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During infection, bacterial pathogens successfully sense, respond and adapt to a

myriad of harsh environments presented by the mammalian host. This exquisite

level of adaptation requires a robust modulation of their physiological and metabolic

features. Additionally, virulence determinants, which include host invasion, colonization

and survival despite the host’s immune responses and antimicrobial therapy, must

be optimally orchestrated by the pathogen at all times during infection. This can

only be achieved by tight coordination of gene expression. A large body of evidence

implicate the prolific roles played by bacterial regulatory RNAs in mediating gene

expression both at the transcriptional and post-transcriptional levels. This review

describes mechanistic and regulatory aspects of bacterial regulatory RNAs and highlights

how these molecules increase virulence efficiency in human pathogens. As illustrative

examples, Staphylococcus aureus, Listeria monocytogenes, the uropathogenic

strain of Escherichia coli, Helicobacter pylori, and Pseudomonas aeruginosa have

been selected.
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INTRODUCTION

Numerous bacterial species are infamous for their role in causing human diseases (Kusters
et al., 2006; Gellatly and Hancock, 2013; Dayan et al., 2016; Terlizzi et al., 2017; Radoshevich
and Cossart, 2018). These bacterial pathogens possess certain key distinguishing features. First,
they can efficiently sense environmental cues presented by the host such as changes in nutrient
availability, pH, osmolarity, and temperature (Fang et al., 2016). Second, pathogenic organisms
quickly adapt their metabolic physiology accordingly, thereby switching between their free-living
lifestyles and that within the host (Groisman and Mouslim, 2006; Fuchs et al., 2012). Finally, they
are characterized by an arsenal of virulence attributes, which they robustly modulate to survive
and proliferate during host infection (Pettersson et al., 1996). For example, bacteria harbor potent
toxins and toxin delivery systems (Green and Mecsas, 2016). One major function of bacterial
toxicity is to kill surveilling immune cells such as neutrophils (do Vale et al., 2016). While this is
an immune-evading mechanism employed by pathogenic bacteria, the proteins constituting these
toxins and their delivery conduits are highly immunostimulatory (Miao et al., 2010; Gall-Mas et al.,
2018). Additionally, toxin expression and secretion are energy intensive (Lee and Rietsch, 2015; Joo
et al., 2016). Thus, pathogenic bacteria cannot afford to constitutively express toxin genes but must
modulate their expression according to the site and stage of the infection.

A second important virulence property of pathogenic organisms is their ability to form biofilms.
A biofilm lifestyle, as markedly opposed to a single organismic one, is characterized by bacteria
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clustered with each other and attached to a foreign surface such
as the host epithelium (Costerton et al., 1995). Another important
feature includes encapsulation of the bacterial community inside
of an extracellular matrix consisting of polymeric substances
synthesized by the bacteria themselves such as polysaccharides
(Sutherland, 2001). This abiotic outer layer adopts distinct three-
dimensional structures. For example, it can form water channels,
critical for efficient nutrient mobilization and uptake by biofilm
bacteria (Stewart, 2003; Wilking et al., 2013). Additionally,
this protective matrix provides a barrier against host immune
responses (Leid et al., 2005; Begun et al., 2007; Toska et al.,
2018; Tseng et al., 2018) and antimicrobial therapy (Goltermann
and Tolker-Nielsen, 2017; Hall and Mah, 2017; Singh et al.,
2017). Because of this, and due to altered gene expression,
biofilm-associated bacteria are highly recalcitrant to antibiotics
(Mah and O’Toole, 2001; Stewart, 2002; Hall and Mah, 2017).
Consequently, bacterial biofilm formation represent a huge
clinical burden, being widely implicated in the establishment
and maintenance of chronic infections (James et al., 2008; Calo
et al., 2011; Chen and Wen, 2011; Omar et al., 2017). A classic
example is the formation of highly antibiotic resistant biofilms in
the airways of Cystic Fibrosis (CF) patients (Lopez-Causape et al.,
2015) (described later in detail). Other clinically relevant biofilm
infections include otitis media (Bakaletz, 2007), and biofilms
frequently found on medical devices such as catheters dwelling
inside the patient (Donlan, 2008).

Another community-associated behavior contributing to
bacterial virulence is quorum sensing (QS) (Antunes et al.,
2010). QS is a bacterial cell-to-cell communication mechanism
dependent on the abundance of signaling molecules, known
as autoinducers (AI), in the extracellular milieu (Miller and
Bassler, 2001). AIs are regulators of bacterial gene expression
(Rutherford and Bassler, 2012; Banerjee and Ray, 2016, 2017).
Each bacterial cell is capable of synthesizing and secreting AI
molecules. Thus, the magnitude of AI accumulation hinges upon
both bacterial cell-density as well as gene expression profile
(i.e., whether the AI production is on or off) of the whole
bacterial community. At an adequate cell density, when the AI
levels reach a certain threshold, they are detected by receptors
located in the bacterial cell membrane or in the cytoplasm. Some
of these receptors comprise the membrane-associated sensor
histidine kinase of bacterial two-component signal transduction
systems. Binding of the AI to the receptor activates its kinase
activity thus autophosphorylating it, followed by transmission of
the phosphate group to the corresponding response regulator,
thereby facilitating regulation of genes in that particular QS
regulon. The second mechanism of QS mediated regulation
starts with secretion of the inactive AI. In the extracellular
environment, it is processed to its active form, and either diffuses
freely or is transported back into bacterial cells. There, the AI
binds its cognate cytoplasmic receptor, which is characteristically
a global transcription factor controlling the whole QS regulon
(Rutherford and Bassler, 2012).

Altered gene expression is key to a pathogen’s optimization
of its virulence attributes. For example, significant changes
exist in both transcript and proteome profiles of the same
bacterial species existing as a free-floating single bacterium

vs. in a biofilm (Oosthuizen et al., 2002; Nigaud et al., 2010;
Chavez-Dozal et al., 2015; Charlebois et al., 2016; Jia et al.,
2017; Favre et al., 2018). Bacterial regulatory RNAs are now
established as pivotal players in facilitating these coordinated
changes in gene expression, acting at all levels, starting from
transcription to protein translation and protein activity (Romby
et al., 2006; Toledo-Arana et al., 2007; Svensson and Sharma,
2016;Westermann, 2018). These RNA regulators can be classified
in different groups, as detailed below (Figure 1).

