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Abstract

Background: Obesity is a complex disorder associated with an increased risk of developing several comorbid
chronic diseases, including postmenopausal breast cancer. Although many studies have investigated this issue, the
link between body weight and either risk or poor outcome of breast cancer is still to characterize. Systems biology
approaches, based on the integration of multiscale models and data from a wide variety of sources, are particularly
suitable for investigating the underlying molecular mechanisms of complex diseases. In this scenario, GEnome-scale
metabolic Models (GEMs) are a valuable tool, since they represent the metabolic structure of cells and provide a
functional scaffold for simulating and quantifying metabolic fluxes in living organisms through constraint-based
mathematical methods. The integration of omics data into the structural information described by GEMs allows to
build more accurate descriptions of metabolic states.

Results: In this work, we exploited gene expression data of postmenopausal breast cancer obese and lean patients
to simulate a curated GEM of the human adipocyte, available in the Human Metabolic Atlas database. To this aim, we
used a published algorithm which exploits a data-driven approach to overcome the limitation of defining a single
objective function to simulate the model. The flux solutions were used to build condition-specific graphs to visualise
and investigate the reaction networks and their properties. In particular, we performed a network topology differential
analysis to search for pattern differences and identify the principal reactions associated with significant changes
across the two conditions under study.

Conclusions: Metabolic network models represent an important source to study the metabolic phenotype of an
organism in different conditions. Here we demonstrate the importance of exploiting Next Generation Sequencing
data to perform condition-specific GEM analyses. In particular, we show that the qualitative and quantitative
assessment of metabolic fluxes modulated by gene expression data provides a valuable method for investigating the
mechanisms associated with the phenotype under study, and can foster our interpretation of biological phenomena.
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Background
A vast majority of diseases is classified as complex, imply-
ing that environmental and lifestyle factors, alongside
with genetics, might play a crucial role in the onset
and progression of the disease itself. Complex diseases
infrequently follow the Mendelian laws of monogenic
inheritance. Instead, they are caused by a combination
of multiple genetic and environmental components, with
low heritability [1, 2]. The identification and characteri-
sation of these contributing factors still represent a chal-
lenge for researchers, who are compelled to look at the
biological phenomenon under study from different per-
spectives. The traditional analyses that have been used to
identify genes responsible for Mendelian traits have not
been equally successful in identifying genes and mecha-
nisms underlying complex diseases [3]. In 2000, the World
Health Organization has defined obesity as “a complex
and incompletely understood disease” and “a key risk
factor in the natural history of other chronic and non-
communicable diseases (NCDs)” [4]. In particular, recent
evidence highlighted the role of body weight in the devel-
opment of post-menopausal breast cancer (BC) and the
outcome of both posts- and pre-menopausal BC [5–8].
Although several hormonal and metabolic pathways have
been investigated to understand the effects of obesity on
BC, this connection has not been well characterised so
far, and oncologic therapy programs rarely involve weight
and lifestyle control. Both the rise of omics sciences
and the constant development of the related technolo-
gies fostered the research of new approaches based on
the integration of data coming from different sources,
with the aim to investigate the relationships and the inter-
play among the various biological molecules [9]. Omics
data, made available by high throughput technologies,
leveraged the systems biology holistic approach, where
the genes are considered as players of complex networks,
through which they act and interact [10], and networks are
a representation of biological systems, studied as a whole.
Investigating a single data type, such as gene expres-
sion, DNA variation, metabolic or protein interactions,
may lead to incomplete information, while their integra-
tion increases the reliability of the results and improves
the interpretation of biological phenomena. More specif-
ically, systems biology approaches permit to simulate
and describe, through computational and mathematical
models, the biochemical transformations occurring into
cells and living organisms [11, 12]. Among all biologi-
cal networks, metabolic networks are probably the best
studied, since they directly influence all physiological pro-
cesses [13]. Indeed, cellular perturbations, determined by
genetic and environmental factors, are often driven by
and managed through changes in the cell metabolism
[14]. In this scenario, GEnome-scale metabolic Models
(GEMs) have become a valuable tool for describing and

