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Acromegaly is characterized by chronic overproduction of growth hormone (GH) that

leads to insulin resistance, glucose intolerance and, ultimately, diabetes. The GH-induced

sustained stimulation of lipolysis plays a major role not only in the development of insulin

resistance and prediabetes/diabetes, but also in the reduction of lipid accumulation,

making acromegaly a unique case of severe insulin resistance in the presence of

reduced body fat. In the present review, we elucidate the effects of GH hypersecretion

on metabolic organs, describing the pathophysiology of impaired glucose tolerance

in acromegaly, as well as the impact of acromegaly-specific therapies on glucose

metabolism. In addition, we highlight the role of insulin resistance in the development

of acromegaly-associated complications such as hypertension, cardiac disease, sleep

apnea, polycystic ovaries, bone disease, and cancer. Taken together, insulin resistance

is an important metabolic hallmark of acromegaly, which is strongly related to disease

activity, the development of comorbidities, and might even impact the response to drugs

used in the treatment of acromegaly.

Keywords: glucose, insulin, growth hormone, IGF-I, acromegaly complications, diabetes, comorbidities,

pathophysiology

INTRODUCTION

The main physiological roles of growth hormone (GH) are the regulation of postnatal growth and
lipolysis. These actions are highly dependent on the nutritional state, which partitions themetabolic
actions of GH (1). GH is released from pituitary somatotroph cells in a pulsatile fashion that is
tightly controlled by hormones and nutrients (2–5). GH secretion is enhanced by growth hormone-
releasing hormone, fasting, stress, exercise and hypoglycemia, and suppressed by somatostatin,
insulin, insuline-like growth factor I (IGF-I), glucose and free fatty acids (1, 3–10).

GH excess in acromegaly results, with few exceptions, from a benign tumor of pituitary
somatotroph cells and leads to chronically increased GH concentrations, which do not respond
to the classical physiological feed-back inhibition (11). Therefore, acromegaly is characterized
by a concomitant increase in both GH and IGF-I production and activity. The main metabolic
consequence of acromegaly is insulin resistance, which may progress to diabetes. The underlying
pathophysiological mechanisms are increased lipolysis, reduced peripheral glucose utilization and
enhanced gluconeogenesis (12). Acromegaly is a unique condition of concomitant increases in
GH, IGF-I, and insulin concentrations, where the increase in insulin resistance, paradoxically, is
associated with reduced total body fat and even reduced fat accumulation in metabolic organs such
as the liver (13, 14).
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In the present review, we discuss the mechanisms leading
to insulin resistance in patients with acromegaly, the
pathophysiological implications of insulin resistance in the
comorbidities of acromegaly, as well as the relationship between
glucose homeostasis and disease activity in acromegaly.

WHOLE-BODY GLUCOSE HOMEOSTASIS
IN ACROMEGALY

GH and Glucose Homeostasis
The insulin-antagonistic effects of GH were initially
described about 85 years ago following the observation that
hypophysectomy performed in dogs improved hyperglycemia
and experimental diabetes (15). In the second half of the
twentieth century, studies performed using pituitary human
GH extracts demonstrated direct effects of GH on lipolysis and
hyperglycemia (16, 17). It was hypothesized that the GH-induced
insulin antagonistic effect is strongly related to the lipolytic
effects of GH, as free fatty acids released from fat stores inhibit
glucose disposal, resulting in insulin resistance (16, 18). This
constitutes a favorable metabolic adaptation to fasting and
exercise (where insulin levels and activity are low) by providing
lipid utilization at the expense of glucose. By contrast, GH is
suppressed postprandially where insulin activity is maximal
(16, 17). In addition, GH and insulin pathways have been shown
to cross-talk at the postreceptor level in rodent models and in
vitro (19), but this has not been replicated in human in vivo
models (20). Since the physiological reciprocal temporal pattern
of GH and insulin is abolished in active acromegaly, where
the continous GH elevation chronically activates intracellular
GH signaling, it remains possible that this could impair insulin
signaling, hence causing insulin resistance.

