability of inducing high level
of specific IgA antibodies.[30] Some vaccines that induce mucosal
immunity against SARS-CoV-1 and MERS-CoV have succeeded
in producing IgA in the respiratory tract, preventing correspond-
ing viral dissemination to the lung.[31] As ACE2 expression is
abundant in nasal epithelial cells of human upper respiratory
tract, and nasal goblet cells and ciliated cells might be the initial
infection sites of SARS-CoV-2.[32,33] Four intranasal vaccines
were developed and evaluated in clinical trials.[18]
The results of clinical trials on COVID-19 vaccines

Up to now, a total of ten vaccine candidates have reported the
results of human clinical trials, including four non-replicating
viral vectored vaccines, four inactivated vaccines, two mRNA
vaccines and two protein subunit vaccines [Table 1].
Safety

The accumulated safety data from clinical trials shows that
candidate COVID-19 vaccines from different platforms are
generally safe and tolerable, but with distinct safety profiles. Viral
vectored vaccines and mRNA vaccines were associated with
increased adverse reactions including fever, fatigue, headache,
myalgia compared with inactivated vaccines. Significantly,
people aged 18 to 55 reported more adverse reactions than that
in elderly.

Around 22% of the recipients of chimpanzee adenovirus-
vectored vaccine (ChAdOx1 nCoV-19) reported severe adverse
reactions in phase 1 clinical trial, in which participants received
only single dose, in phase 2/3 trial however, all people
administrated two doses, none of whom reported adverse
reactions. Besides, all the vaccines of the recombinant adenovirus
type 26 vector vaccine and recombinant adenovirus type 5 vector
vaccine (rAd26-S+rAd5-S nCoV-19) had fever.[34–37]

Of note, mRNA-1273 caused pain in all vaccine recipients
aged 18 to 55 and severe adverse reaction was reported by 6.7%
participants between the ages of 18 to 55years, and 5.3%
participants over 55years old.[38,39] For another mRNA vaccine
BNT162b2, 8.0% participants between the ages of 18 to 55years
reported severe adverse reaction.[40]

Protein subunit (Matrix-M1 adjuvanted NVX-CoV2373 and
SCB-2019) also induced some adverse reactions, especially
fatigue and pain, and 11.4% of the recipients of NVX-
CoV2373 developed severe adverse reactions.[41,42]

Comparing to above mentioned vaccines, alum-adjuvanted
inactivated vaccines and INO-4800 generated the least adverse
reactions with only a small proportion of participants having
mild to moderate adverse reactions, probably because of the
limited capacity of producing cellular immunity.[43–44] However,
it is worth noting that some individuals had abnormal increase of
blood glucose, or facial neuritis after vaccination. The relation-
ship between these abnormal changes and inactivated vaccines is
uncertain yet, which needs to be further investigated [Figure 1;
Supplementary Table 1; http://links.lww.com/IDI/A1].

Immunogenicity

Humoral immune responses in terms of S- or RBD-binding
antibodies measured by glycoprotein-specific enzyme-linked
immunosorbent assay (ELISA), and neutralizing antibodies
(Nab) to live SARS-CoV-2 virus or pseudo virus were measured
in clinical trials.
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Figure 1: Incidence of adverse reactions/events of COVID-19 vaccines. Incidence of adverse reactions/events was reported by participants receiving
target dose or immunization procedure in phase 3 studies.
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Protein subunit (NVX-CoV2373 and SCB-2019) induced the
strongest antibodies levels with the GMT of 3906 and 1810,
respectively, by microneutralization assay (MNA).[41,42] mRNA
vaccines also generated good specific antibodies. GMTs of Nab
were 654.3, 361 and 102.3 elicited by mRNA-1273 (by
PRNT80), BNT162b2 (by MNA50).[38,39] The humoral immu-
nity elicited by non-replicating viral vectored vaccines, inacti-
vated vaccines andDNA vaccine was comparable, andwasminor
than that of other types of vaccines. The detected GMTs of Nab
ranged from 27.6 (GMTs by MNA50) to 300 (GMTs by
PRNT50) for inactivated vaccines and DNA vaccine, and ranged
from 18.3 (GMTs by MNA50) to 827 (median by MNA50) for
non-replicating viral vectored vaccines.[35–37,43–47] TheNab titers
of 827 was induced by Ad26.COV2.S, evidently higher than
other non-replicating viral vectored vaccines.[48]

Since there are no standardized methods for these serological
tests, these published data of the antibody tests in clinical trials
are impossible to compare across the different studies. Neverthe-
less, a panel of convalescent serum from COVID-19 patients was
provided as active competitors in most studies, and we can get
some comparative information from these data.