simulating a phenomenon through the definition of a
specific set of objects and boundaries, namely a system.
A GEM is the representation of the metabolic structure
of a cell regarding chemical reactions, involved metabo-
lites, and associated genes [15]. A metabolic network of
n metabolites and m reactions can be represented by a
stoichiometric matrix, denoted by N, where the entry Nij
represents the stoichiometric coefficient of metabolite i
in reaction j [16]. GEMs provide a functional scaffold
for constraint-based modeling (CBM) methods aimed at
simulating metabolic fluxes in living organisms. Briefly,
CBMs interpret a metabolic network as a flow network,
whose representation through the stoichiometric matrix
is used to compute a solution space, limited by three pri-
mary constraints: reaction substrate and enzyme availabil-
ity, mass and charge conservation, and thermodynamics.
Other bounds, derived by specific knowledge of the sys-
tem, may be used to reduce the size of the solution space.
Among CBM methods, Flux Balance Analysis (FBA) is
the most used one. It is based on the assumption that an
organism aims to maximise a specific cellular metabolic
process, recognised as an objective function [17–20]. Usu-
ally, in metabolic models of microorganisms, the objective
function is the biomass maximisation. Through its optimi-
sation, FBA can identify a single optimal flux distribution
that lies on the edge of the allowable solution space. Since
the reconstruction of the first global GEM for humans,
Recon 1, in 2007 [21], researchers have started to explore
the possibility of clinical applications of GEMs [22–29].
The increasing availability of high throughput data is fos-
tering the research of new approaches in which the struc-
tural information described by GEMs represent a scaffold
for the integration of omics data, with the aim to build
condition-specific metabolic states. In particular, omics
data can be quantitatively integrated as constraints on the
metabolic fluxes to reduce the search space of steady-
state solutions [30]. Here we chose a different approach,
proposed by Lee et al. [31], which uses a data-driven
objective, where the omics data guide the intracellular
metabolic fluxes through repeated cycles of their correla-
tion maximisation. The workflow described in our study
integrates gene expression data of Luminal-A BC lean and
obese subjects into a published reconstructed GEM of
the human adipocyte, with the aim to generate condition-
specific networks in which gene abundance regulates the
metabolic fluxes.

Materials and methods
Genome-scale metabolic model and gene expression data
The Genome-scale metabolic model of the human
adipocyte, “iAdipocytes1809”, reconstructed and curated
by Adil Mardinoglu et al. [26], was downloaded from
the Human Metabolic Atlas database in the compressed
Systems Biology Markup Language (SBML) format [32].
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It represents a functional GEM of the human adipocyte
metabolism, generated by immunohistochemistry data of
proteins encoded by 14.077 genes of different adipose
tissues, along with information from previously pub-
lished adipocyte-specific proteome data. The model has
been validated for 250 known metabolic functions of the
adipocytes. Gene expression data were extracted from the
dataset GSE78958 [33] deposited at the Gene Expression
Omnibus portal. CEL files of 145 Luminal A (Lum A)
samples, containing data from 68 lean (BMI < 25) and
77 obese (BMI > 30) patients, were downloaded. Lum A
tumour was chosen since is the only subtype for which
the authors of the dataset reported significant differen-
tially expressed genes related to body weight. Moreover,
to compare the approach used in this study with the FBA
analysis performed by the “iAdipocytes1809” developers,
the raw files of the dataset GSE27916, from which they
extracted differentially expressed genes to incorporate
into the GEM, were also downloaded.

Differential expression analysis
Raw data, in CEL format, were imported, corrected, trans-
formed and normalized through “GEOquery” [34] and
“Affy” [35] R packages. The probe ids were converted into
the respective gene symbols using the specific annotation
file “hgu133a2.db” for GSE78958 and “hgu133plus2.db”
for GSE27916. Both the datasets were split into two
groups based on body weight (BMI < 25 = lean and BMI
> 30 = obese). Mean and standard deviation (SD) of the
expression values of all the samples belonging to the same
group were calculated. The two resulting files, one for the
lean and one for the obese group, containing mean and
standard deviation for each gene symbol, were used as
input for the model simulation. The differential expres-
sion analysis between lean and obese Lum A samples of
the GSE78958 dataset was performed using “Limma” R
package [36]. The False Discovery Rate approach by Ben-
jamini and Hochberg [37] was applied for multiple-testing
adjustment.