GH signaling in muscle and fat tissues is confirmed already
30min after a GH surge (21). Intravenous administration of GH
in healthy human volunteers leads within 2 h to an increase
in free fatty acids together with reduced glucose uptake and
oxidation in the muscle in concomitance with increased non-
oxidative glucose diposal and increased endogenous glucose
production (17, 22). The GH-induced impairment of glucose
uptake is causally linked to the concomitant activation of
lipolysis, as the administration of the antilipolytic agent acipimox
abrogates GH actions on insulin sensitivity (23). It is likely that
also the GH-induced stimulation of gluconeogenesis is positively
influenced by the increased free fatty acid levels (24).

Taken together, GH-induced insulin resistance seems to be
mainly the consequence of the increased lipolysis, impaired
insulin action in peripheral tissues leading to reduced glucose
uptake, and also increased gluconeogenesis in the liver [(17);
Figure 1].

Abbreviations: ERK, extracellular signal-regulated kinase; FSP27, fat-specific
protein 27; GH, growth hormone; IGF-I, insuline-like growth factor I; IMTG,
intramyocellular triglyceride; MEK, mitogen-activated protein kinase; PCOS,
polycystic ovary syndrome; PI3K, phosphoinositide 3-kinase; PPAR, peroxisome
proliferator-activated receptor; SHBG, sex hormone binding globulin; SSA,
somatostatin analog; STAT5, Signal transducer and activator of transcription 5.

IGF-I and Glucose Homeostasis
Prolonged administration of GH in the context of a positive
energy balance leads to production of IGF-I by the liver. IGF-
I is a single-chain polypeptide with 50% amino acid sequence
homology with insulin, and its synthesis is stimulated not only
by GH, but also by insulin (25). Acute increases in IGF-I
concentrations exert insulin-like effects on glucose transport
and circulating glucose concentrations, also in the absence of
the insulin receptor (26). Nevertheless, circulating IGF-I does
not cause hypoglycemia, as >90% is bound to specific binding
proteins (27). Exogenous administration of IGF-I in high doses,
on the other hand, mimicks administration of insulin and
therefore acutely lowers plasma glucose levels (28). The same
group showed that prolonged administration of IGF-I during
several days does not impact circulating glucose concentrations,
maybe because the increased IGF-I activity was balanced by a
feedback-induced suppression of GH as well as insulin (29).
Taken together, IGF-I has insulin-agonistic actions, thereby
potentially counteracting the insulin-antagonistic effects of GH.
Cross-sectional population studies have shown that both low
and high IGF-I are associated with increased insulin resistance,
highlighting the complexity of the IGF-I system, which probably
reflects that IGF-I is a sex- and age-dependent biomarker of
not only GH activity but also nutritional status (30). Circulating
IGF-I per se, however, probably plays a very minor role in the
regulation of glucose homeostasis in acromegaly.

Glucose Metabolism in Acromegaly
The overall effect of acromegaly on glucose metabolism is mainly
determined by the insulin-antagonistic effects of chronically
increased GH, which induces hepatic and peripheral insulin
resistance as previously mentioned (12, 17, 31, 32). This is
followed by a compensatory increase in beta-cell-function,
which aims at maintaining euglycemia (33, 34) (Figure 1).
Over time, chronic insulin resistance and fatty acid-induced
lipotocixity deteriorate beta-cell-function eventually leading to
diabetes (33, 34).

An impairment of glucose metabolism is observed in over
50% of patients with newly diagnosed acromegaly (35). Glucose
homeostasis is related to disease activity in acromegaly, as higher
IGF-I concentrations were found associated to lower insulin
sensitivity (36). Nutrient intake and glucose physiologically
suppress GH secretion in healthy subjects, but not in patients
with acromegaly (37). Indeed, the latter is utilized in the
biochemical evaluation of acromegaly disease activity (38).

Surgical cure of acromegaly improves insulin sensitivity and
lowers circulating glucose and insulin concentrations (32, 34, 39).

Body Composition in Acromegaly
GH transgenic mice are resistant to high fat diet induced
obesity, exhibiting an accumulation of lean tissue, and no
increase in adipose tissue mass (40, 41). Based on the lipolytic
effects of growth hormone one would predict a remarkable
reduction of total body fat in acromegaly. Indeed, all studies
evaluating body composition consistently describe reduced total
fat content and also reduced organ-specific fat deposition in
patients with acromegaly (13, 14, 42, 43). Nevertheless, one
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FIGURE 1 | Effects of GH-IGF-I hypersecretion in metabolic organs.

study demonstrated higher intermuscular adipose tissue depots
in the presence of lower visceral and subcutaneous fat in
patients with acromegaly (44). This is compatible with the
observation of increased intramyocellular triglyceride (IMTG)
accumulation in healthy subjects after 8 days high dose GH
administration (45). Whether IMTG per se contributes to insulin
resistance as indicated by other studies not involving GH (46)
is uncertain, and it is noteworthy that IMTG also increases
following exercise in fit individuals without compromising
insulin sensitivity (47).

