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ABSTRACT The high sensitivity and effective frequency discrimination of sound detection performed by the auditory system
rely on the dynamics of a system of hair cells. In the inner ear, these acoustic receptors are primarily attached to an overlying
structure that provides mechanical coupling between the hair bundles. Although the dynamics of individual hair bundles has
been extensively investigated, the influence of mechanical coupling on the motility of the system of bundles remains underde-
termined. We developed a technique of mechanically coupling two active hair bundles, enabling us to probe the dynamics of the
coupled system experimentally. We demonstrated that the coupling could enhance the coherence of hair bundles’ spontaneous
oscillation, as well as their phase-locked response to sinusoidal stimuli, at the calcium concentration in the surrounding fluid near
the physiological level. The empirical data were consistent with numerical results from a model of two coupled nonisochronous
oscillators, each displaying a supercritical Hopf bifurcation. The model revealed that a weak coupling can poise the system of
unstable oscillators closer to the bifurcation by a shift in the critical point. In addition, the dynamics of strongly coupled oscillators
far from criticality suggested that individual hair bundles may be regarded as nonisochronous oscillators. An optimal degree of
nonisochronicity was required for the observed tuning behavior in the coherence of autonomous motion of the coupled system.
SIGNIFICANCE Hair cells of the inner ear transduce acoustic energy into electrical signals via a deflection of hair
bundles. Unlike a passive mechanical antenna, a free-standing hair bundle behaves as an active oscillator that can sustain
autonomous oscillations as well as amplify a low-level stimulus. Hair bundles under physiological conditions are elastically
coupled to each other via an extracellular matrix. Therefore, the dynamics of coupled nonlinear oscillators underlies the
performance of the peripheral auditory system. Despite extensive theoretical investigations, there is limited experimental
evidence that supports the significance of coupling on hair-bundle motility. We develop a technique to mechanically couple
hair bundles and demonstrate the benefits of coupling on hair-bundle spontaneous motility.
INTRODUCTION

Signal transduction by the inner ear is performed by a sys-
tem of hair cells. Owing to the nonlinearity and internal
active processes of hair cells, the inner ear exhibits exquisite
sensitivity and high frequency resolution (1,2). Under con-
stant mechanical forces, the apical protrusion of a hair
cell, called the hair bundle, displays a nonlinear force-
displacement relationship because of the gating of the me-
chanosensitive transduction channels (3,4). The hair bundle
under a sinusoidal driving force produces mechanical feed-
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back that facilitates the amplification of low-level signals
near a characteristic frequency (4–7). In nonmammalian
species, active bundle motility likely constitutes the primary
source of amplification. In the mammalian cochlea, a pro-
cess termed electromotility, which refers to the hair cell’s
somatic length change upon variations in the membrane’s
potential (8), also influences the frequency selectivity as
well as the amplitude threshold of hearing (9,10).

From a dynamical systems perspective, the sensitivity and
frequency selectivity might be improved when a hair bundle
operates near an instability. Hair-bundle motility can be
described by a nonlinear oscillator near a bifurcation; at the
critical point, the stability of the system switches from station-
ary to self-sustained oscillations. Under appropriate in vitro
environments, undriven hair bundles robustly exhibit sponta-
neous oscillations (11), a behavior that corresponds to a
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limit-cycle oscillation of a dynamical system. Under different
types of chemical and mechanical manipulations on hair bun-
dles of invitro preparations, these autonomousoscillations can
be enhanced, attenuated, or suppressed, with the alterations in
the amplitude and frequency consistent with a variety of bifur-
cations, including Hopf and saddle node on an invariant circle
(12–14). In agreement with the theoretical predictions, indi-
vidual hair bundles near a critical point have been experimen-
tally demonstrated to display enhanced sensitivity and
frequency selectivity to sinusoidal stimuli (15,16).

In addition to the dynamical state of individual hair bun-
dles, mechanical coupling between hair bundles has been
proposed as a mechanism that sharpens the frequency tuning
and lowers the detection threshold of the inner ear (17–19). In
the inner ear of most species, hair bundles are tightly
anchored to an overlying extracellular matrix, such as the tec-
torial membrane in the mammalian cochlea or the otolithic
membrane in the amphibian sacculus. This overlying struc-
ture provides strong coupling between neighboring bundles.
Upon an increase in the bundles’ separation, the coupling
strength becomes progressively weaker. The performance
of the inner ear epithelium thus relies on the dynamics of
hair cells under various degrees of mechanical coupling.

The dynamics of coupled nonlinear oscillators have been
extensively investigated because of their relevance in
various fields of study (20,21). For the auditory system,
several investigations suggest benefits of coupling on signal
detection performed by groups of active, oscillatory hair
bundles. Theoretical predictions reveal that a system of
oscillating hair bundles with a large frequency dispersion
may become quiescent under a sufficiently strong coupling,
a phenomenon termed amplitude death (22,23). This regime
shows a greatly enhanced signal/noise ratio in response to a
driving force, making it an attractive alternative mechanism
that the auditory system may utilize to achieve sensitivity in
the presence of noise. Furthermore, coupling of unstable os-
cillators with a small difference in their characteristic fre-
quencies reduces the effective noise level, resulting in
more coherent autonomous oscillations as well as the
enhanced quality factor in their response to a sinusoidal
driving force (18,24–26). This has been experimentally
demonstrated in a system of a small number of spontane-
ously oscillating hair bundles in a chemical environment
that approximates the physiological conditions (27,28).

Although the stability of in vivo hair bundles remains un-
clear, an understanding of the role of mechanical coupling
on the motility of hair bundles across different dynamical
states would help establish the connection between the dy-
namics of one hair bundle and the response of the full audi-
tory system. To elucidate this connection, we investigate the
autonomous dynamics of coupled hair bundles, both exper-
imentally and theoretically. First, we study a mathematical
model of two mutually coupled nonisochronous oscillators,
each displaying a supercritical Hopf bifurcation. The theo-
retical predictions in the strong-coupling limit are used to
206 Biophysical Journal 120, 205–216, January 19, 2021
describe the activity of two mechanically coupled hair bun-
dles from the bullfrog sacculus. The dynamical state of the
individual bundles is manipulated across the critical point
by increasing the level of calcium concentration of the arti-
ficial endolymph solution. Near the physiological calcium
level, we observed two types of behavior of spontaneous dy-
namics as well as two types of response functions to sinusoi-
dal forces of various frequencies. These two distinct
behaviors correspond to two different degrees of noniso-
chronicity in the model of coupled oscillators. Finally, using
a microscopic model of hair-bundle mechanics, we illustrate
that a calcium-sensitive elastic element within the bundle
could potentially contribute to the nonisochronicity.
MATERIALS AND METHODS

Mathematical model of two mutually coupled
nonlinear oscillators

We described the dynamics of each hair bundle by the normal form of a

nonlinear system near a supercritical Hopf bifurcation (Eqs. 1 and 2).

The bundles’ positions were represented by the real parts of the complex

variables z1(t) and z2(t). The imaginary parts served as hidden variables,

not accessible in the experimental recordings. Both oscillators had identical

control parameters m, which determined the dynamical state of the system.