The first type of regulatory RNA elements includes those
present in the 5′ untranslated regions (UTR) of their cognate
mRNA. 5′UTRs can contain complex structures that undergo
alterations depending on environmental conditions (Winkler
and Breaker, 2005; Waters and Storz, 2009). These 5′UTR
structure are known as riboswitches and are important regulators
of gene expression at the transcriptional or the translational level.
Riboswitches respond to changes in abundance of small metal
ions, small molecules, or metabolites (Winkler and Breaker, 2005;
Waters and Storz, 2009). Another example of 5′UTR regulatory
elements are RNA thermometers, which responds to temperature
changes during infection (Loh et al., 2018). For instance, the start
codon of an mRNA might be embedded in the 5′UTR region,
which adopts a stem loop structure at lower temperatures, thus
preventing translation. Upon colonization of the host, this stem
loop loosens as the temperature increases (>37◦C), facilitating
translation. Finally, another type of 5′UTR regulatory elements
respond to pH changes, by forming inaccessible structures at one
pH and opening up at a different one (Nechooshtan et al., 2009).

The second type of regulatory RNAs are encoded in cis
and are known as anti-sense RNAs (asRNA). They regulate (i)
transcription efficiency, by transcription interference, (ii) RNA
stability, by forming RNA-RNA double stranded complex which
may be degraded, and (iii) translation initiation, by interacting
with and sequestering the ribosome binding site (RBS) (Svensson
and Sharma, 2016; Westermann, 2018).

The third type of regulatory RNAs are expressed in trans,
that is, at a different genomic site than the genes they regulate
(Svensson and Sharma, 2016; Westermann, 2018). They are
known as small regulatory RNAs (sRNA). The first mechanism
employed by sRNAs involves binding of the sRNA to a regulatory
protein to titrate it away from its target. For example, the 6S
RNA is expressed upon entry in stationary phase of growth and
acts by titrating the RNA polymerase holoenzyme containing
the sigma70 (σ70) specificity factor, preventing transcription
dependent on σ70 (Wassarman, 2007). The second mechanism
employed by sRNAs involves direct RNA-RNA base-pairing of
the sRNA to its target mRNA. In instances of inhibition of
gene expression, the sRNA base-pairs with the RBS of the target
mRNA, thus occluding translation. In cases of positive regulation,
the sRNA have been reported to act by binding to sequences in
the 5′UTR of the target mRNAs and preventing the formation of
inactivating stem-loop structures (Morfeldt et al., 1995).

Additionally, proteins commonly interact with the regulatory
RNAs mentioned above in facilitating the observed regulatory
roles. For example, the hybridization of sRNAs with their target
mRNAs in Gram negative bacteria is often mediated by the
RNA chaperone Hfq (Updegrove et al., 2016). Furthermore,
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FIGURE 1 | Schematic representation of major types of RNA-based regulatory mechanisms in pathogenic bacteria. (A) Riboswitches are most commonly part of the

5′UTR of the corresponding target mRNA. They are responsive to chemical ligands or environmental signals such as temperature (as in an RNA thermometer) for

structural rearrangements leading to gene expression changes. sRNAs can be expressed from the complimentary strand (B) (as antisense RNA) or from a different

genomic location (C). Blue: transcript under regulation; green: regulatory RNA. (D) Regulatory proteins (yellow) typically bind their target mRNAs (blue) at the RBS or

the SD sequence to modulate their stability and/or activate/inhibit translation. Protein binding sRNAs (red) on the other hand can sequester these regulatory proteins

by direct binding and titrate them away from their targetome. Pathogenic organisms not described in the main text are referred in this figure to highlight different RNAs

as examples. For more details, refer to the following articles that have been extensively referred to for construction of this figure (Svensson and Sharma, 2016;

Westermann, 2018).

downstream degradation of mRNAs targeted by sRNAs is mostly
attributed to RNases (Matos et al., 2017).

Despite different types of bacterial regulatory RNAs and
mechanisms of action, certain paradigms can be deduced
(Westermann, 2018). One striking feature is that while some
regulatory RNAs do have specific stray targets, they mostly target
the mRNA encoding a central regulatory player such as a global
transcription factor, thereby acting on a large number of indirect
targets at once. This determines major virulence transitions
such as switching over from a planktonic lifestyle to a biofilm
lifestyle (Williams McMackin et al., 2019). Secondly, in multiple
pathogenic bacteria, reshaping of metabolism, and virulence
by the action of regulatory RNAs appear to be intertwined. A
prominent example is the sugar-phosphate stress (thus related
to metabolism) associated sRNA SgrS, which also regulates the
pathogenesis effector SopD (Papenfort and Vogel, 2014) in
Salmonella. A second example is the TarA sRNA in Vibrio, which
links virulence with glucose acquisition (Richard et al., 2010).
Finally, it appears that functional redundancy among multiple
regulatory RNAs exists, with more than one of them facilitating
the same regulation, albeit to different intensities (Deng et al.,
2012, 2014; Heidrich et al., 2017; Pannekoek et al., 2017).

In light of the major virulence attributes and RNA based
regulatory mechanisms described previously, this review aims
to describe specific pathways of riboregulation of virulence
factors in prominent human pathogens (Table 1). For this

purpose, we will focus on pathogens affecting different niches
of infection; Staphylococcus aureus for disseminated systemic
infections and those associated with prosthetic implants; Listeria
monocytogenes as a model intracellular bacterial pathogen; UPEC
(uropathogenic Escherichia coli) for urinary tract infections;
Helicobacter pylori as an enteric pathogen and Pseudomonas
aeruginosa as a major causative agent of airway infections in
cystic fibrosis patients.

Staphylococcus aureus

The Gram-positive bacteria S. aureus is often present among
the normal human skin microbiome (Becker and Bubeck
Wardenburg, 2015). However, it is also one of the most common
pathogens implicated in bacterial infections of all areas of
the body including skin (McCaig et al., 2006), bones (Olson
and Horswill, 2013), heart (Fernandez Guerrero et al., 2009),
respiratory tract (Parker and Prince, 2012), and bloodstream
(Corey, 2009). Additionally, it is well-known to form highly
persistent biofilms on prosthetic devices and implants (Lister
and Horswill, 2014). S. aureus is one of the primary causative
agents of nosocomial infections, amajority of which are antibiotic
resistant (Wang and Ruan, 2017). This pathogen is listed in the
ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella
pneumonia, Acinetobacter baumannii, Pseudomonas aeruginosa,
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TABLE 1 | List of riboregulatory molecules described in the text.

