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Abstract: Non-small cell lung cancer (NSCLC) is the leading cause of cancer-related death throughout
the world. Due to the shortcomings of traditional chemotherapy, targeted therapies have come into
prominence for the management of NSCLC. In particular, epidermal growth factor receptor (EGFR)
tyrosine kinase inhibitor (TKI) therapy has emerged as a first-line therapy for NSCLC patients with
EGFR-activating mutations. In this context, new indenopyrazoles, which were prepared by an
efficient microwave-assisted method, were subjected to in silico and in vitro assays to evaluate their
potency as EGFR TK-targeted anti-NSCLC agents. Compound 4 was the most promising antitumor
agent towards A549 human lung adenocarcinoma cells, with an IC50 value of 6.13 µM compared
to erlotinib (IC50 = 19.67 µM). Based on its low cytotoxicity to peripheral blood mononuclear cells
(PBMCs), it can be concluded that compound 4 exerts selective antitumor action. This compound
also inhibited EGFR TK with an IC50 value of 17.58 µM compared to erlotinib (IC50 = 0.04 µM) and
induced apoptosis (56.30%). Taking into account in silico and in vitro data, compound 4 stands out
as a potential EGFR TKI for the treatment of NSCLC.

Keywords: anticancer activity; apoptosis; epidermal growth factor receptor; indenopyrazoles;
microwave-assisted synthesis; non-small cell lung cancer; tyrosine kinases

1. Introduction

Non-small cell lung cancer (NSCLC), which accounts for 85% of all lung cancers,
represents the most common cause of cancer-related mortality worldwide [1,2], with a
5-year survival rate of less than 15% [3]. The best therapy option for NSCLC patients
continues to be the complete surgical resection of the tumor [4]. However, most NSCLC
patients are diagnosed at advanced or metastatic stages (stage III/IV), when surgery is no
longer an option. In these cases, radiotherapy and chemotherapy are important therapeutic
approaches for unresectable NSCLC [4–7].

Platinum-based chemotherapy is an existing Food and Drug Administration (FDA)-
approved strategy in the management of several common cancer types, including NSCLC,
and has many benefits in some cases [8,9]. Traditional chemotherapeutic agents eliminate
not only rapidly dividing cancer cells but also normal cells, and therefore these drugs are
highly toxic to all cells in the body [8–10]. Traditional cytotoxic chemotherapy also causes
changes in the normal function of the cells, and correspondingly various side effects such
as fatigue, anemia, alopecia, and gastrointestinal complications [8–10].
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The drawbacks of traditional cytotoxic chemotherapy have raised the importance of
targeted therapies acting on crucial signaling pathways and/or specific oncogenes deregu-
lated in NSCLC [11]. One of the most promising targets is epidermal growth factor receptor
(EGFR), a member of the ErbB/HER family of receptor tyrosine kinases (RTKs). EGFR
plays a fundamental role in the regulation of cell proliferation, migration, differentiation,
and survival [12,13], and the deregulation of EGFR leads to enhanced signaling activity
that promotes tumor proliferation, invasion, angiogenesis, and metastasis [11]. EGFR is
overexpressed in 40–89% of NSCLC cases and is mutated in 15–20% of NSCLC patients [11].

The discovery of EGFR-activating mutations in NSCLC and the success story of EGFR
tyrosine kinase inhibitors (TKIs) have shifted the paradigm of cancer therapy from cytotoxic
chemotherapy to targeted therapies [14]. Accordingly, EGFR TKI therapy (including
erlotinib, gefitinib, and afatinib) has emerged as a first-line therapy for NSCLC patients
with EGFR-activating mutations [14,15]. However, most patients inevitably develop drug
resistance caused by the T790M mutation after almost 12 months of treatment [14–16]. In
order to overcome the acquired resistance, next-generation EGFR TKIs have been approved
for NSCLC therapy, and several promising candidates are currently undergoing clinical
trials [14–18].

Indeno[1,2-c]pyrazole, which was first synthesized by Boyd in 1965, has emerged
as a privileged scaffold found in many anticancer agents exerting their action through
multiple mechanisms, such as the inhibition of EGFR TK, platelet-derived growth factor
receptor (PDGFR) TK, vascular endothelial growth factor receptor-2 (VEGFR-2/KDR) TK,
cyclin-dependent kinase (CDK), checkpoint kinase 1 (CHK1), Akt, hypoxia inducible factor
1 (HIF-1), and tubulin polymerization [19–28].

Prompted by the aforementioned findings related to indeno[1,2-c]pyrazoles exert-
ing potent inhibitory effects on TKs (e.g., EGFR) involved in the pathogenesis of cancer,
the microwave (MW)-assisted synthesis of new indeno[1,2-c]pyrazoles was performed
efficiently, and in vitro studies were carried out to assess their potency as EGFR-targeted
anti-NSCLC agents.

2. Results and Discussion
2.1. Chemistry

The synthesis of new indeno[1,2-c]pyrazoles (1–7) was carried out as depicted in
Scheme 1. The Claisen–Schmidt condensation [29,30] of 5-chloro-6-methoxy-2,3-dihydro-
1H-inden-1-one with 4-(piperidin-1-yl)benzaldehyde yielded 5-chloro-6-methoxy-2-[4-
(piperidin-1-yl)benzylidene]-2,3-dihydro-1H-inden-1-one, which was previously synthe-
sized by our research team [31], which underwent a MW-assisted cyclocondensation reac-
tion with arylhydrazine hydrochloride and a few drops of acetic acid in ethanol, affording
compounds 1–7.