In the absence of coupling, a single oscillator displays autonomous motion

when m > 0 (Fig. 1 A). The trajectory of the oscillator in the complex phase

plane, constructed from the real and imaginary part of the dynamical variable,

z(t), converges to a limit cycle. The oscillation amplitude is determined by the

value of the control parameter, R ¼ m1/2. At m ¼ 0, the system undergoes a

supercritical Hopf bifurcation because this is the boundary between the oscil-

latory and the quiescent states. The oscillator remains at rest when m < 0,

with its phase-space trajectory terminating at a stable fixed point.

The dynamics of individual hair bundles are typically modeled with the

isochronous form of the Hopf oscillator, b¼ 0. An isochronous oscillator is

one for which the frequency is independent of the amplitude, such as the

simple harmonic oscillator. However, several experimental observations

demonstrate the nonisochronous behavior of single hair bundles; the fre-

quency of the autonomous oscillation depends on the amplitude. For a non-

isochronous oscillator near a supercritical Hopf bifurcation, the oscillation

frequency is determined by U¼ u0 � bR2, where u0 denotes the character-

istic frequency of the oscillator, with the value of b determining the degree

of nonisochronicity of the oscillator (Fig. 1 A, inset, and Fig. 1 B). In this

work, identical values of b were assigned to both oscillators for simplicity.

The coupling term was modeled to facilitate comparisons to the physiolog-

ical data. In our experiments, sets of two hair bundles were connected by

attachment to the same glass probe (Fig. 1, C and D). Because of the trans-

verse motion of the probe, the coupling stiffness between bundles due to

an elastic force was estimated by the bending stiffness of a thin rod whose

length was equal to the bundle separation. The coupling constant was �1

N/m, which significantly dominated the dissipative force (Supporting Mate-

rials andMethods, Section I). Note that the stiffness of the full coupling probe

was neglected in the model because it was significantly more compliant than

the portion attached to the bundles. The coupling term was thus modeled as

an elastic element whose stiffness was real and denoted by K. Its extension

was determined by the difference in the oscillators’ displacements. We note

that in our model, direct coupling was limited to the real component and

did not involve the imaginary part of the dynamical variables.

For part of this study, we included complex Gaussian white noise terms

hj(t) ¼ hj,R(t) þ ihj,I(t), where j ¼ 1, 2, which satisfied

hhj;aðtÞhk;bðt0Þti ¼ s2d(t � t0)djkdab, where h.ti denotes time average, j,

k ¼ 1, 2, and a, b denotes R or I. The noise variance, s2, was adjusted



FIGURE 1 The complex displacement, z(t), of a single, nonisochronous

oscillator is described by dz(t)/dt ¼ (m þ iu0)z � (1 þ ib)jzj2z, when b >

0. (A) The complex phase plane is constructed by plotting the imaginary

against the real component of z(t). For m > 0, the trajectory originating

from an arbitrary point in the phase plane converges to a limit cycle (red

line). For m < 0, the trajectory (blue dashed line) terminates at a stable fixed

point at the origin (blue dot). (inset) The oscillator’s displacement is station-

ary for m< 0 (blue line) and oscillatory for m> 0 (red lines). From bottom to

top, the oscillation amplitude increases with m, whereas the frequency de-

clines. (B) The complex phase plane illustrates the frequency-amplitude

coupling of the nonisochronous oscillator for b > 0. Over a time interval,

the trajectory at a higher value of m traverses a shorter distance along the limit

cycle than that with a smaller m. This is associated with the decline in the

angular velocity as the amplitude increases. (C) A schematic drawing depicts

the glass fiber, with the tip of the coupling probe attached to two hair bundles

in the planar epithelium of the bullfrog sacculus, observed from the top-down

view of the epithelium. A side view diagram illustrates the curvature of the

coupling probe that allows us to avoid contacting other nearby hair bundles.

(D) The motion of each hair bundle is perpendicular to the coupling probe,

with the positive direction pointing toward the kinociliary bulbs and the

attachment point to the probe. The probe-bundles system is modeled as

two autonomous oscillators coupled via an elastic element. To see this figure

in color, go online.

Dynamics of Coupled Hair Bundles
such that the ratio between the root-mean-square displacement to the spec-

tral amplitude approximately matched the experimental range. Numerical

simulations of Eqs. 1 and 2 were performed using the fourth-order Runge

Kutta method with a 10-ms time step. The initial conditions of both oscil-

lators were chosen to be real and identical at z1(t ¼ 0) ¼ z2(t ¼ 0) ¼ m1/2.
Biological preparation and measurement of hair-
bundle displacement

All animal-handling protocols were approved by the University of Califor-

nia Los Angeles Chancellor’s Animal Research Committee (Protocol Num-
ber ARC 2006-043-41A). Sacculi were excised from the inner ears of North

American bullfrogs (Lithobates catesbeianus). The preparation was

mounted into a two-compartment chamber in which the basal side was

immersed in artificial perilymph (110 mM Naþ, 2 mM Kþ, 1.5 mM

Ca2þ, 113 mM Cl�, 3 mM D-glucose, 1 mM sodium pyruvate, 1 mM cre-

atine, and 5 mM HEPES) and the apical side in artificial endolymph (2 mM

Naþ, 118 mM Kþ, 0.25 mM Ca2þ, 118 mM Cl�, 3 mM D-glucose, and

5 mM HEPES). The otolithic membrane was gently removed after 8-min

enzymatic dissociation with 50 mg/ml collagenase IV (Sigma Aldrich, St.

Louis, MO). For experiments in which calcium concentration of endolymph

was varied, the preparation was initially immersed in low-calcium endo-

lymph with 0.1 mM Ca2þ. The calcium level was increased by increments

of 75 mM by adding 5 mL of CaCl2 containing 100 mM Ca2þ.
Images of the preparation were recorded at 500 frames/s by a high-speed

CMOS camera (Orca-Flash4.0; Hamamatsu, Shizuoka, Japan). The hair-

bundle motion was tracked with a custom software written in MATLAB

(The MathWorks, Natick, MA). The center position of the bundle was ex-

tracted by calculating the center of gravity of the intensity profile in each

frame. A slow drift in the bundle displacement was removed by applying

a second-order Savitzky-Golay filter to each 5-s segment of the recording.
Mechanical coupling of two hair bundles and
stimulation

A borosilicate glass fiber was pulled with a micropipette puller (P97; Sutter

Instruments, Novato, CA). An additional thin rod of �100–200 mm, which

served as a coupling probe, was fabricated at a 90� angle from the tip of the

fiber using a microforge (Fig. 1 C). The curvature of the coupling probe was

created out of the probe-fiber plane by placing its tip near the microforge.

The difference in the temperatures of the two sides of the coupling probe

resulted in a bending away from the heat source.

The fiber was placed with the coupling probe’s tip parallel to the epithe-

lium. To achieve a strong adhesion, the probe was attached to the kinocili-

ary bulbs of both hair bundles. This configuration required that the bundles’

axes of symmetry be nearly parallel to each other and perpendicular to the

probe (Fig. 1 C; Supporting Materials and Methods, Section I). The motion

of the coupling probe, driven by the bundles, was therefore in the transverse

direction (Fig. 1 D). The probe’s curvature allowed us to avoid other hair

bundles on the preparation.