Pathogen Regulatory

RNA/Protein

Mechanism of Action

Staphylococcus aureus RNAIII Trans acting sRNA

RsaA Trans acting sRNA

SprD Trans acting sRNA

Listeria monocytogenes Rli27 Trans acting sRNA

LhrC Trans acting sRNA

Rli55 Riboswitch

AspocR Riboswitch

PfrA Riboswitch

SreA Riboswitch

SreB Riboswitch

Anti0677 Antisense RNA (Excludon)

UPEC PapR Trans acting sRNA

RyhB Trans acting sRNA

Helicobacter pylori IsoA1 Trans acting sRNA

RepG Trans acting sRNA

5′ureB Trans acting sRNA

Pseudomonas aeruginosa RsmA RNA binding protein

RsmF RNA binding protein

RsmV Trans acting sRNA

RsmW Trans acting sRNA

RsmY Trans acting sRNA

RsmZ Trans acting sRNA

CrcZ Trans acting sRNA

ReaL Trans acting sRNA

PhrS Trans acting sRNA

PrrF1 Trans acting sRNA

PrrF2 Trans acting sRNA

ErsA Trans acting sRNA

Sr0161 Trans acting sRNA

and Enterobacter sp.) group of bacteria, which represent the
most antibiotic resistant species (Santajit and Indrawattana,
2016). S. aureus possesses a myriad of virulence mechanisms
including expression of toxins, surface adhesins, immune-
evading molecules, quorum sensing, and biofilm formation
(Powers and Bubeck Wardenburg, 2014). These pathogenic
determinants are intricately regulated, and sRNAs play a
significant role in that regulatory network (Fechter et al.,
2014; Tomasini et al., 2014). Key sRNAs of S. aureus are
described below.

RNAIII
The best characterized sRNA in S. aureus is RNAIII (Boisset
et al., 2007; Bronesky et al., 2016). RNAIII is under control
of the agr QS system. The agr locus comprises of two ORFs
(open reading frames), transcribed by promoters P2 and P3
in opposite directions. P2 drives the transcription of a four-
cistron mRNA, RNAII. Among these four gene products, AgrD
is an autoinducer peptide (AIP) synthesized in its inactive
form. AgrB is a membrane associated AIP transporter, which
matures the precursor AgrD AIP to its active form and exports

it out of the cell. The remaining two cistrons agrC and agrA
form the sensor histidine kinase and its cognate response
regulator, respectively, in a two-component signaling (TCS)
cascade. At high cell density, the autoinducer peptide AgrD
is detected by the sensor AgrC and the signal is globally
transmitted intracellularly by the now phosphorylated response
regulator, AgrA. AgrA, in turns, upregulates transcription of
RNAIII (from promoter P3) that will exert pleiotropic roles
in S. aureus.

First, the 5′ region of RNAIII encodes the δ-hemolysin,
conferring hemolytic activity to the bacterium. Then, RNAIII
can act as a regulatory RNA, regulating multiple target mRNAs.
RNAIII has a long half-life of 45min and is structurally
characterized by 14 stem-loops and two lengthy helical
structures. Specific hairpins are involved in base-pairing to target
mRNAs, with more than one stem-loop acting in concert to
achieve regulation. To repress translation, RNAIII may bind at
the RBS (e.g., lytM mRNA), both at the RBS and the 5′UTR (e.g.,
rot mRNA), using multiple stem loops, or at the coding region
(e.g., coamRNA) (Felden et al., 2011). RNAIII can also positively
regulate targets. The only two targets known to be upregulated
by RNAIII are hla mRNA, encoding the α-hemolysin, and eap,
encoding the extracellular adherence protein (Guillet et al., 2013).

While it has numerous mRNA targets to which it directly
binds, RNAIII also modulates a large indirect regulon, for
example, by inhibiting translation of the key transcriptional
repressor rot (repressor of toxins) (Geisinger et al., 2006). Of
note, as in most cases of regulatory RNA binding events in Gram-
positive pathogens, RNAIII does not require the RNA chaperone
Hfq, even though it has been shown to bind to RNAIII in vitro
(Liu et al., 2010).

The overarching feature of RNAIII-mediated regulation is that
it represses translation of genes encoding for surface proteins
or those associated with high peptidoglycan turnover, which are
typically required at primitive stages of infection marked by low
cell numbers to facilitate and consolidate early events in bacterial
colonization. Conversely, it activates synthesis of secreted
exotoxins, which are required for bacterial dissemination at later
time points of infection when bacterial cell density is high.
Indeed, RNAIII is reported to assist S. aureus switch from a
biofilm mode of growth (colonization and persistence in a new
niche) to a more invasive one, required for dispersal to new host
tissues (Boisset et al., 2007). Observations that S. aureus isolates
from antibiotic resistant chronic bacteremia, like those associated
with prosthetic implants, are commonly defective in both agr
locus and RNAIII expression, further bolster this view. RNAIII
holds a pivotal position in S. aureus regulation of virulence.
Evidently, apart from a few exceptions, all downstream effects
of S. aureus QS signaling are mediated through RNAIII. RNAIII
is therefore versatile as a regulator, cascading both direct and
indirect pathways.

Methicillin resistant S. aureus (MRSA) are considered the
most dangerous of S. aureus isolates. The mobile genetic element
SCCmec was shown to confer resistance to methicillin (Noto
et al., 2008). Interestingly, the mRNA of one of the genes in
this region, psm-mec, binds to and inhibits translation of the
previously described agrA gene. Consistent with reports that
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the agr system and its effectors, such as RNAIII, produce a
pronounced invasive character in S. aureus, psm-mec mutations
in community-acquired MRSA isolates account for their acute
virulence nature (Qin et al., 2016).

RsaA
Contrarily to RNAIII, the sRNA RsaA promotes chronic
persistence, biofilm formation, and expression of cell surface
proteins (Romilly et al., 2014). The rsaA gene is under positive
transcriptional control of the specialized factor SigmaB (σB) and
is minimally expressed at exponential phase and highly expressed
at stationary phase (Geissmann et al., 2009). Furthermore,
both endoribonucleases RNase III and RNase Y regulate its
degradation (Romilly et al., 2014). The primary target of RsaA is
the mgrA mRNA, encoding the global transcriptional regulator
MgrA, whose translation is inhibited by base-pairing of the
sRNA. Rate constant for this binding indicates rapid association,
which is important for impeding the formation of ribosomal
initiation complex (Romilly et al., 2014). The translationally
repressed mgrA mRNA is then likely degraded. RsaA can bind
to two distinct regions of the mgrA mRNA: a cytosine-rich
motif targets the Shine-Dalgarno (SD) and two hairpin loops
in the 5′ region of RsaA interact with the coding sequence
ofmgrA.