The Infrared (IR), 1H Nuclear Magnetic Resonance (NMR), 13C NMR, and High-
Resolution Mass Spectrometry (HRMS) data were in agreement with the proposed struc-
tures of compounds 1–7. In the IR spectra of compounds 1–7, the absence of a C=O
stretching band at 1684 cm−1 [31] confirmed that the ring closure reaction leading to the
formation of the dihydroindenopyrazole scaffold occurred efficiently. The C=N and C=C
stretching bands were located in the region of 1630–1450 cm−1. In the 1H NMR spectra of
the compounds, the indene C4-CH2 protons were observed as a singlet at 3.32–3.75 ppm. In
the 1H NMR spectra of compounds 1–7, the protons attached to the C3, C4, and C5 carbons
of the piperidine ring gave rise to a broad singlet at 1.57 or 1.65 ppm. The signals due to the
protons attached to the C2 and C6 carbons of the piperidine ring appeared at 3.17–3.23 ppm
as a broad singlet. All the other aliphatic and aromatic protons were observed as expected,
e.g., Ar-OCH3 protons as a singlet at 3.93–4.01 ppm, and Ar-CH3 protons as a singlet at
2.39–3.10 ppm. The dihydroindenopyrazole C4-CH2 and OCH3 signals were observed at
27.63–30.10 and 52.33–59.69 ppm, respectively. The C4, C3, and C5, C2, and C6 carbons of
the piperidine ring gave rise to the peaks at 22.68–25.53, 25.39–27.63, and 45.09–52.49 ppm



Molecules 2022, 27, 485 3 of 15

in the 13C NMR spectra of compounds 1–7. The formation of the dihydroindenopyrazole
scaffold was also verified by the HRMS analysis of compounds 1–7.
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2.2. In Vitro Assays

Compounds 1–7 and erlotinib (positive control) were tested for their cytotoxic effects
on A549 human lung adenocarcinoma cells using the MTT test, a tetrazolium-based cell
viability assay. Compounds 1, 4, and 7 were found to be more effective than erlotinib.
Compounds 1, 4, and 7 exerted their antitumor action towards A549 cells with IC50 values
of 7.99, 6.13, and 8.67 µM, respectively, as compared to erlotinib (IC50 = 19.67 µM), an
EGFR TKI currently used for NSCLC therapy (Table 1). Other compounds were found to
be devoid of cytotoxic activity towards A549 cells (IC50 > 10 µM).

Table 1. The cytotoxic effects of the compounds on A549 and K562 cells, and PBMCs.

Compound R
IC50 (µM)

SI 1
A549 Cells K562 Cells PBMCs

1 H 7.99 ± 1.84 3.49 ± 0.92 95.72 ± 11.68 27.43
2 F >10
3 Cl >10
4 Br 6.13 ± 1.42 2.65 ± 0.75 19.56 ± 4.25 7.38
5 CN >10
6 SO2CH3 >10
7 CH3 8.67 ± 2.18 2.76 ± 0.83 >100 >36.23

Erlotinib - 19.67 ± 3.15 29.62 ± 5.26 44.33 ± 7.84 1.50
1 SI = IC50 for PBMCs/IC50 for K562 cells.

Among halogen substituents (F, Cl, Br), it can be concluded that the p-bromo group
significantly enhances anti-NSCLC activity. p-Methyl substitution (−σ and +π effect) also
led to marked anti-NSCLC activity, whereas p-methylsulfonyl and p-cyano substitutions
(+σ and −π effect) resulted in the loss of anti-NSCLC activity.

Compounds 1, 4, and 7, the most potent anti-NSCLC agents in this series, were
investigated for their cytotoxic effects on K562 chronic myelogenous leukemia (CML) cells
and peripheral blood mononuclear cells (PBMCs) to determine the selectivity of their
antitumor action. Compounds 1, 4, and 7 showed marked anti-CML activity with IC50
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values of 3.49, 2.65, and 2.76 µM, respectively (Table 1). On the other hand, compounds 1,
4, and 7 exerted no significant cytotoxicity towards PBMCs (normal cells). The selectivity
index (SI) values of compounds 1, 4, and 7 (27.43, 7.38, and >36.23, respectively) were
found to be higher than that of erlotinib (1.50), indicating that their anticancer effects
were selective.