To calibrate the stiffness of the coupling probe, the motion of its tip in wa-

ter was imaged at 10,000 frames/s, and its power spectral density was fitted

by a Lorentzian function. The probes utilized in this work had stiffnesses of

�0.1–0.2 mN/m. To deliver sinusoidal stimulation at various frequencies, the

base of the fiber was mounted on a piezoelectric stimulator (P-150; Piezosys-

tem Jena, Hopedale, MA) and controlled with LabVIEW (National Instru-

ments, Austin, TX). The probe base was driven along an axis parallel to

the motion of the bundles by a discrete frequency sweep of sinusoidal signals

at 30-nm amplitude. This corresponded to a maximal force of �3–6 pN on a

stationary hair bundle. The frequency was increased from 2.5 to 50 Hz at 2.5-

Hz increments. Each stimulus frequency was presented for 20 cycles.
Data analysis

All analyses were performed inMATLAB. Time traces obtained from numer-

ical simulations and hair-bundle displacement measurements from experi-

ments were analyzed in a similar fashion. The oscillation amplitudes and

frequencies were extracted by two methods. First, the spectral amplitude

and spectral frequency were determined from the parameters of the Lorent-

zian fit to the amplitude spectrum.We calculated the finite-time Fourier trans-

form on each nonoverlapping segment of the signal. The duration of each

segment was 1 s for experimental recordings and 50 s for simulated traces.

The amplitude spectrum was the averaged magnitude of the complex trans-

form. For the second approach, we identified the local extrema of oscillations

using a peak detection algorithm. All local extrema were determined from a
Biophysical Journal 120, 205–216, January 19, 2021 207
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trace smoothed with a five-point moving average. The threshold for oscilla-

tion detection was defined to be 20% of the difference between the global

maximum and minimum to exclude random fluctuations from the analysis.

Any local maximum (minimum) whose displacement exceeded the adjacent

minimum (maximum) by more than the threshold was identified as a peak

(trough). The peak amplitude was computed by averaging half the difference

between any adjacent peak and trough for the entire duration of the analyzed

signal. Similarly, the peak-to-peak frequency was determined from the aver-

aged reciprocal of the period between two neighboring peaks.

We quantified the degree of coherence of a spontaneous oscillation from

the quality factor—the ratio between its peak spectral frequency and the full

width at half maximum of the peak in the amplitude spectrum. In response

to sinusoidal driving forces at various frequencies, the phase-locked ampli-

tude was estimated from a sinusoidal fit to the average bundle displacement.

A Lorentzian function was fitted to the plot of the response amplitude as a

function of the driving frequency to extract the quality factor.

To compute the vector strength of the phase difference, the instantaneous

phase of each time trace, denoted by fj(t), where j ¼ 1, 2, was obtained

from the Hilbert transform. The vector strength was defined as V ¼���heiDfðtÞt i
��� , where Df(t) ¼ f1(t) � f2(t) denotes the oscillators’ phase dif-

ference at time t. Perfectly phase-locked signals had a vector strength of

unity, whereas uncorrelated signals had zero vector strength.

Hartigans’ dip test statistic was used to indicate the crossing of a bifurca-

tion of a noisy nonlinear system by quantifying the multimodality of position

distributions. The algorithm measured the statistical difference between the

empirical distribution and a uniform (null) distribution (29). A noisy motion

underlaid by a limit-cycle oscillation possessed a large value of the dip test

statistic, whereas random fluctuations around a stable fixed point corre-

sponded to a small dip test statistic. The two behaviors were distinguished

by the value of the dip test statistic with a threshold at 0.01 (13).

A two-dimensional phase space was reconstructed from experimental re-

cordings to investigate the dynamical trajectory of the oscillator. The time

trace was represented as the real part of an analytical signal whose imagi-

nary part was obtained from the Hilbert transform of the oscillation (13).

The distribution of the trajectory in the complex plane, termed the analytic

distribution, was created from a two-dimensional histogram of the analytic

signal. An analytic distribution with a loop structure corresponded to a

limit-cycle oscillation, whereas a unimodal distribution corresponded to

random fluctuations around a stable fixed point.

To estimate the critical control parameter mc of coupled oscillators from

numerical simulations of the model, the initial positions of both oscillators

were fixed at an identical, small value �10�4–10�3. The oscillation ampli-

tude decayed toward zero when poised in the stable regime, m< mc, or grew

toward a constant value corresponding to the radius of the limit cycle in the

oscillatory regime, m > mc. At the bifurcation, m ¼ mc, the duration of the

transient solution diverged, and the oscillation profile remained relatively

unchanged regardless of the initial condition. We extracted the time-depen-

dent peak amplitude of the transient solution simulated at different values of

m and plotted its rate of change as a function of m. The critical value, mc, was

identified at the zero crossing. We increased the control parameter at 0.005

increments, which determined the resolution of the estimated mc. For the

parameter space explored in this work, the critical values mc of both oscil-

lators were identical within the 0.005 resolution.
RESULTS

Theoretical predictions

A system of two hair bundles connected to a glass probe was
modeled as two mutually coupled nonlinear oscillators (Ma-
terials and Methods). The dynamics of the oscillators were
described by the complex variables, z1(t) and z2(t), with their
real parts representing the oscillators’ displacements. u0,1
208 Biophysical Journal 120, 205–216, January 19, 2021
and u0,2 denote the characteristic frequencies, with u0,2

R u0,1.

dz1
dt

¼ ðmþ iu0;1Þz1 � ð1þ ibÞjz1 j 2z1
þ KðReðz2Þ�Reðz1ÞÞ þ h1ðtÞ: (1)

dz2 2
dt
¼ ðmþ iu0;2Þz2 � ð1þ ibÞjz2 j z2

þ KðReðz1Þ�Reðz2ÞÞ þ h2ðtÞ: (2)

The coupling was mediated by an elastic element whose
extension was the relative displacement of the oscillators,
i.e., the difference in the real parts of z1(t) and z2(t). To
describe the strong-coupling conditions experienced by
the hair bundles connected by a short glass fiber, the
coupling constant was set to be real and denoted by a stiff-
ness K. Our model thus incorporated coupling only between
the real components of the dynamical variables.

Critical control parameter of coupled oscillators

We first identified the critical control parameter mc of the
coupled oscillators, at which the stability of the system tran-
sitioned between quiescent and oscillatory behavior. For m
> mc, the system displayed autonomous oscillations and re-
mained at rest for m < mc. In the absence of coupling, the
critical point of a single oscillator was at mc ¼ 0 (Fig. 1
A). We estimated mc from the rate of change in the time-
dependent peak amplitude of the transient oscillation (Mate-
rials and Methods). The rate became zero at criticality, m ¼
mc. Within the range of parameters explored in our study, mc
of both oscillators remained nearly identical. Because the
stability of the system near the critical point does not
involve the nonlinear term, simulations were performed in
the isochronous limit, b ¼ 0, for simplicity.

When the oscillators’ characteristic frequencies were
nearly identical, u0,1 z u0,2, mc remained close to zero
and was unaffected by coupling (Fig. 2 A). With the intro-
duction of a frequency difference, the critical point of the
system shifted, with the magnitude of mc increasing over a
range of low coupling constants, displaying a maximum,
and declining toward zero at higher stiffnesses. The peak
mc occurred at progressively larger coupling strengths as
the characteristic frequencies diverged. The root-mean-
square displacement, calculated from the steady-state solu-
tion of each oscillator, confirmed the existence of a quies-
cent regime for control parameters below mc (Fig. 2 B).