Ectopic lipids, however, play an important role in the
pathophysiology of insulin resistance accompanying obesity in
the general population (48). The presence of insulin resistance
in the absence of hepatic lipid accumulation in patients with
acromegaly is unique, and it is likely that the small increase in
intramuscular fat in active acromegaly mainly reflects increased
lipid oxidation in muscle. In all instances, biochemical control
of acromegaly reverses this picture, increasing total fat mass and
reducing lean body mass, while improving insulin sensitivity
(13, 42, 43).

PATHOPHYSIOLOGY OF INSULIN
RESISTANCE IN ACROMEGALY

Fat Metabolism
Lipids constitute the main energy reserves in human physiology,
being primarily stored in the adipose tissue as lipid droplets
containing triacylglycerides surrounded by a phospholipid

monolayer. An acute reduction of circulating free fatty acid
levels stimulates GH secretion (10, 49). GH, in turn, stimulates
lipolysis in humans leading to increased concentrations of free
fatty acids and glycerol (50). Endogenous GH is essential for
the increased lipolytic rate found during prolonged fasting, with
fasting-induced peaks in endogenous GH secretion being crucial
for the increased rate of lipolysis during starvation (51, 52).
During the fed state, GH secretion is suppressed and insulin
becomes the main regulator of substrate metabolism (10, 49).
This feeding-induced shift between insulin and GH in the
control of substrate metabolism was already suggested in 1963
by Rabinowitz and Zierler, with GH being responsible for the
utilization of endogenous lipids during fasting and stress, thereby
sparing glucose and proteins (16).

Acromegaly is associated with increased circulating levels
of lipid intermediates, as well as with increased lipid uptake
by the muscle, suggesting that fatty acids are a major fuel
substrate in these patients (32). This sustained stimulation of
lipolysis has three main consequences: (1) further deterioration
of insulin sensitivity, (2) impairment of beta-cell function, and
(3) reduction of whole-body fat. Surgical cure of acromegaly
is followed by a normalization of lipolysis and glucose
metabolism (32).

Beta-Cells
GH stimulation exerts insulinotrophic effects on β-cells in vitro
(53) and in vivo, augmenting glucose-induced insulin secretion
without playing a major role in basal insulin secretion (54).
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The pathophysiology underlying beta-cell-failure in acromegaly
seems similar to that observed during the development of type
2 diabetes where insulin resistance leads to a compensatory
hyperfunction of beta-cells (33, 34). Insulin resistance and
lipotoxicity eventually lead to beta-cell dysfunction with failure
to fully counterbalance the increased needs for insulin secretion
(33, 34). Several studies have shown an improvement in beta-cell
function after normalization of GH concentrations in patients
with acromegaly (39, 55). Despite direct effects of GH on
glucose metabolism, other hormonal alterations accompanying
acromegaly may influence beta-cell function: 1) Acromegaly
is associated with increased postprandial glucose-dependent
insulinotropic polypeptide (GIP) concentrations, which in turn
stimulate insulin secretion and influence postprandial (but not
fasting) hyperinsulinemia (56); 2) A cross-sectional study found
that beta-cell function strongly and directly correlates with the
bone marker osteocalcin, revealing that the bone-beta-cell cross-
talk initially described in other populations is also present in
patients with acromegaly (57).

Liver
GH signaling in the liver is essential for the production of IGF-I
and for the maintenance of a normal hepatic lipid metabolism
(58). GH-induced hepatic IGF-I production depends on the
local availability of insulin, with increased hepatic sensitivity to
GH in the presence of high portal insulin levels (59). Higher
portal insulin concentrations are associated with increased
IGF-I concentrations, partially also due to the insulin-induced
inhibition of hepatic IGFBP1 production (60). Patients with
acromegaly have an increased glucose turnover, as GH increases
hepatic glucose production by increasing glycogenolysis (17).
Chronic GH administration impairs insulin sensitivity in the
liver, thereby reducing the ability of insulin to suppress
gluconeogenesis and glucose output (12, 32, 61).