MgrA has ∼350 genes in its regulon, including its own
mRNA that is positively autoregulated (Luong et al., 2006). The
culminating effect of MgrA is activation of capsule synthesis
and inhibition of biofilm formation by repressing surface
proteins expression and releasing extracellular DNA (Trotonda
et al., 2008). Intriguingly, through mgrA modulation, RsaA is
connected with RNAIII and the agr QS system, as MgrA activates
transcription of the agr locus (Ingavale et al., 2005).

It is postulated that presence of a functional RsaA may have
been evolutionarily favored in S. aureus. Given that it is primarily
a commensal organism in the human host, it is possible that RsaA
prevents the bacteria from being hyperinvasive at all times, and
this regulation is critical for normal colonization fitness (Romilly
et al., 2014). Using MAPS (a technology developed to affinity
purify RNA-RNA complexes in vivo and identify the targets by
sequencing), a recent study has further validated the interaction
of mgrA mRNA with RsaA and has further extended its RNA
targetome (Tomasini et al., 2017).

SprD
SprD is a sRNA transcribed from a pathogenicity island
(region on the chromosome predominately harboring virulence
associated genes) whose main target elucidated thus far is the
sbi mRNA, encoding the immune evading effector Sbi (Second
binder of immunoglobulins) (Chabelskaya et al., 2010). Sbi
inhibits opsonization, which is usually followed by phagocytosis
and action of the complement system (Haupt et al., 2008).
Specifically, Sbi binds IgG, the C3b, and H complement factors
for these purposes. While these functions of Sbi are important
in the survival of S. aureus in the host, it is to be noted
that Sbi nevertheless elicits a major pro-inflammatory response
by activating multiple immune-signaling cascades that results
in the production of major cytokines (IL-6 for example) and

leukocytes chemotaxis to the site of infection. Thus, for success
of the organism, Sbi expression needs to be optimally fine-
tuned rather than constitutively expressed. The regulatory RNA
SprD facilitates this by keeping Sbi levels in check through
impeding its translation. Indeed, part of the 5′UTR, the SD
sequence and the start codon of sbi have been reported to be
critical for the regulation by SprD. Consistent with that seen
with RNAIII, SprD does not require the RNA chaperone Hfq in
binding its target. Though blocking translation of sbi, SprD does
not facilitate degradation of the mRNA. The fact that SprD is
a major regulator of S. aureus pathogenesis is evident from the
fact that its deletion severely decreases morbidity and mortality
of the mouse model of infection. Interestingly, RNAIII also
binds to and represses sbi translation by a similar mechanism,
further illustrating the need for only modest synthesis of the
Sbi protein.

Listeria monocytogenes

L. monocytogenes is an especially interesting model to describe
the role of regulatory RNAs in shaping pathogenesis during
the intracellular lifestyle of a bacterium. In addition, L.
monocytogenes represents a group of uncommon bacterial
pathogens. Indeed, in contrast to other pathogens described in
this review, L. monocytogenes infections (listeriosis) are relatively
scarce. Nevertheless, listeriosis mortality rates remain in the high
range of 20–30% (Radoshevich and Cossart, 2018), particularly
for children, the elderly, immunocompromised patients, and
during pregnancy. The primary mode of transmission is via
contaminated food, and for people in vulnerable groups,
the minimum infective dose can be as low as 100 bacteria
(Radoshevich and Cossart, 2018). As a gastro-intestinal
pathogen, this bacterium breaches the intestinal epithelial
barrier and spreads via blood and lymphatic system to the whole
body, colonizing especially the liver and spleen (Cossart, 2011).
Importantly, it resides intracellularly in both phagocytic and
non-phagocytic cells, helped by an arsenal of virulence factors
modulating host cell processes (Pizarro-Cerda et al., 2012).
Higher than 150 sRNAs have been reported in L. monocytogenes
(Lebreton and Cossart, 2016). Some of those involved in
intracellular pathogenesis are described in this section.

Rli27
Lm0514 is a protein in L. monocytogenes that is recognized by
sortase enzymes through its LPXTG motif and is tethered to
peptidoglycan located on the cell surface (Garcia-del Portillo
et al., 2011; Mariscotti et al., 2012). Importantly, Lm0514 protein
level is highly augmented during intracellular growth of the
bacteria, where it significantly facilitates survival (Pucciarelli
et al., 2005; Garcia-del Portillo et al., 2011). Interestingly, lm0514
mRNA level increases only by 6-fold during intracellular vs.
extracellular growth, while the rise in protein level is 200 times
higher (Garcia-del Portillo et al., 2011). This is strongly indicative
of posttranscriptional regulation, and indeed, during infection,
the lm0514 mRNA transcript is upregulated by the sRNA Rli27.
Rli27 binds to the 5′UTR of lm0514, exposing the RBS and
enhancing translation (Quereda et al., 2014).
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LhrC
Listeria Hfq-binding RNA C (LhrC) is a small non-coding
(nc) RNA first discovered amongst a pool of RNAs that
co-immunoprecipitated with the RNA chaperone Hfq in L.
monocytogenes (Christiansen et al., 2006; Sievers et al., 2014).
However, later studies have established that, as in most cases
of RNA based regulation in Gram-positive species, Hfq is not
required for LhrC stability or its interaction with mRNA targets.
There are five copies of the lhrC gene ranging from 111 to 114
nucleotides in size (Sievers et al., 2014). Initial observations of
LhrC expression during L. monocytogenes intracellular growth
in macrophages and its putative role in facilitating pathogenesis
have been substantiated by three reports of Kallipolitis and
colleagues (Sievers et al., 2014; Dos Santos et al., 2018; Ross et al.,
2019). LhrC RNAs 1-5 (LhrC1-5) were found to be upregulated
during conditions of cell envelope stress such as those generated
by the antibiotic cephalosporin or bile salts (Sievers et al., 2014).
A later study reported that heme, commonly encountered by L.
monocytogenes during systemic dissemination in human hosts, is
also a trigger for LhrC expression (Dos Santos et al., 2018).