When the control parameters were fixed at a sufficiently
large value, the self-sustained motion displayed higher-order
mode locking at low coupling coefficients (Fig. 2 C). A slight
increase in the stiffness of the coupling element suppressed
the oscillations, as mc exceeded the control parameter of
each oscillator. Synchronized limit-cycle oscillations then
emerged again at high coupling constants with unity vector



FIGURE 2 The critical control parameter (mc) of coupled oscillators. In all panels,u0,1 is fixed at 1. (A) mc is estimated from the rate of amplitude change of

the transient solution obtained from numerical simulations. The estimated mc remains at zero for identical oscillators: u0,1 ¼ u0,2 ¼ 1 (black dots) and pro-

gressively increases upon growth of the difference between the characteristic frequencies: u0,2 ¼ 1.1 (magenta), u0,2 ¼ 1.5 (green), u0,2 ¼ 2.0 (red), and

u0,2 ¼ 2.5 (blue). mc-values calculated from a linear stability analysis of the model are consistent with the estimated values (solid lines). (B) A state diagram

of coupled oscillators with u0,2 ¼ 2.5 incorporates the line of supercritical Hopf bifurcation whose mc is estimated from numerical simulations (white dots)

and calculated from Eq. 3 (white solid line). The heat map illustrates theroot-mean-square amplitude of the first oscillator, with brighter shades representing

higher values. The oscillators are arrested when m < mc (‘‘amplitude death’’). The vector strength of the oscillators’ phase difference reaches unity over a

regime with sufficiently large coupling constant or control parameter (‘‘synchronized oscillation’’). The onset of the regime is indicated by a red solid

line interpolated from the smallest K that results in the unity vector strength obtained from numerical simulations. (C) uses the same parameters as in

(B) with m fixed at 0.2 (white dashed line in B). The amplitudes of the first (blue dots) and second (red open dots) oscillators vanish when K �0.5–2.4.

The vector strength of the phase difference (squares) indicates the absence of one-to-one phase locking for weak coupling and the onset of synchronization

for K > 2.4. The time traces of both oscillations at different coupling constants illustrate the suppression of oscillatory activity (upper insets, blue lines: first

oscillator, red lines: second oscillator). The phase portraits at the corresponding coupling constant reveal a stable fixed point at the origin of the complex

plane, an indication of an amplitude death regime (lower insets). (D) At K ¼ 100, the peak amplitude of the synchronized oscillation increases with the

control parameter. mc is zero for a small frequency difference (u0,2 ¼ 1.1, black dots) and is positive for a large frequency difference (u0,2 ¼ 2.5, squares).

Solid lines illustrate results from the fit: m1/2 for u0,2 ¼ 1.1 and 0.915(m � 4.75 � 10�3)1/2 for u0,2 ¼ 2.5.

Dynamics of Coupled Hair Bundles
strength of their phase difference (Fig. 2, B and C). These re-
sults indicated that, with a large frequency difference, oscil-
lators individually poised in the oscillatory regime may be
brought near a critical point or into the quiescent regime by
adjusting the strength of coupling. Further, the small value
of mc at high stiffnesses suggested that strongly coupled oscil-
lators could display synchronized autonomous oscillations
despite a large difference in their characteristic frequencies.

We illustrated the dynamics of coupled oscillators in the
complex phase space, constructed from the real and imagi-
nary part of z1(t) and z2(t). For isolated oscillators with m >
0, the phase-space trajectories followed limit cycles, centered
around an unstable fixed point at the origin (Fig. 1 A). In the
presence of coupling with an appropriate strength, the fixed
point became stable, and both phase-space trajectories were
consequently attracted to the origin, resulting in the suppres-
sion of autonomous motion (Fig. 2 C). This indicated an
‘‘amplitude death’’ regime in association with the shift in
mc (30,31). Upon an increase in the coupling constant, the
fixed point lost its stability, and limit cycles emerged. Note
that although the oscillators displayed synchronized motion,
the two limit cycles were nonidentical. This was due to the
different imaginary components of their dynamical variables,
as the coupling only affected the real parts.

A linear stability analysis of Eqs. 1 and 2 showed that for
nearly identical oscillators, u0,2/u0,1 x 1, a supercritical
Hopf bifurcationoccurred atmc�(u0,2�u0,1)

2/4K (Supporting
Materials andMethods, Section II). On the other hand, at a suf-
ficiently large frequency difference, u0,2/u0,1T 2, mc satisfied

u2
0;1u

2
0;2 þ

�
u2

0;1 þu2
0;2

��
m2
c �Kmc

�� 2Km3
c þ m4

c ¼ 0:

(3)

Numerical solutions of mc as a function of K from Eq. 3
agreed with results from simulations, verifying consistency
Biophysical Journal 120, 205–216, January 19, 2021 209
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between the simulations and analytic estimates (Figs. 2, A
and B and S1).

To facilitate comparisons to the experimental data, we
focused on the strong-coupling limit, in which the stiffness
was fixed at a large value (Supporting Materials and
Methods, Section 1); the coupling coefficient was kept con-
stant at K ¼ 100 for the rest of our study. The oscillation
amplitude obtained from numerical simulations of the
model was proportional to (m � mc)

1/2, characteristic of a
system near a supercritical Hopf bifurcation (Fig. 2 D).
We note that in this strong-coupling limit, nearly identical
oscillators with appropriate initial positions could display
an oscillation death behavior when m > mc (Supporting Ma-
terials and Methods, Section III).

Dynamics of synchronized oscillations far from a bifurcation

Next, we investigated the behavior of synchronized limit-
cycle oscillations far from criticality, m > mc. We focused
on this regime because free-standing hair bundles from the
bullfrog sacculus typically display robust large-amplitude
spontaneous oscillations under in vitro conditions and thus
seem to be innately poised far from the quiescent regime.
Because of the nonisochronous characteristics displayed
by the spontaneous motion of individual hair bundles, we
explored the effects of the degree of nonisochronicity on
the dynamics of synchronized oscillators.

In the oscillatory regime, far from the bifurcation, the os-
cillators displayed two classes of behavior, dependent on
their degrees of nonisochronicity b. For small b, synchro-
nized oscillations displayed similar features to those of
isochronous (Fig. 2 D) or uncoupled oscillators (Fig. S3).
The peak amplitude of the oscillation rose monotonically
as the control parameter was increased (Fig. 3 A). Because
of the positive b, the peak-to-peak oscillation frequency
declined upon growth of the amplitude.

When b was sufficiently large, the limit-cycle amplitude
displayed a broad peak with the maximum occurring be-
tween control parameter values 0.5 and 1.0 (Fig. 3, D and
G). For oscillators with a small frequency difference, the
tuning was due to the suppression of oscillations within a
narrow range of control parameter values between 0.9 and
1.1 (Fig. 3D). On the other hand, oscillators with a large fre-
quency difference exhibited the maximal amplitude that
approximately coincided with the minimum in the oscilla-
tion frequency (Fig. 3 G).

Next, we elucidated the mechanism underlying the peak
oscillation amplitude by illustrating the complex phase
plane constructed from the real and imaginary parts of
z1(t) and z2(t). We found that the tuning behavior was asso-
ciated with the original oscillation frequency of individual
oscillators displayed in the absence of coupling. In polar co-
ordinates, the angular equation for the jth oscillator, in the
absence of coupling, was given by Uj ¼ dfj(t)/dt ¼ u0,j �
bR2

j , where zj(t) ¼ Rje
ifjðtÞ, and j ¼ 1 or 2. For b > 0, the

frequency of each oscillator declined upon an increase in
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m. In turn, the angular velocity diminished and went to
zero when the radius satisfied R2

j ¼ m0,j ¼ u0,j/b. Therefore,
at m ¼ m0,1 or m0,2, the trajectory of one of the oscillators
terminated at a point on a circle in the phase space, termed
an angular nullcline.