Compounds 1, 4, and 7 were subjected to an in vitro mechanistic assay to determine
whether their anti-NSCLC activities are related to EGFR TK inhibition or not. None of them
inhibited EGFR TK as much as erlotinib (IC50 = 0.04± 0.01 µM). The most potent EGFR TKI
in this series was found as compound 4 (IC50 = 17.58± 3.15 µM), followed by compounds 7
(IC50 = 46.66 ± 7.04 µM) and 1 (IC50 = 55.29 ± 8.68 µM) (Figure 1a). In particular, p-bromo
substituent significantly enhanced EGFR TK inhibitory activity. According to Figure 1b, it
can be concluded that compound 4 shows dose-dependent EGFR TK inhibitory potency.
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Figure 1. The inhibitory activity of the compounds on EGFR TK. (a) EGFR TK inhibition caused by
compounds 1, 4, 7, and erlotinib at 30 µM concentration. (b) The EGFR TK inhibition of compound 4
and erlotinib at different concentrations. All descriptive data were expressed as the Mean ± Standard
Deviation (SD). All experiments were repeated three times.
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Kinase selectivity profiling systems, TK-1 (EGFR, HER2, HER4, IGF1R, InsR, KDR,
PDGFR-α, and PDGFR-β) and TK-2 (ABL1, BRK, BTK, CSK, FYN A, LCK, LYN B, and
SRC), were used to identify the kinase selectivity profile of compound 4. Compound 4
inhibited HER2 and LCK more significantly than erlotinib at 30 µM concentration (Figure 2).
However, its inhibitory effects on HER2 and LCK were not as pronounced as its EGFR
inhibitory activity. It is also important to note that the kinase selectivity profile of compound
4 is different from that of erlotinib.
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Figure 2. The inhibition of TKs by compound 4 and erlotinib at 30 µM concentration. All descriptive
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In general, tumor cells lose their ability to undergo apoptosis, resulting in uncontrolled
proliferation, and many antitumor agents trigger the induction of apoptosis to eliminate
tumor cells [32]. Moreover, preclinical and clinical studies reveal that inhibition of EGFR,
together with enhanced induction of apoptosis, may counter resistance to chemotherapy
and radiotherapy [33]. In the current work, the pronounced EGFR TK-targeted anti-NSCLC
activity of compound 4 prompted us to evaluate its apoptotic/necrotic effects using the
annexin V/ethidium homodimer III staining assay. The results indicated that compound 4
induced apoptosis more than erlotinib, as shown in Figure 3. The percentages of A549 cells
undergoing apoptosis exposed to compound 4 and erlotinib were found to be 56.30% and
53.60%, respectively.

2.3. In Silico Assays
2.3.1. Molecular Docking Studies

Molecular docking studies were carried out for compounds 4 and 1 to designate their
binding profiles in the ATP binding site of EGFR compared to erlotinib (Figure 4a). The re-
spective docking scores of compounds 4 and 1 were detected as−7.412 and−7.391 kcal/mol,
which were similar to that of erlotinib (−8.895 kcal/mol). This outcome put emphasis on
their high binding efficacy to the ATP binding site of EGFR. However, these compounds
presented more different binding profiles than erlotinib. Compounds 4 and 1 formed
π-cation interactions with Lys721 through its 4-bromophenyl and phenyl substitutions at
the second position of 2,4-dihydroindeno[1,2-c]pyrazole, respectively, whereas they missed
the important hydrogen bonding with Cys773 and Met769, which erlotinib established in
the ATP binding site of EGFR (Figure 4b). This finding could enlighten the weaker EGFR
inhibitory potency of compound 4 compared to erlotinib.
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Figure 3. The apoptotic effects of compound 4 and erlotinib on A549 cells. (a) Coloring phenomenon
of the A549 cell line following exposure to IC50 concentrations of compound 4 and erlotinib for 15 h.
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(red) cells was quantified by analyzing 100 randomly chosen stained cells in each experiment. All
descriptive data were expressed as the Mean ± SD. All experiments were repeated three times.
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2.3.2. In Silico Absorption, Distribution, Metabolism, and Excretion (ADME) Studies

Several crucial pharmacokinetic properties of compounds 1–7 were in silico ascer-
tained. The QPlogBB and predicted central nervous system (CNS) activity values of
compounds 1–7 were found within the specified ranges (Table 2), indicating that com-
pounds 1–7 are able to cross the blood–brain barrier (BBB) and could be effective in CNS
metastases in lung cancer. All synthesized compounds also exhibited a high percentage
of human oral absorption, between 94.085% and 100%. These compounds violated only
one parameter of Jorgensen’s rule of three. Besides, they also violated one parameter of
Lipinski’s rule of five, apart from compounds 4 and 6 because both of them violated two
parameters. Overall, these compounds were found to be orally bioavailable drug-like
molecules for future studies.
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eter of Jorgensen’s rule of three. Besides, they also violated one parameter of Lipinski’s 
rule of five, apart from compounds 4 and 6 because both of them violated two parameters. 
Overall, these compounds were found to be orally bioavailable drug-like molecules for 
future studies. 

Table 2. Predicted ADME properties of compounds 1–7. 

Compound QPlogBB * 
(−3–1.2) 

CNS ** 
(−2 to 2) 

Human Oral 
Absorption% *** 

Rule of Five 
**** 

Rule of Three 
***** 

1 0.478 2 100 1 1 
2 0.592 2 100 1 1 
3 0.650 2 100 1 1 
4 0.663 2 100 2 1 
5 −0.388 0 100 1 1 
6 −0.495 0 94.085 2 1 
7 0.472 2 100 1 1 
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Oral Absorption%: Predicted human oral absorption on a 0% to 100% scale. The prediction is based on a quan-
titative multiple linear regression model. This property usually correlates well with human oral absorption, as 

Figure 4. Docking poses of compound 4, compound 1, and erlotinib (a) (colored in orange, blue
purple, and turquoise, respectively) (green dashes: π-cation interaction, yellow dashes: hydrogen
bonding) and docking interactions of compound 4, compound 1, and erlotinib (b) in the ATP binding
site of EGFR.