The mRNA vaccine BNT162b2 showed better humoral
responses, 1.7 to 4.6 times higher for Nab results compared
with convalescent patients after vaccination, and Ad26.COV2.S
also generated ELISA antibodies and Nab titers of 1.9 and 1.0
times higher than human convalescent serum. The rAd26-S
+rAd5-S, mRNA-1273 and INO-4800 vaccination group
presented a higher ELISA titres or Nab results than detected in
convalescent patients. The NVX-CoV2373 and SCB-2019
vaccine induced approximately four times greater than that in
outpatients for Nab, and also resulted in similar GMT levels of
ELISA antibodies and Nab compared with hospitalized patients.
TheNab titres after vaccination of inactivated vaccine were lower
46
in participants than that was detected in convalescent serum from
patients who has previously had COVID-19.

To sum up, the protein subunit vaccine performed notably
best, followed by the mRNA vaccines and the non-replicating
Chimpanzee adenovirus and Ad26 vectored vaccines, which
induced relatively high humoral immune response than inacti-
vated vaccines, DNA vaccine and Ad5-vectored vaccines. The
differences in disease severity, age, and sampling time points post-
infection could affect the level of antibody titer of the panel of
convalescent serum, so the comparisons still have some
uncertainty.

According to the reported data in terms of the Nab, two doses
administration were preferred for most of the candidate COVID-
19 vaccines, in order to induce more satisfying antibody
responses than one shot did. Nevertheless, the two viral vectored
vaccines (Ad26 and Ad5) were evaluated in phase 3 trials with
one shot regimen for efficacy estimation, expecting to generate
acceptable protection for COVID-19 after one dose.

As for cellular immunity, the protein subunit vaccine (NVX-
CoV2373), one of the mRNA vaccines (mRNA-1273), Ad26.
COV2.S and SCB-2019 induced significant CD4+ T-cell
responses, especially Th1, and three non-replicating viral
vectored vaccines (ChAdOx1 nCoV-19, Ad5-vectored and
rAd26-S+rAd5-S COVID-19 vaccine) and DNA vaccine induced
significant interferon-g response. Whereas, T-cell response
induced by inactivated vaccines was relatively weak [Figure 2;
Supplementary Table 2; http://links.lww.com/IDI/A1].

Protective efficacy

Either laboratory-confirmed COVID-19 or laboratory-confirmed
SARS-CoV-2 infection is an acceptable primary endpoint for a
COVID-19 vaccine efficacy trial, and the estimate of the primary
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Figure 2: The ratio of neutralizing antibody induced by candidate COVID-19 vaccines to a panel of convalescent serum from COVID-19 patients. The
neutralizing antibody referred above is induced in health adults receiving target dose or immunization procedure in main phase 3 clinical studies. The
method for neutralizing antibodies induced by the vaccine is similar to those of convalescent patients who previously had COVID-19. Ad26.COV2.Sa:
Single dose immunization procedure; Ad26.COV2.Sb: Two doses immunization procedure.
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efficacy endpoint should be at least 50% for a placebo-controlled
efficacy trial.[49,50] In addition, Food and Drug Administration
requests that a total of five or more severe COVID-19 cases
should be observed in the placebo group, so as to assess the
efficacy and VED sufficiently.[51] Currently, the interim analysis
results of the efficacy data from the phase 3 clinical trials of eight
COVID-19 vaccines have been reported and shown efficacies
ranged from 50.4% to 95% against COVID-19. However, there
are many factors influencing the efficacy estimation, such as
primary endpoints, case monitoring system, and the definition of
confirmed cases, all of which are different used in each vaccine.
BNT162b2 was 95% effective in preventing confirmed symp-
tomatic COVID-19 with onset at least 7days after the second
dose in participants, and similar efficacy (generally 90 to 100%)
was observed across subgroups defined by age, sex, race,
ethnicity, baseline body-mass index, and the presence of
coexisting conditions. In this efficacy trials, a total of 170 cases
were occurred, only eight in vaccine group, and ten severe cases
occurred after the first dose, nine in placebo group and one in
BNT162b2 group.[52] The efficacy of mRNA-1273 was 94.1% in
preventing a first occurrence of symptomatic COVID-19 with
onset at least 14days after the second injection in per-protocol
population, with 196 cases being observed (11 in vaccine group),
of which ten were severe COVID-19 cases in the placebo group.
In terms of secondary analyses, including analyses in participants
who had evidence of SARS-CoV-2 infection at baseline, and
analyses in participants aged over 65years old, the efficacy was
similar.[53] As for SPUTNIK V, PCR confirmed COVID-19 from
day 21 after receiving the first dose occurred in 62 placebo
recipients including 10moderate or severe cases and in 16 vaccine
47
recipients, so the efficacy was shown 91.6%.[54] An interesting
phenomenon happened to the ChAdOx1 nCoV-19 in phase 3
study, in which the primary outcome was virologically
confirmed, symptomatic COVID-19 after last vaccination.[55]