In contrast to nearly identical coupled oscillators, which
exhibited similar trajectories in the phase portraits (Figs. 3
D and S2), coupled oscillators with a large frequency differ-
ence displayed stable limit cycles with drastically distinct
shapes (Fig. 3, A and G). Because the imaginary component
of z1(t) oscillated about a nonzero offset, the first oscillator’s
trajectory was approximately elliptical and situated on the
upper perimeter of the second oscillator’s limit cycle.
With different initial positions of the oscillators, this offset
might become negative. This behavior thus exhibited a bist-
ability in which the first trajectory could instead be confined
to the lower half of the complex plane. For small b, the
range of control parameters investigated did not approach
the angular nullclines as m << u0,j/b, thus resulting in the
monotonically varying limit-cycle amplitudes and fre-
quencies of both oscillators (Fig. 3 A). For large b and small
frequency difference, the limit-cycle trajectories terminated
at two distinct points in the vicinity of the angular nullclines
when m z m0,1 and m0,2 (Fig. 3 D), indicative of an oscilla-
tion death regime (Supporting Materials and Methods, Sec-
tion III). This quiescent behavior gave rise to a local
maximum in the limit-cycle amplitude within a range
mc< m< m0,1z m0,2. The system displayed stable, synchro-
nized limit cycles at higher values of the control parameter.
In contrast, oscillators with a large frequency difference
reached the peak in their oscillation amplitude and a mini-
mal frequency when the trajectory of the first oscillator ap-
proached its angular nullcline, m z m0,1. A larger control
parameter led to the separation of the two limit cycles as
well as an attenuation of the oscillation amplitude (Fig. 3
G).

Finally, we introduced Gaussian white noise into Eqs. 1
and 2 to account for the noisy nature of hair bundles’ mo-
tion. The features of noisy oscillations were extracted
from the amplitude spectra obtained from a finite-time Four-
ier transform. As in the deterministic case, the dynamics of
the oscillators possessed two classes of behaviors far from
the critical point (Fig. 3, B, E, and H).

We quantified the coherence of the oscillations by the ra-
tio of the spectral frequency to the full width at half the
maximum of the peak in the amplitude spectrum (Materials
and Methods). Near criticality, the degree of coherence was
enhanced as the oscillators crossed the bifurcation point and
entered the oscillatory regime. As the control parameter
continued to increase, the degree of coherence reached a
plateau for weakly nonisochronous oscillators (Fig. 3 C),
whereas a nonmonotonic behavior was observed in oscilla-
tors with a large b. For nearly identical oscillators, the van-
ishing oscillation frequency or amplitude led to a minimal
degree of coherence over a broad range of the control



FIGURE 3 Dynamics of coupled oscillators far

from criticality. The parameters are u0,1 ¼ 2.5

and K ¼ 100. In panels in which noise is included,

the noise variance is s2 ¼ 4, and error bars indicate

standard deviation (SD) of data obtained from 10

simulations. In (A)–(C), b ¼ 0.5 and u0,2 ¼ 7.5.

(A) In the absence of noise, weakly nonisochronous

oscillators display a monotonic increase in the peak

amplitude of the oscillation (black dots) and a

decline in the peak-to-peak frequency (open gray

dots) upon growth of the control parameter in the

oscillatory regime. (Inset) The phase portraits at

the corresponding control parameter reveal the

distinct shapes of the limit cycles (blue lines: first

oscillator, red lines: second oscillator). (B) When

Gaussian white noise is included, the spectral

amplitude (black dots) and spectral frequency

(open gray dots) exhibit qualitatively identical be-

haviors as in the deterministic limit. (C) The degree

of coherence of the autonomous motion is

enhanced (black dots) as the width of the spectral

peak decreases (open gray dots) when the system

enters the oscillatory regime. In (D)–(F), b ¼ 3

and u0,2 ¼ 2.75. The vertical dashed lines indicate

the control parameters at the angular nullclines of

the first and second oscillators (m0,1 ¼ 0.83 and

m0,2 ¼ 0.92). (D) Far from criticality, strongly non-

isochronous oscillators with a small frequency dif-

ference are arrested in the absence of noise. (Inset)

The phase portraits illustrate the stable fixed points

in the vicinity of the angular nullclines (dashed lines). (E) With random fluctuations, the system exhibits tuned behavior. (F) The coherence becomes minimal

over a range of the control parameter coinciding with diminishing amplitude. In conjunction with this, the spectral peak reaches a maximum. In (G)–(I), b¼ 3

and u0,2 ¼ 7.5. The vertical dashed line indicates the control parameter at the angular nullcline of the first oscillator (m0,1 ¼ 0.83). (G) In the deterministic

limit, strongly nonisochronous oscillators with a large frequency difference show a peak in the spectral amplitude and a minimum in the frequency near the

angular nullcline. (Inset) The limit cycles separate in association with the reduction of the oscillation amplitude, as the control parameter exceeds the value at

the angular nullcline. (H) Qualitatively similar behaviors are observed upon addition of noise. (I) The degree of coherence exhibits a peak near the maximal

spectral amplitude. Within the same range of the control parameter, the width of the spectral peak reaches a minimum.

Dynamics of Coupled Hair Bundles
parameter (Fig. 3 F). Hence, a peak coherence was observed
close to the critical point. In contrast, the motion of oscilla-
tors with a large frequency difference became more regular
as the oscillation amplitude increased. Therefore, the degree
of coherence, as well as the amplitude, reached their max-
ima over the same range of control parameters (Fig. 3 I).
Experimental observations

We attached the tip of a thin, bent glass probe to two neigh-
boring oscillatory bundles in the planar epithelium of the
bullfrog sacculus and observed their dynamics under high
coupling stiffness (Supporting Materials and Methods, Sec-
tion I). The curvature of the tip of the probe enabled us to
avoid other hair bundles on the preparation (Fig. 1 C).

Synchronized spontaneous oscillations of coupled hair bun-
dles

When immersed in an artificial endolymph with 250 mM
calcium, the concentration near the physiological level,
coupled hair bundles oscillated spontaneously with a pro-
nounced peak in the amplitude spectrum (Fig. 4, A and B).
The bundles always moved in synchrony with the vector
strength of their phase difference exceeding 0.9. These syn-
chronized spontaneous oscillations were observed despite
the large difference in their natural frequencies measured
in the absence of an attached fiber. We occasionally found
that the motion of some coupled hair bundles resembled
rapid fluctuations, with the amplitude spectra displaying a
weak but distinct broad peak at high frequency.