Table 2. Predicted ADME properties of compounds 1–7.

Compound QPlogBB *
(−3–1.2)

CNS **
(−2 to 2)

Human Oral
Absorption% *** Rule of Five **** Rule of Three *****

1 0.478 2 100 1 1
2 0.592 2 100 1 1
3 0.650 2 100 1 1
4 0.663 2 100 2 1
5 −0.388 0 100 1 1
6 −0.495 0 94.085 2 1
7 0.472 2 100 1 1

* QPlogBB: Brain/blood partition coefficient; ** CNS: Predicted central nervous system activity; *** Human Oral
Absorption%: Predicted human oral absorption on a 0% to 100% scale. The prediction is based on a quantitative
multiple linear regression model. This property usually correlates well with human oral absorption, as both
measure the same property (>80% is high, <25% is poor); **** Rule of Five: Number of violations of Lipinski’s rule
of five. The rules are: mol_MW (molecular weight of the molecule) < 500, QPlogPo/w (predicted octanol/water
partition coefficient) < 5, donorHB (hydrogen-bond donor atoms) ≤ 5, and accptHB (hydrogen-bond acceptor
atoms) ≤ 10. Compounds that provide these rules are considered drug-like (the “five” refers to the limits, which
are multiples of 5); ***** Rule of Three: Number of violations of Jorgensen’s rule of three. The three rules
are: QPlogS (predicted aqueous solubility) > –5.7, QPPCaco (predicted apparent Caco-2 cell permeability in
nm/s) > 22 nm/s, and # Primary Metabolites < 7. Compounds with fewer (and preferably no) violations of these
rules are more likely to be orally available (Schrödinger Release 2016-2: Schrödinger, LLC, New York, NY, USA).
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3. Materials and Methods
3.1. Chemistry

All chemicals purchased from commercial suppliers were used without further pu-
rification. Melting points (M.p.) were detected on an Electrothermal IA9200 melting point
device (Staffordshire, UK) and are uncorrected. IR spectra were recorded on an IRPrestige-
21 Fourier Transform IR spectrophotometer (Shimadzu, Tokyo, Japan). NMR (1H and 13C)
analyses were performed on an NMR spectrometer (Bruker, Billerica, MA, USA). HRMS
spectra were recorded on a LCMS-IT-TOF system (Shimadzu, Kyoto, Japan). Thin-Layer
Chromatography (TLC) was applied to monitor the progress of each chemical reaction and
check the purity of each derivative.

General Procedure for the Synthesis of 6-Chloro-7-methoxy-2-aryl-3-[4-(piperidin-1-
yl)phenyl]-2,4-dihydroindeno[1,2-c]pyrazoles (1–7)

A mixture of 5-chloro-6-methoxy-2-[4-(piperidin-1-yl)benzylidene]-2,3-dihydro-1H-
inden-1-one (1 mmol) [31], arylhydrazine hydrochloride (3 mmol), and a few drops of acetic
acid in ethanol (10 mL) was heated up to 190 ◦C within 15 min and kept at 190 ◦C for 20 min
under MW irradiation in a reaction vial G30, sealed with a silicone septum and a snap cap
with magnetic stirring at 600 rpm in an Anton Paar Monowave 400 Microwave Synthesis
Reactor (Graz, Austria), equipped with a ruby thermometer. After the completion of the
reaction, the temperature was decreased to 55 ◦C in the reactor. Then, the reaction mixture
was further cooled to room temperature and the precipitate was collected by filtration. The
dried product was purified.

6-Chloro-7-methoxy-2-phenyl-3-[4-(piperidin-1-yl)phenyl]-2,4-dihydroindeno[1,2-c]pyrazole (1),
Dark beige powder. Yield: 89%. M.p. 153–155 ◦C. IR νmax (cm−1): 3051 (aromatic C-H
stretching), 2932, 2853 (aliphatic C-H stretching), 1630, 1599, 1572, 1566, 1547, 1530, 1512,
1503, 1493, 1483, 1468 (C=N and C=C stretching), 1443, 1433, 1402, 1391, 1383, 1366, 1356,
1294, 1258, 1236, 1169, 1126, 1109, 1055, 1028 (C-H bending, C-N, C-O stretching, and
aromatic C-H in-plane bending), 916, 874, 862, 837, 816, 752, 691 (aromatic C-H out of
plane bending). 1H NMR (300 MHz, DMSO-d6) δ (ppm): 1.65 (bs, 6H, piperidine C3,4,5-H),
3.23–3.27 (bs, 4H, piperidine C2,6-H), 3.70 (s, 2H, C4-H dihydroindenopyrazole), 4.01 (s,
3H, OCH3), 6.94–7.00 (m, 3H, aromatic protons), 7.06–7.24 (m, 2H, aromatic protons), 7.43
(d, J = 9.39 Hz, 2H, aromatic protons), 7.53 (d, J = 8.01 Hz, 2H, aromatic protons), 7.63 (d,
J = 9.00 Hz, 2H, aromatic protons). 13C NMR (75 MHz, DMSO-d6) δ (ppm): 24.38 (CH2),
25.56 (2CH2), 29.76 (CH2), 48.98 (CH2), 49.47 (CH2), 55.29 (CH3), 102.88 (CH), 104.91 (CH),
106.74 (C), 112.21 (C), 112.99 (C), 115.30 (CH), 115.78 (CH), 116.21 (CH), 119.51 (2CH), 121.76
(2CH), 125.84 (C), 129.42 (2CH), 138.59 (C), 141.21 (C), 142.64 (C), 149.62 (C), 153.16 (C),
153.97 (C). HRMS (m/z): [M + H]+ calcd. for C28H26ClN3O: 456.1837. Found: 456.1816.