Data integration and model simulation
The algorithm by Lee and colleagues [31], to which we
refer as Lee-12, aims at removing the need for an a pri-
ori specified objective function, as commonly done in
classical FBA approaches. Instead, Lee-12 exploits avail-
able expression data to drive the optimisation process
by maximising the correlation between the steady-state
patterns of the flux solutions and the corresponding
gene expression data of the condition under study. The
algorithm relies on the COnstraint-Based Reconstruc-
tion and Analysis (COBRA) toolbox [38], that was also
used to import the “iAdipocytes1809” GEM in SBML
format into the Matlab environment. Gene expression
mean values and relative standard deviations of lean and

obese samples were uploaded individually. To validate our
approach we used the transcriptomics dataset reported by
the “iAdipocyte1809” authors and compared our results
with theirs, obtained by a standard FBA method. The
two approaches were compared on the formation of lipid
droplets (LDs) as output flux. Clinical fluxomic data
of adipose tissue coming from lean and obese subjects,
reported by McQuaid et al. [39], have been incorporated
into the model to constrain the search space: the lower and
upper bound of the fluxes associated with those metabo-
lites were set to the experimentally measured values.
In particular, glucose uptake, and triglyceride extraction
rates at six different time points were used, being both
essentials metabolites for the LDs formation. The reliabil-
ity of our approach was further evaluated by comparing
the rates of non-esterified fatty acids (NEFA) to the clin-
ically measured ones reported by [39]. For the case-study
dataset GSE78958, we also set as input values the flux rates
of the above cited metabolites at two selected time points,
preprandial (tp4) and postprandial (tp5), with the same
aim of restricting the searched solution space. The Matlab
scripts and the input files are provided in the Additional
file 1.

Graphical model selection
To investigate the topological properties of the metabolic
networks, metabolic fluxes obtained by the model sim-
ulations were used to build specific graphs and analyse
their graph-theoretic measures. For each of the four con-
ditions (lean/obese and preprandial/postprandial uptake),
the reactions having zero flux rate were removed, and
the directions of the reversible reactions were forced
by the sign assigned at the flux rate values during the
simulation. Furthermore, recurring metabolites (such as
H2O, CO2, ATP, NADH, etc.) were excluded to avoid an
unrealistic definition of the paths [40]. Directed graphs
were obtained considering the reactions as nodes, with
edges connecting the nodes when shared metabolites were
present as a reagent in one reaction and as a product in
the other one. The direction was considered from prod-
uct to reagent. Graphs were built through in-house R
scripts. The scripts and the input files are available in the
Additional file 2.

Gene-based graphs were built using genes associated
with model reactions. Genes were used in place of the
reactions they regulate, and the rules underlying the
graph building were the same described above for
the reaction-based metabolic networks. Two genes were
considered connected if they regulate two reactions shar-
ing a metabolite, as product and reagent, respectively.
Recurring metabolites were likewise removed, and a
direction based on the flux was assigned to reversible
reactions. The software has been implemented in Mat-
lab. With this approach we focused, from a gene point of
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view, on the regulation of metabolic fluxes and its putative
alteration in the presence of the disorder under study.

Structural and differential analysis of metabolic networks
The lists of connections were imported into Cytoscape
3.6.0 [41] and analysed in terms of topological proper-
ties. The Cytoscape application Dynet [42] was used to
perform a pairwise comparison of the lean and obese net-
works based on nodes and edges presence, as well as on
the ‘rewired’ nodes, identified as nodes different in terms
of the identity of the interacting neighbours. DyNet builds
a central reference network from the union of the sin-
gle networks and allows pair-wise comparisons based on
selected network attributes.

Results and discussion
Approach validation
Being Lee-12 originally developed to simulate a Saccha-
romyces cerevisiae’s model, as a first step we decided to
compare Lee-12 results with the ones from Mardinoglu
et al. [26], in which FBA was uses to estimate the forma-
tion of LDs in lean and obese subjects. The flux corre-
sponding to LDs formation was obtained by incorporating
the clinical flux rates of specific metabolites, measured in
subcutaneous tissue over a 24 h period [39]. To compare
the two methodologies, we fed to Lee-12 the gene expres-
sion values taken from the same transcriptome dataset
(GSE27916) used as reference in [26]. Furthermore, tri-
acylglycerols extraction (TAG) and glucose (GLU) fluxes
clinically measured in soft adipose tissue (SAT) of obese
subjects at six different time points were used to set the
lower and upper bounds of the corresponding metabo-
lites of the model. As previously explained, Lee-12 does
not specify an objective function. Since in [26] the defined
objective was LDs production, we evaluated the agree-
ment of the two approaches on this flux. The time points
selected were: the beginning and the end of the measure-
ment period (time = 1, time = 15), before and after lunch

(time = 4 and time = 6.5), before and after dinner (time
= 9 and time = 11.5). We used the same input flux values
as in [26]. As shown in Fig. 1 the rate of LDs production
by Lee-12 and FBA were comparable at all the time points
investigated.