The first LhrC target characterized was the mRNA lapB,
encoding a cell wall-tethered adhesin (Sievers et al., 2014).
LhrC contains three regions with high concentration of cytosine,
resulting in a UCCC motif which is critical in mediating
interaction with the AG rich SD sequence of the target mRNA to
repress translation. Downregulation of lapB expression probably
benefits the organism in evading host immune response while
spreading through blood, as bacterial surface proteins are well-
known immune stimulators (Toledo-Arana et al., 2009). Five
copies of LhrC and three redundant CU-rich target binding sites
indicate the need and the potential of LhrC to transform a low
input signal into a magnified output response. Further, the five
copies of LhrC appear to act additively rather than redundantly,
corroborating this hypothesis. Subsequent work has established
that LhrC, by using its UCCC motifs, binds to and represses
mRNAs of genes involved in heme influx into the cell and its
subsequent metabolism (Dos Santos et al., 2018). Thus, it is not
surprising that LhrC plays an important role in survival of the
pathogen in heme-rich niche containing lysed erythrocytes.

By using the same motif and mechanism, LhrC also represses
mRNA translation of another membrane protein-coding mRNA,
oppA, involved in oligopeptide binding (Sievers et al., 2015).
Recent work has demonstrated the inhibitory mechanism of
LhrC on another mRNA target, the T cell stimulating antigen
(TcsA) (Ross et al., 2019). Here, the repressive mechanism
involves LhrC base pairing at a site upstream of the SD region
of tcsA, which does not affect translation but rather induces rapid
transcript turnover.

Riboswitch-Regulated Nutrient Utilization
During gastro-intestinal infection in vertebrate hosts,
L. monocytogenes commonly encounters ethanolamine,
and metabolizes it by expressing the eut (ethanolamine
utilization) genetic locus (Garsin, 2010; Archambaud et al.,
2012). Transcription of eut is under RNA-based regulation
(Freitag, 2009).

The first level of regulation is mediated by the sensor histidine
kinase EutW and its cognate response regulator EutV, which are

activated by presence of ethanolamine in the extracellular milieu.
Phosphorylated EutV serves as an ANTAR antiterminator that
prevents eut gene transcription cessation by binding to stem-
loop structures in the nascent mRNA (Fox et al., 2009; Lebreton
and Cossart, 2016). Located upstream of the eut locus is the gene
Rli55, acting as the second level of RNA-based eut regulation. The
5′ region of Rli55 harbors a vitamin B12 riboswitch.

In absence of vitamin B12, Rli55 is transcribed as a 450 nt-long
transcript, which sequesters EutV, thus leading to transcriptional
attenuation of eut genes. Conversely, in presence of vitamin
B12, the riboswitch binds its ligand, resulting in transcription
of a much shorter Rli55 transcript (200 nt), incapable of
sequestering EutV, leading to eut transcriptional antitermination
and ultimately, eut expression (Mellin et al., 2014). Both
ethanolamine (for EutV phosphorylation) and vitamin B12
(for Rli55 inhibition) are therefore essential to activate the
ethanolamine utilization pathway in L. monocytogenes.

Another example where a vitamin B12 riboswitch controls
nutrient utilization in L. monocytogenes is AspocR, which
regulates propanediol usage by L. monocytogenes during infection
(Mellin et al., 2013). Expression of the pdu (propanediol
utilization) operon is driven by the transcription factor PocR
(Kim et al., 2014). The complementary strand of pocR mRNA
region encodes the riboswitch-controlled asRNA AspocR. In
the absence of vitamin B12, this riboswitch serves as an
antiterminator to the asRNA of pocR (AspocR), located
downstream. Thus, under these conditions, the asRNA AspocR
blocks expression of pocR and hence of pdu genes. In
presence of vitamin B12, the riboswitch conformation promotes
transcriptional attenuation of AspocR, and the resultant
truncated asRNA is unable to bind the pocR mRNA transcript,
allowing utilization of propanediol.

Regulation of PrfA Expression
Translational control of pfrA, a master transcriptional activator
of virulence genes in L. monocytogenes (de las Heras et al., 2011)
is a notable example of RNA-based regulation. The temperature-
sensitive thermoswitch located in its 5′UTR forms a hairpin at
30◦C, thereby occluding the RBS and hindering prfA translation.
Conversely, at the host infection temperature of 37◦C, this
secondary RNA structure is not favored resulting in upregulation
of prfA translation. With PrfA activating expression of a myriad
of toxins, lytic enzymes and actin-remodeling proteins, this
mechanistic control ensures that virulence factors are produced
by the bacteria when in the host (37◦C) but not otherwise (30◦C)
(Lebreton and Cossart, 2016). A second control mechanism is
associated with nutrient availability and is exerted by sRNAs
SreA and SreB (Loh et al., 2009). In the presence of the
ligand S-adenosylmethionine (SAM), premature transcriptional
termination occurs in riboswitches SreA and SreB facilitating
expression of smaller non-coding transcripts which bind to prfA
mRNA RBS, preventing translation.

Excludon-Mediated Control of Flagellar
Motility
Excludon is a gene locus wherein the transcript serves as
both an antisense RNA (asRNA) to block expression of the
mRNA transcribed in the opposite direction as well as being
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the mRNA of adjacent gene(s) (Schultze et al., 2015; Lebreton
and Cossart, 2016). Thus, an excludon negatively regulates its
complementary gene but promotes expression of the neighboring
gene in the same DNA strand. A classic example in L.
monocytogenes is regulation of flagella biosynthesis, the cellular
appendages facilitating bacterial swimming in liquid milieu
and swarming on semisolid surfaces (Sesto et al., 2012). In L.
monocytogenes, loci lmo0675-0689 encodes the flagella-related fli
operon. lmo0676 and lmo0677 encode proteins FliP and FliQ,
which are integral parts of the flagellar export apparatus. On
the opposite strand, a promoter drives the expression of a long
RNA, namedAnti0677, harboring full sequence complementarity
to lmo0675, lmo0676, and lmo0677. Anti0677 acts as an
antisense RNA, downregulating expression of the flagellar export
apparatus. Additionally, transcription of Anti0677 also reads
through mogR, the motility gene repressor. Anti0677 therefore
acts as a mRNA, increasing MogR levels in the cell. This
excludon regulates flagella synthesis from two angles: an asRNA
mechanism leads to decrease in flagellar export apparatus and
expression of mogR from two promoters (anti0677 promoter
and mogR promoter) increases MogR production, which also
downregulates flagellar expression.