6-Chloro-7-methoxy-2-(4-fluorophenyl)-3-[4-(piperidin-1-yl)phenyl]-2,4-dihydroindeno[1,2-c]pyrazole (2),
Brown powder. Yield: 34%. M.p. 188–190 ◦C. IR νmax (cm−1): 3078 (aromatic C-H stretch-
ing), 2934, 2853 (aliphatic C-H stretching), 1605, 1508, 1468 (C=N and C=C stretching), 1435,
1400, 1385, 1366, 1294, 1250, 1234, 1223, 1167, 1119, 1103, 1053, 1022 (C-H bending, C-N,
C-O stretching, and aromatic C-H in-plane bending), 974, 916, 862, 837, 818, 800, 777, 762,
743, 694 (aromatic C-H out of plane bending). 1H NMR (300 MHz, DMSO-d6) δ (ppm):
1.65 (bs, 6H, piperidine C3,4,5-H), 3.24–3.26 (bs, 4H, piperidine C2,6-H), 3.69 (s, 2H, C4-H
dihydroindenopyrazole), 4.00 (s, 3H, OCH3), 6.96-7.00 (m, 3H, aromatic protons), 7.18 (d,
J = 8.85 Hz, 1H, aromatic proton), 7.36–7.43 (m, 2H, aromatic protons), 7.50–7.55 (m, 2H,
aromatic protons), 7.66–7.70 (m, 2H, aromatic protons). 13C NMR (75 MHz, DMSO-d6) δ
(ppm): 24.43 (CH2), 25.55 (2CH2), 29.69 (CH2), 48.94 (CH2), 50.81 (CH2), 56.50 (CH3), 102.08
(CH), 103.11 (CH), 104.06 (CH), 113.84 (C), 115.28 (2CH), 121.31 (C), 126.10 (C), 127.03 (d,
J = 18.38 Hz, 2CH), 128.04 (d, J = 15.29 Hz, CH), 129.57 (2CH), 131.45 (C), 137.77 (C), 139.23
(C), 142.28 (C), 149.31 (C), 149.77 (C), 152.58 (C), 153.63 (C). HRMS (m/z): [M + H]+ calcd.
for C28H25ClFN3O: 474.1743. Found: 474.1726.
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6-Chloro-7-methoxy-2-(4-chlorophenyl)-3-[4-(piperidin-1-yl)phenyl]-2,4-dihydroindeno[1,2-c]pyrazole (3),
Dark brown powder. Yield: 56%. M.p. 103–106 ◦C. IR νmax (cm−1): 3028 (aromatic
C-H stretching), 2932, 2851 (aliphatic C-H stretching), 1599, 1487, 1470 (C=N and C=C
stretching), 1433, 1385, 1360, 1294, 1260, 1236, 1167, 1126, 1092, 1051, 1024, 1011 (C-H
bending, C-N, C-O stretching, and aromatic C-H in-plane bending), 972, 918, 895, 866,
824, 756, 745, 696 (aromatic C-H out of plane bending). 1H NMR (300 MHz, DMSO-d6)
δ (ppm): 1.57 (bs, 6H, piperidine C3,4,5-H), 3.19–3.21 (bs, 4H, piperidine C2,6-H), 3.70 (s,
2H, C4-H dihydroindenopyrazole), 3.95 (s, 3H, OCH3), 6.93 (d, J = 8.97 Hz, 2H, aromatic
protons), 7.08–7.15 (m, 2H, aromatic protons), 7.38 (d, J = 8.46 Hz, 2H, aromatic protons),
7.47–7.53 (m, 2H, aromatic protons), 7.61–7.64 (m, 2H, aromatic protons). 13C NMR (75
MHz, DMSO-d6) δ (ppm): 24.32 (CH2), 25.55 (2CH2), 29.76 (CH2), 48.92 (CH2), 52.49 (CH2),
56.97 (CH3), 114.38 (C), 115.32 (2CH), 118.41 (C), 120.39 (C), 121.43 (C), 127.27 (4CH), 129.52
(2CH), 129.64 (2CH), 131.45 (C), 132.17 (C), 139.66 (C), 140.12 (C), 141.09 (C), 148.66 (C),
150.33 (C). HRMS (m/z): [M + H]+ calcd. for C28H25Cl2N3O: 490.1447. Found: 490.1432.