The reliability of our approach was further investigated
by comparing NEFA release rates to the ones experimen-
tally measured in [39] and used as a reference in [26].
Since these values are reported as mean ± SD, and in most
of the cases the latter has very high values, three simu-
lations were performed, using the mean, mean minus SD
and mean plus SD of GLU and TAG input fluxes. Out-
put NEFA release rates for all the three simulations are
reported in Fig. 2. The values are not always compara-
ble to the experimental ones, nonetheless given the high
variability of measurements, shown by their SD, and the
integration of gene expression data from an experiment
without time points, we can consider the results accept-
able. The flux rates have also been compared to the results
obtained by the reference [26], in which the authors have
added/subtracted the SD to/from the experimental fluxes.

Differentially expressed genes between lean and obese
cancer patients
The differential expression analysis was carried out on
microarray data from GSE78958 between lean (BMI <

25) and obese (BMI > 30) subjects affected by Lum A
breast cancer. Five genes resulted significantly differen-
tially expressed (Table 1) with four up-regulated and one
down-regulated in obese versus lean patients. Our results
are partially in agreement with those of [33], most prob-
ably due to the p-value correction and adjustment they
performed on age and ethnicity, factors that we did not
take into account in our analysis. APOD and OGN were
reported by the authors of the dataset as the mostly up-
regulated genes in obese. OGN, which is an osteocyte
gene, has also been found to be over-expressed in TNBC
(Triple Negative Breast Cancer) subtype [43], and GO

Fig. 1 Comparison of lipid droplet flux rates. Comparison of LD fluxes obtained by FBA (iAdipocytes1809) and Lee-12 using six different time points
of TAG and GLU fluxes as input. The values are expressed in μmol 100g−1 min−1
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Fig. 2 NEFA release rate comparison. NEFA experimental release rate [39] (both mean and SD are reported) and NEFA flux rates by Lee-12 and by
reference [26]. We performed three simulations, using the mean, mean plus standard deviation (+SD) and mean minus standard deviation (-SD) of
GLU and TAG input fluxes, and the three output values of NEFA fluxes are shown for each time point. The values are expressed in μmol 100g−1 min−1

annotations related to this gene include growth factor
activity. APOD is a well-known gene involved in glucose
and lipid metabolic processes, and it has been associ-
ated with both obesity and breast cancer [44–46]. A role
for ADH1B and its polymorphisms in obesity and insulin
resistance has been demonstrated by several works [47].
DLX2 gene has been identified as involved in metasta-
sis risk and aggressiveness of breast cancer [48, 49]. The
only down-regulated gene was SYT1, which is involved
in synaptic vesicles traffic, a function not rarely associ-
ated with obesity [50, 51]. Although few genes have been
found differentially expressed according to body weight,
the functions in which they are involved, and the strong
association with both the diseases under study repre-
sented a good starting point to deepen the investigation
on their dysregulation effects.

Flux rates differences between lean and obese cancer
patients
The output flux rate values from the four performed sim-
ulations were analysed. In particular, reversible reactions
having opposite directions, in lean and obese groups, were
identified. Most of them, at both time points, were asso-
ciated with transport reactions driven by SLC (Solute

Table 1 Differentially expressed genes in obese compared to
lean cancer patients

Probe id Gene symbol logFC adj.p-value

218730_s_at OGN 1.12 0.003

207147_at DLX2 1.21 0.012

201525_at APOD 1.32 0.023

209613_s_at ADH1B 1.10 0.025

203999_at SYT1 -1.14 0.042

Probes having log2FC ≥ | 1 | and Benjamini-Hochberg FDR corrected p-value
≤ 0.05 were considered significant

Carrier) gene family (Additional file 3). SLC are transport
proteins located in cell membrane that play a fundamen-
tal role in cellular homoeostasis maintenance, and their
role in diseases has a great interest for developing new
drug targets [52]. The influence of diet on membrane
lipid composition is well-known [53, 54], as well as the
tight link between the lipid bilayer and the cell func-
tions regulation [55, 56]. The opposite direction of solute
transport fluxes suggests a different regulation, in terms
of storage and exchange reactions, in obese adipocytes.
Furthermore, the ratio of flux rates between obese and
lean patient highlighted a generally slower metabolism
in obese, with 415 and 382 reactions having lower val-
ues than lean (≤ 2FC), at tp4 and tp5, respectively, and
only 12 and 37 reactions with higher rates (≥ 2FC)
(Additional file 3).