UROPATHOGENIC Escherichia coli (UPEC)

In the human host, pathogenic strains of E. coli cause infection
in a plethora of sites, including the urinary tract (Kaper et al.,
2004; Terlizzi et al., 2017). The uropathogenic E. coli (UPEC)
is the primary cause of urinary tract infection (UTI), affecting
both the urinary bladder (cystitis) and the kidney (nephritis),
with widespread morbidity and even mortality. UPEC bacteria
are armed with a variety of toxins, adhesins, and iron scavenging
molecules called siderophores (Terlizzi et al., 2017). They also
have excellent stress response systems and have the capability to
form biofilms, even intracellularly (Anderson et al., 2003).

Regulators are essential determinants of UPEC virulence.
The RNA chaperone Hfq has been reported to be important
for UPEC colonization of mouse urinary tract (Kulesus et al.,
2008). Intracellular microcolony formation, a hallmark of
UPEC infections, as well as biofilm formation, which increases
UPEC persistence, will not be as efficient upon Hfq deletion.
Additionally, Hfq maintains lipopolysaccharide homeostasis,
mediates tolerance to cell envelope stress, cationic antimicrobial
polymyxin B, reactive free radicals and acidic conditions, on top
of facilitating motility.

Commonly associated to the chaperone Hfq in E. coli are small
regulatory RNAs. sRNAs playmajor roles in coordinating UPEC’s
virulence. Discussed below are the specific roles played by two
important regulatory RNAs in this pathogenic bacterium.

PapR
As described above, Hfq is a major regulator of virulence in
UPEC. Because of its well-known RNA chaperone role, a group
aimed at co-immunoprecipitating RNAs with Hfq to try and
identify novel Hfq-associated sRNAs expressed during infection
(Khandige et al., 2015). Hfq-bound sRNA profiles varied greatly
depending on whether they were obtained from UPEC growing

under lab conditions or within host cells. Particularly, envelope
stress related sRNAs were found to increasingly co-precipitate
during infection conditions.

The same screen uncovered the novel trans acting sRNA
PapR, which negatively regulates papI mRNA, encoding a
regulator of the adhesin P-fimbriae, a critical pathogenic factor
aiding bacterial attachment to renal tissue (Lane and Mobley,
2007; Khandige et al., 2015). PapI is an activator of P-
fimbriae biosynthesis, which turns on transcription of the P-
fimbriae associated pap operon. PapR has been found to base-
pair within the coding sequence of papI mRNA, ∼80 nt
downstream of its translational start site, to achieve negative
translational regulation.

RyhB
In non-pathogenic E. coli, the 90 nt-long sRNA RyhB
regulates iron usage and uptake (Massé and Gottesman, 2002).
Congruently, in UPEC, it promotes synthesis of iron-scavenging
siderophores enterobactin, aerobactin, and salmochelin, critical
for pathogenesis in the host environment (Porcheron et al.,
2014). RyhB facilitates siderophore biosynthesis by base-pairing
with mRNAs of the precursor molecules thereby stabilizing
them and enhancing translation. Further supporting its role
as a virulence mediator, in animal models of UTI, deletion
of ryhB leads to defects in colonization of urinary bladder.
RyhB also regulates infection in various other pathogens
such as Shigella (Murphy and Payne, 2007) and Vibrio
(Oglesby-Sherrouse and Murphy, 2013).

Helicobacter pylori

H. pylori is an important pathogen using RNA-based virulence
regulation to infect the gastric mucosa. Stomach of 50% of the
total human race is believed to be colonized by this Gram-
negative organism, which will remain in the gastric mucosa
unless treated with persistent antimicrobial therapies (Testerman
and Morris, 2014). Manifestations of H. pylori infections range
from mild inflammation of the gastric tissue to severe and
chronic peptic ulceration and finally to malignancies, the
pathology with the worst prognosis (Wroblewski et al., 2010). H.
pylori is known tomodulate expression ofmicro RNAs (miRNAs)
in the gastric tissue, altering the human immune response to its
advantage (Libânio et al., 2015). This pathogen also possesses
an array of other virulence factors, such as sRNAs, to survive
and proliferate in the host (Pernitzsch and Sharma, 2012). In
silico analysis has indeed revealed that multiple sRNAs might
have important effects on its infectivity. Below are described three
major H. pylori ncRNAs and their modes of action.

IsoA1
Type 1 toxin-antitoxin systems are mechanistically represented
by the mRNA of the toxin gene being inhibited by binding of
the antitoxin sRNA (Unterholzner et al., 2013). In H. pylori,
synthesis of the toxic 30 aa polypeptide AapA1 is stalled by base
pairing of the IsoA1 sRNA, which serves as the corresponding
antitoxin in this system (Arnion et al., 2017). During log phase
growth, both aapA1 and isoA1 are constitutively transcribed.
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However, the 250 nt full length aapA1 transcript is translationally
inactive because of internal secondary structures occluding the
RBS. It is only after the 3′end is processed, leading to a truncated
225 nt mRNA, that the RBS becomes available for translational
initiation. However, this active structure also facilitates IsoA1
base-pairing, which leads to quick degradation of the sRNA-
mRNA complex by RNase III. Thus, AapA1 toxin synthesis is
repressed at two posttranscriptional levels; first by its own 5′UTR
secondary structure, and second by the IsoA1 sRNA and RNase
III, ensuring that the toxin is not formed during exponential
growth of H. pylori.

RepG
Implicated in H. pylori infections of animal models, TlpB is a
chemotaxis receptor positively responding to quorum sensing
signals and negatively responding to low pH (Croxen et al.,
2006). tlpB mRNA has a characteristic 6–16 guanine repeat,
termed simple sequence repeats (SSR), in its 5′ leader region.
Variation in tlpB transcript SSR length is observed between H.
pylori isolated from different patients, and sometimes even from
the same patient.

This G repeat sequence is targeted by the highly conserved
RepG sRNA (Regulator of polymeric G repeats) (Pernitzsch et al.,
2014). The span of the G repeat determines the interaction of tlpB
mRNA with RepG. Regulation is at the level of translation and is
a fine-tuning system rather than being a binary on/off decision.
Base-pairing of RepG to tlpB mRNA occurs in the 5′UTR,
upstream of the RBS. Thus, translational attenuation is probably
conferred by structural rearrangements and/or occlusion of
ribosome stand-by sites. In addition, RepG is reported to
diminish tlpB mRNA stability, indicating that the dimerization
event enhances degradation. In addition to tlpB, RepG likely has
a larger targetome, with which it probably interacts via its C/U
laden terminator loop.