6-Chloro-7-methoxy-2-(4-bromophenyl)-3-[4-(piperidin-1-yl)phenyl]-2,4-dihydroindeno[1,2-c]pyrazole (4),
Camel powder. Yield: 80%. M.p. 125–126 ◦C. IR νmax (cm−1): 3063 (aromatic C-H
stretching), 2934, 2851 (aliphatic C-H stretching), 1601, 1485, 1468 (C=N and C=C stretching),
1433, 1385, 1360, 1294, 1261, 1238, 1198, 1167, 1126, 1055, 1024, 1009 (C-H bending, C-N,
C-O stretching, and aromatic C-H in-plane bending), 970, 918, 891, 862, 827, 754, 745, 696
(aromatic C-H out of plane bending) (Supplementary Materials Figure S1). 1H NMR (300
MHz, DMSO-d6) δ (ppm): 1.57 (bs, 6H, piperidine C3,4,5-H), 3.19–3.21 (bs, 4H, piperidine
C2,6-H), 3.64 (s, 2H, C4-H dihydroindenopyrazole), 3.94 (s, 3H, OCH3), 6.93 (d, J = 8.97 Hz,
1H, aromatic proton), 7.14 (d, J = 8.85 Hz, 1H, aromatic proton), 7.19–7.23 (m, 1H, aromatic
proton), 7.31–7.37 (m, 3H, aromatic protons), 7.43–7.50 (m, 2H, aromatic protons), 7.61–7.66
(m, 2H, aromatic protons) (Figure S2). 13C NMR (75 MHz, DMSO-d6) δ (ppm): 22.68 (CH2),
25.62 (2CH2), 30.10 (CH2), 46.75 (CH2), 48.90 (CH2), 59.69 (CH3), 104.21 (CH), 108.25 (CH),
109.28 (CH), 115.40 (2CH), 118.32 (2C), 126.25 (C), 127.59 (2CH), 129.73 (2CH), 132.08 (C),
133.64 (CH), 138.13 (2C), 139.30 (2C), 148.42 (C), 150.32 (C), 154.38 (C) (Figure S3). HRMS
(m/z): [M + H]+ calcd. for C28H25BrClN3O: 534.0942. Found: 534.0926 (Figure S4).

6-Chloro-7-methoxy-2-(4-cyanophenyl)-3-[4-(piperidin-1-yl)phenyl]-2,4-dihydroindeno[1,2-c]pyrazole (5),
Beige powder. Yield: 47%. M.p. 175–176 ◦C. IR νmax (cm−1): 3080 (aromatic C-H stretch-
ing), 2945, 2934, 2862 (aliphatic C-H stretching), 2214 (C≡N stretching), 1603, 1531, 1512,
1476 (C=N and C=C stretching), 1449, 1422, 1389, 1348, 1335, 1327, 1314, 1296, 1267, 1254,
1236, 1223, 1192, 1167, 1126, 1096, 1055, 1024, 1007 (C-H bending, C-N, C-O stretching, and
aromatic C-H in-plane bending), 962, 945, 916, 866, 833, 818, 810, 768, 716, 656 (aromatic
C-H out of plane bending). 1H NMR (300 MHz, DMSO-d6) δ (ppm): 1.58 (bs, 6H, piperidine
C3,4,5-H), 3.23 (bs, 4H, piperidine C2,6-H), 3.32 (s, 2H, C4-H dihydroindenopyrazole), 3.92
(s, 3H, OCH3), 6.94 (d, J = 8.88 Hz, 1H, aromatic proton), 7.01 (d, J = 8.97 Hz, 1H, aromatic
proton), 7.08 (d, J = 8.70 Hz, 1H, aromatic proton), 7.24 (d, J = 8.85 Hz, 1H, aromatic pro-
ton), 7.30–7.34 (m, 2H, aromatic protons), 7.45 (s, 1H, aromatic proton), 7.50–7.63 (m, 3H,
aromatic protons). 13C NMR (75 MHz, DMSO-d6) δ (ppm): 24.37 (CH2), 25.49 (2CH2), 27.82
(CH2), 49.02 (2CH2), 56.77 (CH3), 99.20 (C), 103.90 (CH), 112.17 (CH), 113.30 (2CH), 114.87
(CH), 115.44 (CH), 120.68 (C), 123.90 (C), 127.53 (2CH), 130.76 (CH), 133.65 (C), 133.95 (CH),
138.94 (C), 140.57 (C), 140.96 (C), 141.35 (C), 149.33 (C), 149.69 (C), 153.72 (C), 154.45 (C).
HRMS (m/z): [M + H]+ calcd. for C29H25ClN4O: 481.1790. Found: 481.1781.

6-Chloro-7-methoxy-2-(4-(methylsulfonyl)phenyl)-3-[4-(piperidin-1-yl)phenyl]-2,4-dihydroindeno[1,2-c]
pyrazole (6), Brown powder. Yield: 71%. M.p. 116–117 ◦C. IR νmax (cm−1): 3013 (aromatic
C-H stretching), 2928, 2851 (aliphatic C-H stretching), 1591, 1510, 1472, 1452 (C=N and
C=C stretching), 1414, 1385, 1290, 1231, 1180, 1126, 1090, 1055, 1024, 1003 (C-H bending,
SO2, C-N, C-O stretching, and aromatic C-H in-plane bending), 955, 918, 829, 768, 710,
702, 687 (aromatic C-H out of plane bending). 1H NMR (300 MHz, DMSO-d6) δ (ppm):
1.59 (bs, 6H, piperidine C3,4,5-H), 3.10 (s, 3H, CH3), 3.22–3.23 (bs, 4H, piperidine C2,6-H),
3.75 (s, 2H, C4-H dihydroindenopyrazole), 3.95 (s, 3H, OCH3), 6.95 (d, J = 8.97 Hz, 1H,
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aromatic proton), 7.02 (d, J = 8.97 Hz, 1H, aromatic proton), 7.29–7.36 (m, 2H, aromatic
protons), 7.39–7.48 (m, 1H, aromatic proton), 7.50–7.53 (m, 1H, aromatic proton), 7.57 (d,
J = 8.85 Hz, 1H, aromatic proton), 7.63–7.73 (m, 3H, aromatic protons). 13C NMR (75 MHz,
DMSO-d6) δ (ppm): 25.45 (CH2), 25.52 (2CH2), 29.43 (CH2), 44.76 (CH3), 48.90 (2CH2),
52.33 (CH3), 111.54 (CH), 113.27 (2CH), 114.99 (2CH), 115.46 (2CH), 123.35 (C), 128.04 (CH),
129.32 (2CH), 135.22 (C), 138.41 (C), 141.31 (C), 143.65 (C), 147.70 (C), 152.49 (C), 154.05 (C),
158.63 (2C), 160.82 (C). HRMS (m/z): [M + H]+ calcd. for C29H28ClN3O3S: 534.1613. Found:
534.1602.