We studied the effects of coupling on the fluctuation levels
by extracting the degree of coherence of coupled and un-
coupled hair bundles. Because the effects of thermal noise de-
pended greatly on the geometry and stiffness of the system,
we compared the regularity of coupled hair bundles’ oscilla-
tions to those of single bundles, each attached to a probe with
comparable stiffness and drag coefficients. Because hair bun-
dles could sustain microscopic damage upon removal of the
fiber, thus affecting their dynamics, these comparisons were
performed on data sets obtained from two distinct groups
of hair cells. We found that the average degrees of coherence
in both cases were comparable (Fig. 4 C): 1.11 5 0.82 (n ¼
15) for single bundles and 1.095 0.69 (n ¼ 26) for coupled
bundles. In addition, the degree of coherence was not signif-
icantly different from free-standing bundles with no fiber
attached: 1.11 5 0.94 (n ¼ 20).
Biophysical Journal 120, 205–216, January 19, 2021 211



FIGURE 4 Synchronized spontaneous oscilla-

tions of hair bundles. (A and B) (Left panels, ‘‘Un-

coupled’’) Two examples of spontaneous

oscillations of two pairs of hair bundles in the

absence of coupling. (Right panels, ‘‘Coupled’’)

Upon coupling, the displacements of the two bun-

dles become nearly identical. The corresponding

amplitude spectra are shown to the right of the

time traces. Error bars are the SDs from the

finite-time Fourier transform. (C) The average de-

gree of coherence (black dots) of hair bundles un-

der three types of mechanical manipulations is

shown: unloaded (‘‘free standing’’), loaded without

coupling to another bundle (‘‘single’’), and coupled

bundles (‘‘coupled’’) are 1.11 5 0.94 (n ¼ 20),

1.11 5 0.82 (n ¼ 15), and 1.09 5 0.69 (n ¼ 26),

respectively. Error bars indicate SD of the data

from individual hair bundles (gray dots). (D) The

degree of coherence of synchronized oscillations

(black dots) is independent of the bundles’ charac-

teristic frequencies or their regularity in the

absence of coupling. The degree of coherence of

the two uncoupled hair bundles is illustrated by

the upper and the lower bounds of the gray area.
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We recorded the motion of pairs of free-standing hair
bundles before the coupling and extracted their degree of
coherence. We found that in contrast to previous predictions
(21,25), neither a small frequency difference nor a high reg-
ularity of the uncoupled oscillations improved the coher-
ence of the synchronized motion (Fig. 4 D). This
contradiction could partly stem from the variations in the
degree of nonisochronicity of the bundles. Our theoretical
predictions suggested that the coherence of synchronized
oscillations that were far from the bifurcation depended
on the frequency difference and the coefficient b in a com-
plex manner (Fig. 3, C, F, and I).

Coupled hair-bundle motility near the critical point

Next, we employed the variation of calcium concentration in
the endolymph as an experimental modulation of the control
parameter. The level of calcium was increased from 100 mM
in 75-mM increments (Materials and Methods). In this sec-
tion, we focus on the dynamics of hair bundles at high cal-
cium concentrations, near the critical level (Fig. 5, shaded
areas). The behavior of spontaneous oscillations at lower
calcium levels will be discussed in the next section.

We utilized two metrics previously developed to study the
behavior of noisy hair-bundle motility near the transition be-
tween the oscillatory and quiescent regimes (Materials and
Methods) (13). Hartigans’ dip test statistic was used to iden-
tify the crossing of a bifurcation by measuring the degree of
multimodality in the distribution of a bundle’s position. We
further characterized the dynamics of hair-bundle oscilla-
tions by reconstructing an analytical signal whose two-
212 Biophysical Journal 120, 205–216, January 19, 2021
dimensional histogram could reveal an underlying stable
limit cycle or a stable fixed point in the complex phase
space. We note that this reconstructed phase space differed
from the previously discussed complex phase plane (Figs. 2
and 3) because the experimental time traces contained only
the real components of the complex variables.

The critical range of calcium concentration was indicated
by the Hartigans’ dip test statistic crossing the threshold of
multimodality (Fig. 5, E and K). This signified crossing of a
bifurcation; an increase in the calcium level corresponded to
a decrease in the control parameter from an oscillatory
regime toward a quiescent regime. As the concentration ap-
proached a critical range, typically exceeding �300 mM,
hair-bundle motion could become highly asymmetric, with
the oscillations spending more time in the positive or nega-
tive displacement (Fig. 5, A and G). Because of the nonsinu-
soidal oscillation profile, we extracted the oscillation
amplitude and frequency from both the amplitude spectrum
and local extrema in the time trace. As the calcium level
increased, the spectral and peak amplitudes of synchronized
spontaneous oscillations were attenuated, until they became
indistinguishable from random fluctuations (Fig. 5, B and
H). In association with this, the peak-to-peak frequency
increased and became undefined as the oscillations were
suppressed (Fig. 5, C and I). The spectral frequency, on
the other hand, remained relatively constant as the spectral
peak was predominantly broadened, rendering the determi-
nation of the peak frequency less reliable.

The analytic distribution in a two-dimensional phase space
formed a ring-like structure at low calcium concentrations.



FIGURE 5 Synchronized spontaneous oscilla-

tions under calcium manipulation. (A) Coupled

hair bundles’ oscillations at different calcium

levels are shown, indicated to the right of each

trace. In (B)–(E), shaded areas indicate the transi-

tion regime from oscillatory to quiescent behavior.

(B) The peak and spectral amplitude monotoni-

cally decrease as calcium level is elevated. (C)

The peak-to-peak and spectral frequency remain

relatively unchanged. In the transition regime, the

peak-to-peak frequency increases, whereas the

spectral frequency is poorly determined. At a

higher calcium level, the hair-bundle motion be-

comes indistinguishable from a random fluctua-

tion, and the oscillation frequency cannot be

extracted. (D) The degree of coherence of sponta-

neous oscillations is minimally affected at lower

calcium levels and gradually declines in the transi-

tion regime. (E) The Hartigans’ dip test statistic, in

association with the oscillation amplitude, de-

creases with increasing calcium levels. (F) The an-

alytic distribution (top panels), as well as the

displacement histogram (bottom panels), shows a

transition from a ring-like structure to a unimodal

distribution. In the transition regime, the oscilla-

tion spends longer fractions of time deflected in

the positive direction. (G) Another type of

behavior is observed from coupled hair bundles,

whose oscillations become larger at 175–250 mM

calcium. The calcium levels are indicated to the

right of each trace. (H–L) A peak in the oscillation

amplitude, degree of coherence, and the dip test

statistic is observed near the physiological calcium

level. (M) An example of a single bundle’s

displacement loaded by a glass fiber is given at various calcium levels indicated to the right of each trace. (N–R) The oscillation behaviors qualitatively

resemble the first type of coupled hair bundles (A–F). In all cases, coupled or uncoupled hair bundles display similar behaviors in the transition regime

(shaded areas). Error bars indicate the SD of the data extracted from six time trace segments; each is 10 s.

Dynamics of Coupled Hair Bundles
The ring decreased in size and converged to a unimodal dis-
tribution upon increasing the calcium concentration (Fig. 5, F
and L). We note that at the levels of calcium concentration
employed in this study, we did not observe an analytical dis-
tribution that corresponded to a coexistence of a limit cycle
and a stable fixed point at the origin. Our results predomi-
nantly indicated that the behavior of coupled hair bundles
across the critical calcium concentration was consistent
with a supercritical Hopf bifurcation. Qualitatively identical
dynamics were observed in single hair bundles under similar
mechanical loading (Fig. 5, M–R).

Tuning behavior of synchronized spontaneous oscillations

In this section, we investigated the dynamics of hair bundles
at lower calcium levels, far from criticality, and compared
them with the theoretical predictions of coupled oscillators
far from a supercritical Hopf bifurcation (Fig. 3).