5′ureB-Regulatory RNA
Copious production of urease is a key mechanism that enables
H. pylori to survive in the acidic gastric environment (Mobley,
1996; Graham and Miftahussurur, 2018). Urease metabolizes the
available urea to ammonia and bicarbonate, both of which serve
as buffer to maintain a healthy pH in the bacterial cell. Expressed
from the same operon, UreA andUreB are the two subunits of the
precursor urease apoenzyme. At the transcription level, ureAB is
positively regulated by the acid-activated TCS ArsRS, ensuring
plentiful synthesis (constituting ∼8% of total cell protein) at low
pH (Pflock et al., 2005).

Additionally, restricted urease synthesis is also required at
neutral or high pH (Wen et al., 2013). This is facilitated by the
5′ureB-sRNA, an antisense RNA transcribed from the 5′ureB
non-coding strand.

While the phosphorylated (in acidic conditions) response
regulator ArsR promotes sense ureAB transcription, the
unphosphorylated (in neutral/alkaline conditions) protein
upregulates the antisense 5′ureB-sRNA expression. It is observed
that when the 5′ureB-sRNA is expressed (i.e., at neutral to
high pH), the sense ureAB dicistronic mRNA is shortened
to only 1400 nt instead of the regular 2700 nt transcript

found at low pH, capable of synthesizing both subunits of
the apoenzyme. Mechanistic explanation is that the antisense
5′ureB-sRNA base-pairs with the ureAB transcript, to promote
transcription termination of the sense ureAB mRNA. A
characteristic YUNR motif is essential for the initial annealing
of the sense and antisense transcripts. Interestingly, this
attenuation of transcription does not involve binding of Rho
or even characteristic Rho-independent structures. As reported
elsewhere, the asRNA binding leads to structural reassignments
that ultimately destabilizes the RNA polymerase (Stork et al.,
2007). At the same time, the termination of transcription
is reported to be bona fide, rather than being caused by
transcriptional interference of the sense and antisense transcripts
being expressed at the same time (Shearwin et al., 2005). Finally,
a low amount of the antisense 5′ureB-sRNA is enough to repress
even high quantities of ureAB transcripts.

Pseudomonas aeruginosa

Whenever it finds its host innate immunity weak, P. aeruginosa
can cause opportunistic infections in virtually every human tissue
(Lang et al., 2004; de Bentzmann and Plesiat, 2011). The most
notable among these infection sites are the lungs of CF patients,
where P. aeruginosa forms persistent biofilms (Hoiby et al., 2010;
Smith et al., 2017). Once established, usually by late adolescence
of the patient, these infections are almost impossible to eradicate
and contribute largely to the decreased quality of life and life
expectancy of these patients (Emerson et al., 2002; Bjarnsholt
et al., 2009).

Multiple host environmental factors promote P. aeruginosa
biofilm infections in the CF lungs. Among these is the viscous
mucus, a hallmark of CF airway environment, which provides
a favorable niche for microbial pathogens to thrive (Matsui
et al., 2006; Moreau-Marquis et al., 2008). Additionally, the
microorganisms induce a huge immune response by recruiting
leucocytes to the area. The leucocytes however are failing to
eliminate the infection and rather cause extensive tissue damage.
This “frustrated phagocytosis” (Conese et al., 2003; Alexis et al.,
2006; Simonin-Le Jeune et al., 2013; Okkotsu et al., 2014) further
contributes to disease by providing extracellular DNA, aiding in
the biofilm formation process (Tolker-Nielsen and Høiby, 2009;
Fuxman Bass et al., 2010).

The other host-associated factors that will favor biofilm
formation by P. aeruginosa include altered iron and oxygen
availability in the CF airways (Moreau-Marquis et al.,
2008). P. aeruginosa senses and responds adequately to
such environmental cues. For example, motility and Type 3
Secretion System (T3SS), a machinery to produce and inject
toxins directly into the host cytoplasm by a multiprotein syringe
complex (Hauser, 2009), are downregulated while production of
exopolysaccharides is increased (Furukawa et al., 2006; Folkesson
et al., 2012; Winstanley et al., 2016). These behavioral changes
are facilitated by modulation of gene expression, mainly carried
out by sRNAs at the post-transcriptional level (Vakulskas et al.,
2015). Therefore, it is not surprising that more than 570 sRNAs
are reported to be expressed by P. aeruginosa (Pita et al., 2018).
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Below, we explore some of the regulatory RNAs that play
major roles in the switch from the planktonic (free swimming)
acute lifestyle of P. aeruginosa to its biofilm lifestyle, characteristic
of CF lung infections.

Rsm Signaling
Almost a tenth of P. aeruginosa transcriptome is part of the
Rsm regulon. This Rsm (regulator of secondary metabolites)
regulon acts as a posttranscriptional regulatory system that
controls multiple virulence determinants, ultimately governing
the transition between the acutely toxic planktonic and the
chronic biofilm growth modes (Vakulskas et al., 2015; Janssen
et al., 2018).

The key components of the Rsm system are two RNA
binding proteins, RsmA, and RsmF (also known as RsmN),
which are orthologs to the E. coli CsrA (Carbon storage
regulator A) protein. RsmA and RsmF share 31% identity and
a conserved arginine is critical for their RNA binding activity
(Janssen et al., 2018). Both proteins can directly bind target
mRNAs and positively or negatively affect transcript stability
and/or translation.

Presence of one (RsmA) and two (RsmF) conserved GGA
motifs is important for target recognition (Romero et al., 2018).
Both RsmA and RsmF activates the acute phenotype (T3SS,
pilus, etc.) and represses the biofilm features (Pel and Psl
exopolysaccharides, T6SS expression etc.).

These RNA binding proteins are tightly regulated by sRNAs
RsmV, RsmW, RsmY, and RsmZ, also part of the Rsm system
(Janssen et al., 2018). The sRNAs RsmV, RsmW, RsmY, and RsmZ
can bind RsmA and RsmF by their GGA consensus sequence
and sequester them away from their mRNA targets. Thus, these
sRNAs are activators of the chronic biofilm-lifestyle phenotype
while being repressors of the acute one. It is noteworthy that
despite the apparent redundancy among the four similar acting
sRNAs constituents of the Rsm system, variations do exist in
their binding affinities. For example, RsmY and RsmZ have 10
times stronger affinity for RsmA than for RsmF. Moreover, their
expression patterns will differ (Janssen et al., 2018).