6-Chloro-7-methoxy-2-(4-methylphenyl)-3-[4-(piperidin-1-yl)phenyl]-2,4-dihydroindeno[1,2-c]pyrazole(7),
Camel powder. Yield: 37%. M.p. 123–124 ◦C. IR νmax (cm−1): 3015 (aromatic C-H stretch-
ing), 2932, 2853 (aliphatic C-H stretching), 1609, 1514, 1497, 1466, 1450 (C=N and C=C
stretching), 1431, 1383, 1360, 1294, 1261, 1238, 1180, 1126, 1109, 1055, 1024 (C-H bending,
C-N, C-O stretching, and aromatic C-H in-plane bending), 974, 918, 862, 820, 800, 762, 743,
694 (aromatic C-H out of plane bending). 1H NMR (300 MHz, DMSO-d6) δ (ppm): 1.58 (bs,
6H, piperidine C3,4,5-H), 2.39 (s, 3H, CH3), 3.17–3.19 (bs, 4H, piperidine C2,6-H), 3.60 (s, 2H,
C4-H dihydroindenopyrazole), 3.93 (s, 3H, OCH3), 6.88–6.95 (m, 3H, aromatic protons),
7.12 (d, J = 8.76 Hz, 1H, aromatic proton), 7.25 (s, 2H, aromatic protons), 7.32–7.36 (m, 2H,
aromatic protons), 7.48 (s, 1H, aromatic proton), 7.56 (s, 1H, aromatic proton). 13C NMR
(75 MHz, DMSO-d6) δ (ppm): 21.17 (CH3), 25.53 (2CH2), 27.63 (2CH2), 45.09 (CH2), 49.08
(CH2), 59.14 (CH3), 112.58 (2CH), 115.26 (4CH), 124.23 (C), 125.61 (CH), 128.72 (CH), 129.71
(2CH), 132.17 (C), 137.88 (C), 140.30 (2C), 140.93 (C), 147.22 (C), 148.66 (C), 150.33 (C), 155.59
(C), 156.85 (C). HRMS (m/z): [M + H]+ calcd. for C29H28ClN3O: 470.1994. Found: 470.1981.

3.2. Biochemistry
3.2.1. Cell Culture and Drug Treatments

K562 cells and PBMCs (Precision Bioservices, Frederic, MD, USA) were cultured in
RPMI 1640 (Wako Pure Chemical Industries, Osaka, Japan), while A549 cells were cultured
in DMEM/Ham’s F-12 (Wako Pure Chemical Industries, Osaka, Japan). All cells were
supplemented with 10% fetal bovine serum (FBS) (Sigma Aldrich, MO, USA) and 89 µg/mL
of streptomycin (Meiji Seika Pharma, Tokyo, Japan) at 37 ◦C in a humid atmosphere and 5%
CO2. In experiments, K562 cells and PBMCs were cultured in 24-well and 96-well plates
(Asahi Glass Co., Chiba, Japan) at 4× 104 and 1× 106 cells/mL concentrations, respectively,
for 48 h. A549 cells were plated (24-well plate) at 1 × 104 cells/mL and incubated for 72 h
(the optimal cell number was determined in our previous studies) [34–36]. The stock
solutions of the compounds and erlotinib in concentrations ranging from 1 µM to 10 mM
were prepared in DMSO (Wako Pure Chemical Industries, Osaka, Japan) and further diluted
with fresh culture medium. The final DMSO concentration was adjusted as 1%, which had
no effect on the cell viability [37].

3.2.2. Cell Viability Assay

MTT (Dojindo Molecular Technologies, Kumamoto, Japan) was used to evaluate the
cytotoxic effects of the compounds and erlotinib on A549 and K562 cells, and PBMCs, based
on the previously described procedures in the literature [37,38]. After cells were exposed to
various concentrations (0.1–100 µM) of the compounds for 48 and 72 h at 37 ◦C, MTT solu-
tion was applied and cells were incubated for an additional 4 h. Then, supernatants were
discarded, and the formazan crystals were solubilized with a 100 µL DMSO addition. The
absorbance of the solution was measured using an Infinite M1000 microplate reader (Tecan,
Grödig, Austria) at a wavelength of 570 and 630 nm. All experiments were conducted three
times and IC50 values were specified as the drug concentrations, decreasing absorbance to
50% of control values [39].