In agreement with results from the model, we found two
types of behaviors of synchronized spontaneous oscillations
at lowcalcium levels. First, somecoupled hair bundles showed
amonotonic decrease in their oscillation amplitude and the de-
gree of coherence as the calciumwas elevated, predominantly
consistent with a system of coupled, weakly nonisochronous
oscillators (Fig. 5, B–D). The oscillation frequency, however,
could remain largely unaffected (Fig. 5 C) or continually in-
crease (Figs. 5 I and S4). On the other hand, the motion of
some hair bundles displayed maximal amplitude and coher-
ence at an optimal calcium concentration, typically near the
physiological level of 250 mM (Figs. 5, H–J and S4). Within
the same range of calcium concentrations, the peak-to-peak
frequency of the oscillation clearly exhibited a minimum.
This type of behavior agreed with a system of oscillators
with a high degree of nonisochronicity.

To examine the frequency selectivity of coupled hair bun-
dles at different calcium levels, we measured the bundles’
displacements in response to pure-tone stimulation. Sinusoi-
dal signals at various frequencies were delivered to the base
of the glass fiber at a constant amplitude (Materials and
Methods). The quality factor of the phase-locked amplitude
displayed a similar calcium dependence as that shown by
the degree of coherence of spontaneous oscillations (Fig. S5).
DISCUSSION

We observed synchronization between the autonomous mo-
tion of two strongly coupled hair bundles from the bullfrog
Biophysical Journal 120, 205–216, January 19, 2021 213
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sacculus. Our experimental findings were well reproduced
by a theoretical model of coupled nonlinear oscillators,
each displaying a supercritical Hopf bifurcation. Results
from the model indicated that strong coupling minimally
affected the dynamical states of the oscillators. This sug-
gested that the oscillatory hair bundles, despite their vastly
different natural frequencies, remained unstable upon
coupling, yielding the observed synchronized spontaneous
oscillations. The theoretical prediction also implied that
the existing mathematical descriptions of uncoupled hair
bundles should be applicable to a small number of bundles
under strong coupling.

Under weaker coupling, on the other hand, the model
demonstrates that unstable oscillators with different charac-
teristic frequencies may be brought closer to a supercritical
Hopf bifurcation by a shift in the critical point. Hence,
although the control parameter of each individual oscillator
is unaffected, the coupling shifts the bifurcation point closer
to them. The result implies that spontaneously oscillating
hair bundles may become quiescent upon mechanical
coupling of appropriate strength. Under physiological con-
ditions, groups of hair bundles in the inner ears of many spe-
cies experience weak coupling at large spatial separations.
Our theoretical prediction thus proposes an additional po-
tential mechanism of tuning a system of oscillatory hair
bundles closer to criticality via mechanical coupling. Other
physical quantities have been proposed to poise an un-
coupled hair bundle near the verge of an instability; exam-
ples include mass, elastic loadings, and a stationary offset
on the bundle’s resting position imposed by its surrounding
structure (12,15,32). A combination of these may be utilized
as a mechanism that effectively brings an in vivo system of
hair bundles near the critical point.

Although strong mechanical coupling did not affect the
control parameters determining the dynamical states of indi-
vidual hair bundles, it could qualitatively alter the dynamics
of the coupled system in the oscillatory regime far from the
critical point. We modulated the dynamical state of coupled
hair bundles using the level of calcium concentration in the
endolymph. We found that the amplitude, as well as the de-
gree of coherence, of coupled hair bundles’ autonomous os-
cillations could be enhanced near the physiological calcium
concentration. This was associated with the peak in the
quality factor of hair bundles’ motion in response to sinusoi-
dal stimuli. Our theoretical predictions revealed that this
tuning behavior required an optimal degree of hair-bundle
nonisochronicity.

Several studies have demonstrated the nonisochronous
behavior of uncoupled hair bundles. The frequency of spon-
taneous oscillations was shown to decline upon growth in
amplitude under different types of manipulations, including
a change in calcium concentration, loading by a mass or an
elastic element, and an application of a constant force
(15,33). A high degree of nonisochronicity has been demon-
strated to be beneficial to the detection of rapidly varying
214 Biophysical Journal 120, 205–216, January 19, 2021
signals by poising the bundles in a chaotic regime in the
presence of noise and thus enhancing the temporal resolu-
tion (34). Additionally, a lowered detection threshold was
observed at an optimal level of nonisochronicity.

Our experimental observations also illustrated the noniso-
chronous characteristics of strongly coupled hair bundles
upon changing the level of calcium concentration in the
endolymph. As the calcium level was raised, the oscillation
frequency increased in association with an attenuation in the
amplitude. Our findings thus suggest the role of mechanical
coupling on the spontaneous dynamics, as well as signal
detection, of nonisochronous hair bundles. At an optimal de-
gree of hair-bundle nonisochronicity, the system achieves its
maximal frequency selectivity near the physiological cal-
cium concentration. This proposes the control of the degree
of nonisochronicity as an additional mechanism that shapes
the frequency selectivity of a small number of hair bundles
under strong mechanical coupling.
Possible mechanism underlying hair-bundle
nonisochronicity

Spontaneous oscillations of hair bundles arise from the
gating of the mechanosensitive ion channels, whose open
probability is regulated by the tension in a tip link, a thin
filament that serves as a component of the gating spring.
Several microscopic models of hair-bundle mechanics
have shown that the oscillation amplitude and frequency
crucially depend on the stiffness of the gating spring, which
dictates the nonlinearity of the system (11,12,35). Further,
alterations in the spontaneous oscillation profiles under
various forms of mechanical or chemical manipulation are
well reproduced by models in which the gating-spring stiff-
ness is reduced upon an increase in external calcium (33).

To test whether the calcium-sensitive gating-spring stiff-
ness may contribute to hair-bundle nonisochronicity, we
performed numerical simulations of the model previously
shown to describe individual hair-bundle motility (33) and
observed the spontaneous oscillations at different levels of
calcium sensitivity. The model postulated that the gating
spring incorporated a calcium-binding site whose binding
probability pgs depended on the local calcium concentration
[Ca2þ]gs and followed the standard rate equation dpgs/dt ¼
kgs,on[Ca

2þ]gs(1 � pgs) � kgs,offpgs. The rates of binding
and unbinding of calcium to the gating spring are denoted
by kgs,on and kgs,off, respectively. The gating-spring stiffness
Kgs was governed by Kgs ¼ Kgs,0 � Kgs,1pgs, in which Kgs,0

and Kgs,1 are positive constants.
We found that the spontaneous oscillations exhibited by a

hair bundle with a constant gating-spring stiffness, Kgs,1¼ 0,
were minimally dependent on the calcium concentration
(Fig. 6 A). The autonomous motion abruptly diminished at
a critical calcium level. When the gating-spring stiffness
was modulated by calcium, the oscillation amplitude was
attenuated, and the frequency increased upon a rise in the



FIGURE 6 Nonisochronicity of a single hair bundle with a calcium-sen-

sitive gating-spring stiffness. Results are obtained from numerical simula-

tions of a model of hair-bundle motility. The parameter values are shown

in Table S1. In all panels, the peak amplitude (black dots) and the peak-

to-peak frequency (open gray dots) of hair-bundle spontaneous oscillations

at different calcium concentrations are shown. The insets illustrate the time

traces of spontaneous oscillations at calcium concentrations 0.1, 0.2, and

0.3 mM (from left to right). (A) When the gating-spring stiffness is a con-

stant, with Kgs,0 ¼ 1050 mN/m and Kgs,1 ¼ 0, the oscillation profiles are not

sensitive to calcium. (B) For a small calcium sensitivity, with Kgs,0 ¼ 1300

mN/m and Kgs,1 ¼ 500 mN/m (Kgs,1/Kgs,0 ¼ 0.38), the oscillation frequency

increases with calcium level, whereas the amplitude is slightly attenuated.