Metabolic network differences between lean and obese
cancer patients
Four different networks were created from the output
fluxes obtained by our approach. Specific networks (i.e.,
graphs) of lean and obese using preprandial and postpran-
dial experimental fluxes were analysed. The connections
(i.e., edges) among the reactions (i.e., nodes) were defined
by the presence of shared metabolites, with the direc-
tion going from the reaction producing a metabolite to
the one consuming it. The obtained directed graphs were
then imported into the Cytoscape environment, and their
topological properties were analysed. Figure 3 shows the
distributions of the shortest paths length for the four net-
works. In lean networks, more reactions and connections
are present at both time points, and the highest frequency
is at 7 and 8 steps length at preprandial and postprandial
time points, respectively. In the case of the obese network,
10 is the most frequent length, suggesting that more steps
are needed to connect two nodes and, as a consequence,
to complete a metabolic function.
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Fig. 3 Shortest path distributions. Distribution of shortest paths shows that in lean networks, at both time points (a-b), path lengths of 7 and 8
nodes have the highest frequency, respectively. Instead, in case of obese networks (c-d), the most predominant length is 10 steps, indicating longer
paths to connect two given nodes

To perform network comparison and visualise the
results, the Cytoscape application DyNet was used. Com-
parison of networks in terms of nodes presence for each
time point highlighted a high number of nodes specific
to the lean condition which are repressed in obese net-
works (Fig. 4a-b). In particular, lean networks contain 177
and 198 more reactions than obese at tp4 and tp5 respec-
tively (Fig. 4c). Furthermore, it is worth to notice that lean
networks show major changes when the two time points
are compared, while obese networks have a very low per-
centage of different nodes between the preprandial and
postprandial phase. Indeed, lean network at tp5 contains
121 unique reactions. This evidence suggests that the food
intake influences much more a working metabolism com-
pared to the one affected by a metabolic disorder. Among
the reactions specific to the lean condition, there is an evi-
dent group of 61 nodes (Fig. 5) involving the acyl carrier
protein (ACP). ACP is a key cofactor protein that cova-
lently binds all fatty acyl intermediates via a phosphopan-
tetheine linker during the fatty acid (FA) synthesis process
[57]. Down-regulation of lipogenic pathways in obesity
has been reported as a defence mechanism to avoid the
excessive accumulation of fatty acids [58]. DyNet calcu-
lates a score (Dn-score) to highlight the most variable
nodes on the central reference network, using a colour
gradient (Fig. 6a-b). The Dn-score is a rewiring metric of
the nodes, which quantifies the changes in the identity of
interacting neighbours. Figures 6a and 6b represent the
combined network which shows the most rewired nodes
at tp4 and tp5, respectively.

The nodes were ranked based on the Dn-score, and the
top twenty were further investigated. At both time points,

almost all these reactions involved the amino acid trans-
port (Additional file 4), an effect already emerged from
the analysis of the opposite direction reactions. A strong
link between amino acid transporters and cancer has
been investigated by several studies, which highlighted the
importance of amino acid availability to support cancer
“metabolome” [59–62].

Gene-based networks differences between lean and obese
cancer patients
The comparison of lean and obese networks was per-
formed also considering, in place of the reactions, the
associated genes as nodes with the aim to: i) investigate
the relationships among genes associated with metabolic
reactions; ii) identify the key regulators of the cellu-
lar functions involved, and their putative alteration in
obese cancer patients. The top 50 rewired nodes from
the previous networks comparison were extracted, and
the associated genes were enriched in terms of Gene
Ontology Biological Processes (Additional file 5) by the
Database for Annotation, Visualization and Integrated
Discovery (DAVID) 6.8 [63]. From the enrichment anal-
ysis, terms as “fatty acid metabolism” and “amino acid
transport” confirmed the dysregulation hypothesis stated
above. The response to insulin is enriched in the post-
prandial phase. Although the overall situation does not
change between the two time points in obese condition,
this result highlights the importance of considering and
knowing the sampling time, especially when metabolic
disorder are under investigation. Moreover, terms related
to oxidative stress and glutathione metabolism were
significantly enriched, suggesting interesting insights to
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Fig. 4 Networks comparison based on nodes presence. Central reference networks were built by DyNet merging lean and obese networks of tp4 (a)
and tp5 (b) fluxes. Common nodes are white, lean-specific nodes are coloured in green, and obese-specific nodes are displayed in red. A prevalence
of green and white nodes is present. Intersecting the nodes of each condition, the number of common and specific reactions has been calculated
(c). A higher number of active reactions is present in lean networks compared to obese ones, and also have much more differences between
preprandial and postprandial phase