Muscle
Local GH perfusion in the brachial artery leads to a rapid
decrease in muscle glucose uptake and oxidation (17, 62, 63).
These rapid GH effects in muscle cells could be either direct or
secondary to the increased lipid utilization (17). GH signaling in
muscle induces signal transducer and activator of transcription 5
(STAT5) phosphorylation and increased expression of canonical
GH-dependent genes including IGF-I and cytokine-inducible
SH2-containing protein (17, 21). The molecular mechanisms
subserving GH-induced insulin resistance in human subjects
remain uncertain. Studies in rodent models show impairment of
insulin signaling at the level of phosphoinositide 3-kinase (PI3K)
activity (64), but this is not observed in human studies in vivo
(20, 21, 65, 66).

On the other hand, it has been shown that GH infusion
increases lipolysis and suppresses pyruvate dehydrogenase
activity, which indicates substrate competition between glucose
and lipid intermediates (67) in accordance with the Randle
hypothesis (18). However, it is noteworthy that human in vivo
studies rely mainly on mRNA and protein expression in crude
biopsies at specific time points, which may not be able to detect
real time changes in complex signaling pathways.

Adipose Tissue
In general, circulating GH concentrations are inversely correlated
to adipose tissue mass in both mice and humans (68). GH
directly impairs glucose utilization in 3T3 adipocytes and
also impairs insulin signaling in adipose tissue by influencing
p85α expression that suppresses PI3K activity (69–72). GH
receptor signaling phosphorylates the tyrosine residues on
STAT5, leading to STAT5 activation (73). STAT5 mediates
the GH-effects on lipolysis by increasing the transcription of
several metabolic genes such as peroxisome proliferator-activated
receptor (PPAR)-gamma and fatty acid synthase (73, 74). In
addition, both STAT5- and mitogen-activated protein kinase
(MEK)/extracellular signal-regulated kinase (ERK)-dependent
intracellular signaling mediate the effects on GH in suppressing
mRNA and protein levels of fat-specific protein 27 (FSP27), a
negative regulator of lipolysis (75). The importance of FSP27
supression for GH signaling in adipocytes is highlighted by the
fact that FSP27 overexpression fully abrogates the effects of GH
on lipolysis and insulin resistance in adipose tissue, mainly by
inhibiting PPAR-gamma phosphorylation (75, 76).

Acromegaly is also associated with decreased expression of
the insulin-sensitizing adipokine adiponectin, but also with
increased circulating concentrations of the proinflammatory
adipokine visfatin, which is linked to enhanced inflammation and
insulin resistance inmany tissues (77–79). In addition, GH excess
in acromegaly increases the expression of proinflammatory
cytokines within the adipose tissue, which in turn might
also contribute to the increased insulin resistance (80). This
finding confirms that adipose tissue inflammation can be
found also in the absence of increased adipose tissue mass.
The functionality rather than the size of adipose tissue mass
seems to determine the phenotype, as successful treatment of
acromegaly resulted in a reduction of lean body mass and
increase of total body fat mass together with improvement
of insulin sensitivity and a reduction in proinflammatory
cytokines (80).

ROLE OF INSULIN-RESISTANCE IN THE
DEVELOPMENT OF
ACROMEGALY-ASSOCIATED
COMORBIDITIES

Diabetes
Diabetes is a late consequence of impaired glucose metabolism
in acromegaly, and occurs when the increased beta-cell function
fails to compensate for the chronically increased insulin
resistance (33, 34) (Figure 2). The prevalence of diabetes in
patients with acromegaly is 20–35% at initial disease diagnosis
(81, 82). The frequency of diabetes is related to disease
control in acromegaly, and IGF-I concentrations are higher
in patients with diabetes, when compared to patients with
impaired glucose tolerance or normal glucose metabolism (81,
83). Age and positive family history for diabetes were found
to be independently associated with impairment of glucose
metabolism in acromegaly (35).
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FIGURE 2 | Insulin resistance in the pathophysiology of acromegaly comorbidities.