(C) The decline in the oscillation amplitude becomes more pronounced at a

higher calcium sensitivity of the gating spring, with Kgs,0 ¼ 2000 mN/m and

Kgs,1 ¼ 1200 mN/m (Kgs,1/Kgs,0 ¼ 0.6). (D) At Kgs,0 ¼ 2550 mN/m and

Kgs,1 ¼ 2000 mN/m (Kgs,1/Kgs,0 ¼ 0.78), the nonisochronous behavior is

strong, with the oscillation frequency rapidly increasing upon an attenua-

tion in amplitude.

Dynamics of Coupled Hair Bundles
calcium level, a feature that is consistent with a nonisochro-
nous nonlinear oscillator. At a higher calcium sensitivity
(Kgs,1/Kgs,0), the hair bundle displayed a stronger noniso-
chronous behavior; its oscillation frequency more steeply
depended on the amplitude as the calcium concentration
increased (Fig. 6, B–D). These results suggest that a cal-
cium-sensitive elastic element may partly account for the
hair bundle’s nonisochronicity.
CONCLUSION

We investigate the influence of mechanical coupling on the
innate motility of hair bundles poised in different dynamical
states. Results from a model of two nonisochronous oscilla-
tors, whose real parts of the complex dynamical variables
are mutually coupled, suggest an alternative mechanism
that tunes a system of weakly coupled unstable oscillators
closer to criticality via a shift of the bifurcation point. Theo-
retical predictions for strongly coupled oscillators are
consistent with the dynamics of hair bundles under strong
mechanical coupling. Within a critical range of calcium
concentration in the endolymph, synchronized spontaneous
oscillations of hair bundles become suppressed and exhibit
characteristics of a nonlinear system crossing a supercritical
Hopf bifurcation, identical to single hair bundles. At cal-
cium levels sufficiently far from the critical point, hair bun-
dles may display a tuning in the amplitude and coherence of
their spontaneous oscillations, as well as a tuning of the
quality factor in response to an external driving force.
This behavior was observed in the model with highly noni-
sochronous oscillators, suggesting that hair bundles’ noniso-
chronicity might play a role in optimizing the frequency
selectivity of the coupled system near the physiological cal-
cium level. Further, results from a microscopic model of a
single hair bundle’s motility indicate that nonisochronicity
may stem from a calcium-sensitive elastic element that con-
trols the gating of the mechanosensitive ion channels.
SUPPORTING MATERIAL

Supporting Material can be found online at https://doi.org/10.1016/j.bpj.

2020.11.2273.
AUTHOR CONTRIBUTIONS

Y.R. designed the research, conducted physiological recordings and theoret-

ical analysis, and wrote the manuscript. J.F. designed the research, per-

formed theoretical analysis, and wrote the manuscript. D.B. supervised

the research and wrote the manuscript.
ACKNOWLEDGMENTS

D.B. gratefully acknowledges support of the National Science Foundation

Biomechanics and Mechanobiology Program, under grant 1916136. Y.R. ac-

knowledges support by Chulalongkorn University: CU_GR_62_71_23_28,

and Chulalongkorn University Office of International Affairs Scholarship

for Short-term Research (3/2562).
SUPPORTING CITATIONS

References (36–38) appear in the Supporting Material.
REFERENCES

1. Hudspeth, A. J. 2014. Integrating the active process of hair cells with
cochlear function. Nat. Rev. Neurosci. 15:600–614.

2. Robles, L., and M. A. Ruggero. 2001. Mechanics of the mammalian co-
chlea. Physiol. Rev. 81:1305–1352.

3. Martin, P., A. D. Mehta, and A. J. Hudspeth. 2000. Negative hair-
bundle stiffness betrays a mechanism for mechanical amplification
by the hair cell. Proc. Natl. Acad. Sci. USA. 97:12026–12031.

4. Kennedy, H. J., A. C. Crawford, and R. Fettiplace. 2005. Force gener-
ation by mammalian hair bundles supports a role in cochlear amplifica-
tion. Nature. 433:880–883.

5. Jaramillo, F., and A. J. Hudspeth. 1993. Displacement-clamp measure-
ment of the forces exerted by gating springs in the hair bundle. Proc.
Natl. Acad. Sci. USA. 90:1330–1334.

6. Martin, P., and A. J. Hudspeth. 1999. Active hair-bundle movements
can amplify a hair cell’s response to oscillatory mechanical stimuli.
Proc. Natl. Acad. Sci. USA. 96:14306–14311.
Biophysical Journal 120, 205–216, January 19, 2021 215

https://doi.org/10.1016/j.bpj.2020.11.2273
https://doi.org/10.1016/j.bpj.2020.11.2273
http://refhub.elsevier.com/S0006-3495(20)33201-X/sref1
http://refhub.elsevier.com/S0006-3495(20)33201-X/sref1
http://refhub.elsevier.com/S0006-3495(20)33201-X/sref2
http://refhub.elsevier.com/S0006-3495(20)33201-X/sref2
http://refhub.elsevier.com/S0006-3495(20)33201-X/sref3
http://refhub.elsevier.com/S0006-3495(20)33201-X/sref3
http://refhub.elsevier.com/S0006-3495(20)33201-X/sref3
http://refhub.elsevier.com/S0006-3495(20)33201-X/sref4
http://refhub.elsevier.com/S0006-3495(20)33201-X/sref4
http://refhub.elsevier.com/S0006-3495(20)33201-X/sref4
http://refhub.elsevier.com/S0006-3495(20)33201-X/sref5
http://refhub.elsevier.com/S0006-3495(20)33201-X/sref5
http://refhub.elsevier.com/S0006-3495(20)33201-X/sref5
http://refhub.elsevier.com/S0006-3495(20)33201-X/sref6
http://refhub.elsevier.com/S0006-3495(20)33201-X/sref6
http://refhub.elsevier.com/S0006-3495(20)33201-X/sref6


Roongthumskul et al.
7. Ricci, A. J., A. C. Crawford, and R. Fettiplace. 2000. Active hair
bundle motion linked to fast transducer adaptation in auditory hair
cells. J. Neurosci. 20:7131–7142.

8. Brownell, W. E., C. R. Bader, and Y. de Ribaupierre. 1985. Evoked me-
chanical responses of isolated cochlear outer hair cells. Science.
227:194–196.

9. Dallos, P., X. Wu, and J. Zuo. 2008. Prestin-based outer hair cell
motility is necessary for mammalian cochlear amplification. Neuron.
58:333–339.

10. Fisher, J. A. N., F. Nin, and A. J. Hudspeth. 2012. The spatial pattern of
cochlear amplification. Neuron. 76:989–997.

11. Martin, P., D. Bozovic, and A. J. Hudspeth. 2003. Spontaneous oscilla-
tion by hair bundles of the bullfrog’s sacculus. J. Neurosci. 23:4533–
4548.
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