understand the relationship between obesity and can-
cer. Indeed, both of these mechanisms are reported in
the literature as associated with cancer onset and pro-
gression. In particular, glutathione participates in several
functions, such as cell differentiation, proliferation, and
apoptosis, and the alteration of its regulation is linked
to many human diseases, including cancer [64]. Glu-
tathione has also been associated with oxidative stress
[65], a mechanism determined by the accumulation of
Reactive oxygen species (ROS) inside the cells, and closely
related to inflammation, ageing and cancer [66]. It is well
known how these three phenomena have in common a

lot of characteristics, as multiple faces of the same event.
Since the obesity has started to be considered a disease,
it has been associated with immune and inflammatory
manifestations [67].

Conclusions
Here we propose a systematic approach to study complex
diseases based on the integration of gene expression data
into genome-scale metabolic models. As a case study, we
investigated the relationship between obesity and cancer.
Although obesity has been associated with a higher risk
of developing breast cancer in postmenopausal women,
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Fig. 5 Acyl carrier protein (ACP)-related reactions. Among the lean-specific nodes, it is worth noting a subgroup of reactions involving the acyl
carrier protein. As shown in the zoom-in of the central reference networks at tp4 and tp5, all the nodes are green except one. This finding suggests a
dysregulation of lipid biosynthesis and metabolism pathways

and with worse outcome for women of all ages, further
studies are needed to define the biological mechanisms
behind. To this extent, starting from a metabolic model of
the human adipocyte we integrated experimental data of
lean and obese Lum A BC patients using a published algo-
rithm that does not explicitly defines an objective function

like otherwise done in FBA. The algorithm we used was
originally designed for the analysis of Saccaromyces cere-
visiae metabolism, and we applied it for the first time
on the GEM of a complex organism. From our analyses,
several biological inferences have been drawn. Some of
them support the validity of the method, confirming well-
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Fig. 6 Networks comparison based on rewired nodes. Central reference networks were built by DyNet merging lean and obese networks of tp4 (a)
and tp5 (b) fluxes. Most rewired nodes are highlighted with shades of red, with a more intense colour indicating a higher variation

known mechanisms associated with obesity disorder, such
as a lower metabolic rate [68], and the alteration of fatty
acid related reactions [69]. Through a topological com-
parison of the constructed networks, top dysregulated
reactions have been identified. In particular, it is worth
noting the involvement of amino acid transport, which
is a recent issue associated with cancer progression and
malignancy [70, 71]. Indeed, since tumour cells have a
higher demand for nutrients and molecules to increase
their proliferation, it is not surprising that the amino
acid related metabolism underlies an alteration of its reg-
ulation. Also, obesity is characterized by an increased
metabolic demand. Thus, a cumulative effect could deter-
mine the worst prognosis of cancer related to body weight.
Moreover, the analysis of the networks in terms of both
reactions and associated genes allowed to gain insights
from different points of view: the study of gene-based net-
works highlighted a higher variability of the connections
related to genes involved in oxidation stress response in
the obese group when compared to lean. In the future,
additional analyses and validations will be performed, as
well as further investigation by including more datasets,
and healthy control samples, as well as using other dis-
ease models [72, 73]. An exciting future perspective is
also represented by the integration of microRNAs (miR-
NAs) expression data into metabolic models. miRNAs
are involved in gene expression and have been associ-
ated with obesity, playing an important role in response
to changes in environmental conditions, diet and physical
activity [74, 75]. Nonetheless, we think this study repre-
sents an important proof of concept in the scenario of
novel systems biology integrative approaches, which will,
in turn, improve our understanding of complex biological
phenomena.
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Additional file 3: Tables of the flux rates output having either opposite
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metabolic network. For each table of fluxes, we also provided the table with
the expression values (mean and SD) of the associated genes. (XLSX 304 kb)

Additional file 4: Top 20 rewired nodes of tp4 and tp5 central reference
networks, obtained by the union and comparison between lean and obese
networks. The table contains for each HMR code, the equation, the
subsystem and the associated genes. (XLSX 52.9 kb)

Additional file 5: Enrichment analysis of top 50 rewired nodes of tp4 and
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genes and the relative Dn-scores is also provided. (XLSX 17.6 kb)
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