Hypertension
Insulin resistance is thought to be one of the main factors
contributing to hypertension in the general population (84, 85).
In acromegaly, hypertension is the most prevalent cardiovascular
comorbidity, described in up to 60% of published acromegaly
cohorts (86–90). The contribution of insulin resistance in the
development of hypertension was studied in GH transgenic mice,
in which increased systolic blood pressure appears at the age
of 3–6 months and the prevalence of hypertension increases
with age (91). In this model hyperinsulinemia develops very
early, and unlike hypertension, even improves with age. The
authors conclude that hyperinsulinemia might play a role in the
pathophysiology of hypertension, but is not mandatory for the
maintenance of hypertension (91).

Hyperinsulinemia may lead to increased sodium absorption
in the kidney by activating the renin-angiotensin-aldosterone
system, thereby also increasing the circulating plasma volume
(92). In addition, both insulin and growth hormone increase
sympathetic nervous activity (93). In accordance with
this, patients with acromegaly lack the nocturnal fall in
norepinephrine and blood pressure levels (94).

Insulin resistance and hyperinsulinemia impair also
endothelium-dependent vasodilatation and increase oxidative
stress in endothelial cells (95, 96). Indeed, flow-mediated
vasodilatation, a functional test used for detecting endothelial
dysfunction was lower in patients with acromegaly when
compared to age- and gender-matched controls (97).
Transsphenoidal surgery led to an increase/normalization

of flow-mediated vasodilatation only in subjects that showed
significant improvements in glucose, insulin concentrations and
insulin resistance (97). The authors conclude that endothelial
function in patients with acromegaly strongly relates to
insulin resistance and does not always change following rapid
improvement in GH and IGF-I concentrations (97). Interestingly
intima media thickness of common carotid arteries, but not the
prevalence of atheroclerotic plaques, is increased in patients
with acromegaly (98). Taken together, insulin resistance is one
of the main pathophysiological mechanisms contributing to the
development of hypertension in acromegaly (99). In routine
clinical practice, patients with acromegaly and impaired glucose
tolerance/diabetes have higher blood pressure values than
patients with acromegaly and normal glucose tolerance (100).
In larger populations, the presence of diabetes in patients with
acromegaly is associated with a significantly increased prevalence
of hypertension (101).

Cardiovascular Disease
Insulin resistance is an independent risk factor for cardiovascular
disease in the general population mediating the association
between hyperglycemia and cardiovascular risk (102–104).
Impaired glucose tolerance directly correlates to the severity
of acromegalic cardiomyopathy (100). Patients with acromegaly
and diabetes show an increased prevalence of cardiovascular
diseases (101). GH and IGF-I excess lead to morphological heart
changes (86, 105). Acromegalic cardiomyopathy displays similar
features as diabetic cardiomyopathy, and themainmorphological
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difference between the two is the lack of intracardiac lipid
accumulation in acromegaly (14, 99). The coexistence of
hypertension further aggravates cardiomyopathy in acromegalic
patients (105, 106). Although there is no evidence for a direct
effect of insulin resistance on heart morphology and dysfunction
in acromegaly, the atherogenic properties of insulin resistance are
thought to contribute to the pathophysiology of cardiovascular
diseases [(99); Figure 2].

Obstructive Sleep Apnea
Obstructive sleep apnea is the most common sleep disorder in
patients with acromegaly, and also specifically associated with
increasedmortality (89, 90, 92, 99). The prevalence of sleep apnea
in acromegaly ranges from 45 to 80% and does not reliably relate
to disease activity, with conflicting studies on its reversibility
following successful treatment of acromegaly (92, 107).

The pathophysiology of sleep apnea in acromegaly is mainly
based on soft tissue thickening of bronchial, pharyngeal, and
laryngeal mucosa, as well as craniofacial morphological changes
(92). Nevertheless, several studies support a bidirectional link
between sleep apnea and insulin resistance/metabolic syndrome
in the general population (108, 109).

Polycystic Ovary Syndrome (PCOS)
Both GH and IGF-I are known to affect ovarian function and
morphology (110). Hypogonadism and menstrual irregularities
are often reported in women with acromegaly, as volume
effects of the pituitary adenoma and GH excess may lead
to hypogonadotropic hypogonadism (111). Insulin directly
modulates steroidogenesis in ovarian cells, and insulin resistance
plays an important role in the pathogenesis of PCOS (112).
GH modulates ovarian function both directly and via IGF-I
(110). Hence, not only GH/IGF-I, but also hyperinsulinemia
and insulin resistance accompanying acromegaly seem to be
involved in the pathogenesis of a PCOS-like ovarianmorphology,
which was described in 50% of women with acromegaly (113).
Although androgen levels are not generally increased in women
with acromegaly, the circulating levels of sex hormone binding
globulin (SHBG) were found to be low in a retrospective
analysis (114). Insulin resistance is associated with decreased

SHBG production in the liver, which in turn leads to increased
androgen bioavailability, and this along with a direct stimulatory
effect of GH on hair growth seems to be one of the reasons
underlying the increased prevalence of hirsutism in women with
acromegaly (113, 115). Therefore, the clinical phenotype of PCOS
is determined not only by the severity of hyperandrogenism,
but also by the degree of insulin resistance/hyperinsulinemia
(Figure 2).