In participants who received two standard doses, vaccine efficacy
was 62.1% and in participants who received a low dose followed
by a standard dose, efficacy was 90.0%. All the cases hospitalized
for COVID-19 or severe cases were occurred in the control arm.
Also, Janssen announced the efficacy results of 66% in preventing
confirmed moderate to severe COVID-19 14days after single
dose.[56] The most immunogenic vaccine, Novavax, demonstrat-
ed 89.3% efficacy, based on 62 cases, of which 56 cases
(including one severe case) were observed in the placebo
group.[57] Two inactivated vaccines were shown the efficacy of
79.3% and 91.3% (in Turkey), 50.4% (in Brazil), respectively.
More details are shown in Table 2.
Outlook

The most efficient approach to halt the pandemic is to achieve
herd immunity with a valid COVID-19 vaccine. The history of
vaccine development tells us that not all the vaccine candidates
would succeed, particularly for a novel emerging respiratory
virus. Thus, the more candidates we test, the bigger chance we
gain to have safe and efficacious vaccines against COVID-19.[58]

Up to now, at least nine candidate COVID-19 vaccines from
different platforms evaluated in clinical trials, appeared to be
safe, and able to elicit significant immune responses. Of them,
eight COVID-19 vaccines had their preliminary efficacy data
being released, meeting the minimum requirement of 50%

http://www.idi-cma.org


Table 2: The efficacy results from published clinical studies

Vaccine
Number of
vaccines

Targeted
dose

Immunization
procedure

Time for
observation

Number of
COVID-19 cases Estimate of efficacy

Severe COVID-19
cases

BNT162b2 43,661 30mg 0-21 days apart 7 days after
two doses

170 (8 in vaccine
group)

95% 10 (1 in vaccine
group)

mRNA-1273 30,000 100mg 0-28 days apart 14 days after
two doses

196 (11 in
vaccine group)

94.1% 30

ChAdOx1
nCoV-19

22,690 2.55�1010/
5�1010 vp

0-28 days apart 14 days after
two doses

131 (30 in
vaccine group)

low dose+standard
dose: 90%; Two
standard dose:
62%; Overall: 70%

10 cases hospitalised
(2 severe cases) al
in placebo group

Ad26.COV2.S 34,000 5�1010 vp 0-21 days apart 14 days after
two doses

NA 66% NA

SPUTNIK V 22,714 1�1011 vp 0-21 days apart 14 days after
first dose

78 (16 in vaccine
group)

91.6% 20

Inactivated
whole-virus
nCov–19
vaccine

60,000 5mg 0-21 days apart 14 days after
two doses

NA 79.3% NA

CoronaVac 7371 3mg 0-14 days apart 14 days after
two doses

NA 91.25% (in Turkey);
50.38% (in Brazil)

NA

Novavax 15,000 5mg 0-21 days apart 7 days after
two doses

62 (56 in vaccine
group)

89.3% 1 in placebo group

NA: Not available.

Jiang et al., Infectious Diseases & Immunity 2021;1(1) www.idi-cma.org
efficacy, and were authorized for emergency use or conditional
licensed in some countries or regions. Since a massive
immunization campaign of the effective vaccine is implementing,
we are expecting a slowing down of the COVID-19 epidemic later
this year. However, there are still a lot scientific questions remain
to be answered, including durability of vaccine-induced immune
responses, safety and rare severe adverse reactions, vaccine
effectiveness and its clinical evaluation and correlates of
protection.

The duration of the antibodies following natural infection with
SARS-CoV-2 has not been fully understood, although some
researches demonstrated that the specific antibody level could be
stable for at least 3 to 4months.[59,60] Some experts believe that a
vaccine could provide stronger and more durable immune
response than a natural infection. One reason is that the vaccine
could be designed to contain highly-concentrated antigens, which
is capable of triggering high level of Nab titers. A report of
immunogenicity of mRNA-1273 three months after the second
vaccination showed that despite a slight expected decline in titers
of binding and neutralizing antibodies, a durable humoral
immunity was observed.[61] Although the evidence on the
immunity durability is limited now, most of the ongoing trials
are designed to perform the follow-up for at least 6months or
longer, and could give an answer to the duration of vaccine-
induced immunity.[62]

Safety profile of vaccine candidates must be solid, which
requests a well-established monitoring system for adverse
events in clinical trials and post-market surveillance. Phase 3
studies of ChAdOx1 nCoV-19 and Ad26COVS1 vaccines have
been requested to suspend because a transverse myelitis case
and an unexplainable case occurred. A few BNT162b2
recipients were attacked by acute hypersensitive reaction and
Bell facial paralysis after vaccination. Although the relation-
ships of these adverse reactions and vaccines were not
48
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determined yet, continuing the surveillance for these risk signals
would be extremely important.