3.2.3. Kinase Inhibitory Activity

Manufacturer′s instructions (Promega Corporation, Madison, WI, USA) were applied
for the kinase profiling assay protocol (TK-1 and TK-2) with small changes [40–42]. Ac-
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cording to this protocol, the kinase stocks in the kinase strips and their substrate stocks
in the substrate strips were diluted with 95 µL of 2.5× kinase buffer and 15 µL of 100 µM
ATP solutions, respectively. The kinase working stocks (2 µL), 2 µL of the ATP/substrate
working stocks, and 1 µL of the tested compound solution (3–100 µM) and erlotinib solu-
tion (0.01–100 µM) or 5% DMSO solution in the 384-well plate were used for the kinase
reactions. Following the 4 h of incubation at room temperature, the activity of kinases was
screened by means of the ADP-Glo Kinase Assay (Promega Corporation, Madison, WI,
USA) based on the manufacturer′s protocol. The Infinite M1000 microplate reader (Tecan,
Grödig, Austria) was used to measure the kinase inhibitory effects of the compounds in a
dose-response manner. Besides, the IC50 values of the tested compounds were determined
using ImageJ software.

3.2.4. Detection of Cell Death

A549 cells (1 × 104 cells/well) were incubated in each well of a 24-well plate with
the most potent compounds in this series at IC50 concentrations for 15 h. Then, an apop-
totic/necrotic cell detection kit (PromoKine, Heidelberg, Germany) was used according to
manufacturer′s instructions with some modifications [43,44]. Briefly, the cells were washed
twice with 1× binding buffer, a staining solution containing 50 µL of 1× binding buffer,
5 µL of FITC-Annexin V solution, and 5 µL of ethidium homodimer III solution, and treated
for 30 min at room temperature in a protected-light environment. After washing of cells
in 1× binding buffer, cells were analyzed under a Biorevo BZ-9000 all-in-one fluorescence
microscope (Keyence, Osaka, Japan). The number of apoptotic cells, late apoptotic or
necrotic cells, and necrotic cells was quantified as previously described [45].

3.3. Molecular Docking

The X-ray crystallographic structure of EGFR (supplied from the PDB server (PDB
code: 4HJO) [46]) was optimized in the protein preparation module. After that, compound
4, compound 1, and erlotinib were optimized with energy minimization in the ligand
preparation module. Molecular docking simulations were generated for optimized EGFR
and ligands with Grid Generation and Glide/XP protocols (Schrödinger Release 2016-2:
Schrödinger, LLC, New York, NY, USA).

3.4. In Silico ADME Prediction

In silico pharmacokinetic profiles of compounds 1–7 were determined using the QikProp
module of Schrödinger software (Schrödinger Release 2016-2: QikProp, Schrödinger, LLC,
New York, NY, USA).

4. Conclusions

In this paper, a MW-assisted technique was employed to efficiently synthesize a new
series of 2,4-dihydroindeno[1,2-c]pyrazoles. The MTT assay was conducted to determine
their potency as anti-NSCLC agents. Compounds 1, 4, and 7 were found to be more potent
than erlotinib on A549 cells. These derivatives were also evaluated for their cytotoxic
features on K562 CML cells and PBMCs to assess their selectivity. Based on the SI values of
compounds 1, 4, and 7, their anticancer activities were selective. The EGFR TK inhibitory
effects of compounds 1, 4, and 7 were also investigated. Among them, p-bromo-substituted
compound 4 was the most potent EGFR TKI with an IC50 value of 17.58 µM. In order to
gain a better insight into its kinase selectivity profile, compound 4 was also tested for its
inhibitory effects on HER2, HER4, IGF1R, InsR, KDR, PDGFR-α, PDGFR-β, ABL1, BRK,
BTK, CSK, FYN A, LCK, LYN B, and SRC. Compound 4 showed more potent inhibitory
effects on HER2 and LCK enzymes than erlotinib. According to in vitro kinase profiling
assays, it can be concluded that the kinase selectivity profiles of compound 4 and erlotinib
are different. Moreover, the annexin V/ethidium homodimer III staining method was
applied to determine the effects of compound 4 and erlotinib on apoptosis. Compound 4
induced apoptosis more than erlotinib. Taking into account all in vitro data, compound
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4 exerts selective and potent anti-NSCLC activity through the inhibition of EGFR TK,
together with the induction of apoptosis, which may counter resistance to chemotherapy
and radiotherapy. Molecular docking studies revealed that compound 4 displayed high
binding affinity to the ATP binding site of EGFR, similar to erlotinib, but with a more
distinct interaction profile. In silico ADME data of compound 4 pointed out its potential
as a potential orally bioavailable anti-NSCLC agent endowed with favorable drug-like
features. This work, comprising of a combination of biochemical and computational
approaches, could represent a rational guideline for further structural modifications of 2,4-
dihydroindeno[1,2-c]pyrazoles to generate a new class of EGFR TKIs for NSCLC therapy.

Supplementary Materials: The following are available online, Figure S1: The IR spectrum of com-
pound 4; Figure S2: The 1H NMR spectrum of compound 4; Figure S3: The 13C NMR spectrum of
compound 4; Figure S4: The HRMS spectrum of compound 4.
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