Cancer
High IGF-I levels are associated with an increased rate of
malignancies in the general population (116, 117). Elevated GH
and IGF-I concentrations might promote the development and
progression of malignancies in patients with acromegaly but
this remains a controversial topic (90). A recent meta-analysis
revealed a moderate increased cancer risk, but this is mainly
observed in single center studies (118). While older retrospective
studies showed increased mortality due to cancer in acromegaly,
the more recently published reports on acromegaly cohorts with
normalized GH and IGF-I levels seem to indicate that the cancer
mortality is comparable to the one observed in the general
population (117, 119).

Insulin resistance and metabolic syndrome are also associated
with an increased incidence of cancer (120). Indeed, the PI3K
pathway, a common target of GH and insulin signaling, remains
an important treatment target in malignancies (121). Other
mitogenic pathways induced by both GH and insulin are
MAPK/ERK and Ras-like GTPases (117). To date, there is no
direct evidence on an additive effect of insulin resistance in the
development of cancer in patients with acromegaly.

Bone Disease
Patients with acromegaly display a significant impairment
of bone microarchitecture, increased bone formation and
resorption, as well as an increased incidence of fractures (122–
124). The frequency of fractures in patients with acromegaly
relates to disease activity, male gender and concomitant
hypogonadotropic hypogonadism (123). Importantly, the
prevalence of diabetes is higher in acromegalic patients
experiencing fractures (125). Diabetes is associated with

TABLE 1 | Glucose homeostasis in relation to acromegaly treatment options.

Fasting glucose Glucose 2h after

OGTT

Beta-cell

function

Insulin

resistance

HbA1c

Surgery (32, 39, 55, 131) ↓ ↓ Improves ↓ ↓

Dopamine agonists (130, 144, 145) ↔ ↓ Improves ↓ ↓

First-generation SSAs

(131–133, 146, 147)

↔ / ↑ ↑ Deteriorates/improves ↔ / ↓ ↔ / ↑

Pegvisomant

(101, 131, 137–139, 148, 149)

↓ ↓ Improves ↓ ↓

Pasireotide (134–136, 150) ↑ ↑ Deteriorates ↔ / ↓ ↑

SSAs + Pegvisomant (143, 151) Positive effects of GH/IGF-I reduction counteract the SSA-induced impairment of beta-cell function, no change in HbA1c

Pegvisomant + Pasireotide (142) Risk of hyperglycemia is inversely related to insulin secretion at baseline

Arrows show increase (↑) or decrease (↓). OGTT, oral glucose tolerance test; SSA, First-generation somatostatin analogs.
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an increased fracture risk also after biochemical control of
acromegaly (125). To date the pathophysiological evidence
linking insulin resistance with bone diseases is scarce, but cohort
studies show impaired bone turnover, increased incidence of
osteoporosis and fracture risk in non-acromegalic patients with
diabetes (126, 127). GH and IGF-1 increase bone turnover
and acromegaly is associated with distinct alterations in bone
compartments showing lower trabecular bone quantitative
parameters, while cortical bone density seems better preserved
and found decreased only in patients with vertebral fractures
(128). In contrast, diabetes is associated with increased cortical
porosity and thinning by trabecularization of the endosteal
part of cortical bone (129). So it appears that diabetes and
acromegaly affect bone morphology differently. To date it is not
clear whether insulin resistance plays a role in the association
between fracture risk and diabetes in patients with acromegaly;
or whether this is a simple marker of disease severity and thereby
associated with other acromegaly complications.