Another highly controversial issue about the safety of the
COVID-19 vaccine is ADE. ADE is commonly identified in vivo
or animal models, which mainly occurs in flavivirus, coronavirus,
respiratory virus and arthropod-borne viruses,[63] but the fact in
humans can be exemplified only in dengue viruses with clinical,
epidemiological, biological, or pathological evidence.[64–66] To
address this issue, systematic evaluation endpoints have been put
forward to measure ADE, including Nab versus binding
antibodies (low Nab titer, low ratio of Nab to total binding
antibody, low affinity of IgG antibody binding to RBD receptor),
cellular immunity (low CD4+ but high CD8+ proliferative
responses, CD4 T-cell responses biased toward expression of Th2
cytokines), inflammatory reactions (IL-1, IL-6, IL-8, TNF, IFN-I
increased) and immunopathology (eosinophilic, Th2 cytokines
IL4, IL5, IL10, IL13 increased).[60]

The lack of a standardized serum antibody and available
evidence on immunoassays being correlated to functional/
neutralization assays or to clinical protection is another hurdle
in clinical trials to evaluate the immunogenicity of vaccine
candidates. In recent published clinical studies, researchers tend
to compare Nab levels between vaccines and convalescent
COVID-19 patients. However, antibody response varies by time
and between convalescent patients, with severe or older patients
having higher antibody titers.[67,68] Hence, it is important to
clearly state the sampling time and clinical severity of conva-
lescent patients in clinical studies.

In addition to humoral immunity, cellular immunity and local
mucosal immunity play important roles in protection against
SARS-CoV-2 infection as well.[69,70] Mucosal immunity is critical
in the prevention of respiratory infection, such as influenza,
respiratory syncytial virus and pneumococcal.[71,72] A single
mucosal inoculation of Ad5-nCoV could induce better protection
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than intramuscularvaccination for theupperand lower respiratory
tracts against SARS-CoV-2 challenge in mice and ferrets.[73] These
findings suggest that a COVID-19 vaccine that can not only induce
humoral immunity but also a protective T cell response and
mucosal immunity may maximize the protection against SARS-
CoV-2, which should be investigated in future studies.

Mutations in spike protein, especially the RBD predicting
conformational changes in the S1 domain, may compromise the
efficacy of vaccines.[74–76] Unfortunately, there has been the
evidence that the neutralization of antibody generated by two
RNA vaccines (mRNA-1273 and BNT162b2) might be reduced
caused by some variants, but whether the vaccine protective
efficacy being influenced should be further investigated,[77] and a
close monitor on the viral evolution should be continued and
amplified.

The granting of emergency use designation to candidate
vaccines and licensed vaccines being available raise some issues.
In some countries and regions with intensive COVID-19
vaccination campaign, a randomized, double-blind placebo-
controlled phase 3 efficacy clinical trial is tough to develop and
maintain. Investigators might be requested to unmask trial
subjects to guarantee that those who received placebo are offered
or actively seek approved candidate vaccines. Also, risk-benefit
profile of normal placebo-controlled trial will be unacceptable,
and the compliance of the trial can be impacted by drop-outs or
“contamination”, alternative strategies to evaluate those vaccines
are needed. Head-to-head comparative design, stepped-wedge
design and cross-over design are suggested as alternative study
design to avoid ethical issue as all people in the trial are offered
protective vaccine,[78,79] but at a considerable cost to efficiency
and benefit. If possible, a serological correlate of protection and
an immunological surrogate endpoint are expected to be justified
by scientific evidence.[62]

At the present, vaccine efficacy results are just the relatively
short-term data, and the durability of protection needs to be
observed. Also, the number of severe cases observed in trials were
still limited, in order to obtain a solid vaccine efficacy for severe
cases, more severe COVID-19 cases need to be captured in the
continuing surveillance of phase 3 trials. Furthermore, the
protective efficacy data of the inactivated vaccines is mainly in 18
to 59 adults, and more data of other populations should be
collected to support the vaccine efficacy. Since the emergency use
authorization and conditional licensure are not full licensures,
WHO suggested it is ethically applicable to continue blinded
follow-up of placebo recipients in existing studies and to continue
perform placebo-controlled trials in order to yield unbiased
evidence for the next vaccine candidates.[80]

Although the existing efficacy results of vaccine against SARS-
CoV-2 show the full expectations to reduce the disease and
economic burden resulted fromCOVID-19 pandemic, we are still
devoting to developing various kinds of vaccines in order to
satisfy the demand of the whole world.
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