INSULIN RESISTANCE IN RELATIONSHIP
TO DISEASE ACTIVITY AND THERAPY OF
ACROMEGALY

Biomarkers of glucose metabolism strongly relate to disease
activity in patients with acromegaly, where IGF-I serves
as a biomarker of overall disease control in acromegaly
(35, 36). The impaired glucose metabolism often improves
following successful pituitary surgery, and patients in
remission have less prevalent diabetes than patients with
persistent active disease necessitating medical therapy
(32, 34, 39, 81). One of the main factors determining the
normalization of glucose metabolism after surgical cure of
acromegaly is the beta-cell state. Patients with preserved
beta-cell function achieve a normalization of glucose tolerance
after surgery, while impaired beta-cell function leads to
persistently abnormal glucose metabolism also after successful
surgery (55).

The relationship between parameters of glucose homeostasis
and drugs used for treating acromegaly has been subject to
extensive studies, as recently reviewed (130). A recent report
compared the effect of the three main treatment modalities on
glucose metabolism in patients with biochemically controlled
acromegaly, finding out that plasma glucose decreases after
successful surgery and after pegvisomant therapy, but increases
in patients using first-generation somatostatin analogs (SSA)
(131). First-generation somatostatin analogs (SSA) control
GH secretion and IGF-I production, thereby lowering disease
activity and improving insulin sensitivity in acromegaly.
In parallel, however, they suppress secretion of insulin as
well as of gastric and gut peptides, so their overall effect
on glucose hoemostasis is not straightforward, but marked
deterioration of glucose metabolism is rarely encountered
(130, 132). Colao et al. described that the effects of SSAs
on glucose metabolism depend on the status of glucose
impairment before starting the therapy: SSA may increase
plasma glucose levels in patients with normal or impaired

glucose tolerance, and this effect was abolished after adding
metformin (132). In patients with diabetes, both impairment
and improvement of glucose tolerance were observed, and
some cases needed optimization of diabetes therapy, but all
patients had HbA1c < 6.5% at the end of the study (132). A
recent meta-analysis including 47 studies on this topic found
a high heterogeneity in fasting glucose and HbA1c outcomes,
revealing a significant HbA1c increase over time (133). They
describe a marginal and non-significant increase in fasting
glucose, which became significant only in the subgroup of
patients receiving SSA as second-line therapy, while glucose
2 h after OGTT significantly increased (133). In addition, they
observed an improvement in insulin resistance and beta-cell
function (133).

The multireceptor-ligand pasireotide more strongly
suppresses insulin secretion and gut hormones and therefore
hyperglycemia is observed in more than half of the patients
(130, 134, 135). In healthy volunteers, pasireotide decreases
insulin secretion and the incretin effect, but does not
impact insulin sensitivity (135). In patients with acromegaly,
improvement of disease control under pasireotide increases
insulin sensitivity, but the concomitant impairment of
beta-cell function is the main player determining the
deterioration of glucose metabolism (130). In 13.2% of patients
receiving pasireotide, treatment was withdrawn due to severe
hyperglycemia (136).

The growth hormone antagonist pegvisomant was the first
acromegaly medication to show a significant improvement in
glucose metabolism with overnight reductions in endogenous
glucose production and free fatty acid concentrations
(137–139). Pegvisomant ameliorates all aspects of glucose
metabolism and reduces the need for antidiabetic medications
(101, 130). Therefore, pegvisomant is an attractive option
in acromegalic patients with poorly controlled diabetes,
and its dose requirements also depend on the severity of
diabetes (140). The positive effects of pegvisomant on glucose
metabolism are preserved when it is combined with an
SSA (141–143).

Table 1 summarizes the effects of acromegaly-specific
therapies on glucose metabolism. The relationship between
dopamine agonist therapy and glucose metabolism has been
subject to only a few reports, showing a reduction in basal and
stimulated insulin levels (130, 144). Nevertheless, the impact
of dopamine agonists on glucose metabolism was extensively
studied in patients with prolactinomas, confirming their positive
effect in reducing insulin resistance and ameliorating beta-cell
function (145).

SUMMARY

Insulin resistance is an important metabolic hallmark of
acromegaly caused mainly by the insulin-antagonizing effects
of GH in general and the lipolytic effects of GH in particular.
The degree of impairment of glucose metabolism is positively
related to disease activity in acromegaly and is usually reversed
after acromegaly treatment. Insulin resistance plays an important
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role in the development of acromegaly-specific comorbidities
and further studies are needed for elucidating the role of drugs
that improve insulin resistance on long-term patient outcomes
in acromegaly.
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