Further, some differences have been observed in the regulons
of RsmA vs. RsmF, despite their overall similar phenotypic
regulatory patterns (Table 1) (Brencic and Lory, 2009; Romero
et al., 2018). This highlights the critical need for fine-tuning
mechanisms alongside major decision-making on-off switches,
given the heterogeneity in the CF lung environment (Wei and
Ma, 2013; Janssen et al., 2018).

Environmental regulation of the Rsm cascade, at least in
part, is facilitated by the GacAS TCS (Brencic et al., 2009).
The GacA response regulator, when phosphorylated by the
sensor histidine kinase GacS, directly binds to the promoters
of rsmY and rsmZ and activates their transcription. Two other
membrane associated proteins LadS and RetS activate and inhibit
GacA phosphorylation, respectively (Williams McMackin et al.,
2019). LadS is stimulated by high calcium in the extracellular
milieu (Broder et al., 2016). Further, recent work (Chakravarty
et al., 2017) has reported that the inner membrane magnesium
transporter MgtE, whose own expression is augmented during
antibiotic pressure (Redelman et al., 2014) and low magnesium

(both signals present in CF airway) (Coffey et al., 2014;
Santi et al., 2016), signals through GacS to increase rsmYZ
transcription. GacAS thus represents a hub of environmental
regulation of the Rsm signaling. Contrary to RsmYZ, the
sRNAs RsmW, and RsmV are not upregulated by GacAS
(Janssen et al., 2018).

To add to the complex regulation of the Rsm regulon, another
protein, the polynucleotide phosphorylase (PNPase) stabilizes
both RsmY and RsmZ (Chen et al., 2016). Furthermore, rsmYZ
transcription is inhibited by TspR, which acts through RetS
(Williams McMackin et al., 2019). rsmZ transcription is also
regulated by MvaT, and by BswR which thwarts the negative
effects of MvaT (Williams McMackin et al., 2019). Another
important sRNA implicated in T3SS repression is CrcZ, which
sequesters both Crc and RsmF and activate T3SS gene expression
(Sonnleitner et al., 2009; Williams McMackin et al., 2019).

RNA Based Regulation of Quorum Sensing
Real

The conserved 100 nt sRNA ReaL (Regulator of alkyl quinolone)
is involved inQS regulation in P. aeruginosa (Carloni et al., 2017).
It is under the negative regulation of the Las QS system and
activates translation of the pqsC transcript, thereby connecting
the two QS systems important for modulating pleiotropic
virulence phenotypes. ReaL is also under RpoS regulation and
is therefore expressed strongly in stationary growth phase.
Consistent with the phenotypes generally observed in isolates
from CF lungs, ReaL downregulates swarming but increases
biofilm formation and secretion of pyocyanin and pyoverdine
(Meyer et al., 1996; Lau et al., 2004).

PhrS

The stationary phase of growth, characteristic of CF airway
infections, sees another sRNA being upregulated: PhrS (Folsom
et al., 2010; Sonnleitner et al., 2011). PhrS transcription is also
activated through the oxygen responsive DNA binding ANR
protein in low oxygen conditions, typical of the CF lungs
(Zimmermann et al., 1991). Interestingly Hfq is required for
steady state levels of PhrS, not because Hfq promotes its stability,
but because it is required for ANR production. Consistent
with its expression in CF lung-like conditions, it increases
pyocyanin production. Finally, PhrS facilitates synthesis of the
QS-related transcriptional regulator protein PqsR (Brouwer et al.,
2014) by directly binding to it and activating translation of
a short ORF element located upstream of the pqsR mRNA.
This ORF is translationally joined with the pqsR transcript
(Sonnleitner et al., 2011).

PrrF1 and PrrF2

A major sRNA regulatory system is encoded by the prrF locus in
P. aeruginosa (Reinhart et al., 2017). The genes prrF1 and prrF2
are 95% identical in sequence and are located adjacent to each
other in the genome, separated just by 95 bases (Djapgne et al.,
2018). They are functional homologs of E. coliRyhB sRNA, and as
such, both these sRNAs play key roles in iron homeostasis and in
virulence (Nelson et al., 2019). PrrF sRNAs are transcriptionally
upregulated under low iron conditions, during which they
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repress synthesis of non-essential iron-requiring proteins like
SodB (Reinhart et al., 2015). Both PrrF1 (116 nt) and PrrF2
(114 nt) regulate QS in P. aeruginosa by base pairing with the
antR mRNA and blocking its translation (Oglesby et al., 2008).
AntR is a transcription factor that activates transcription of loci
antABC and catBCA, responsible for breakdown of anthanilate,
a precursor compound of the alkyl quinolone signaling molecule
(Pita et al., 2018).

The apparent redundancy in structure and function of the
two PrrF sRNAs can be rationalized by the finding that different
signaling cascades, other than iron availability, may differentially
regulate these two genes, thereby fine-tuning gene expression
in response to slight variations in the extra and intracellular
environment. For example, the AlgZR TCS, very important
in rendering the CF lung mucoid phenotype in P. aeruginosa
(Williams McMackin et al., 2019), activates the prrF2 promoter
but not the prrF1 one (Little et al., 2018). Also, the tandem repeat
structure of the prrF genes facilitate expression of another sRNA,
PrrH, known to be involved in heme metabolism (Reinhart et al.,
2015, 2017).

ErsA
The envelope stress responsive sRNA A (ErsA) is activated by
the envelope stress responsive factor Sigma22 (σ22) (AlgT/U)
(Falcone et al., 2018). Additional CF lung signals like scarce iron
and low oxygen both drives its transcription.

The first role of ErsA is direct base-pairing to the RBS of
algC and repressing its translation in a Hfq-dependent manner.
AlgC provides sugar residues for downstream synthesis of
exopolysaccharides of the biofilm matrix (Okkotsu et al., 2014).
Thus, through AlgC, ErsA is part of a feed forward cycle involved
in biofilm polysaccharide formation.

The second role of ErsA is to directly bind the 5′UTR of the
oprD mRNA and negatively regulate its translation (Li et al.,
2012). Result of this regulation includes, but is not limited to,
reducing influx of carbapenem antibiotics into the cell. This
is important, given the widespread antibiotic resistance of CF
airway-associated P. aeruginosa.

Interestingly, another sRNA called Sr0161 was also reported
to repress oprD expression by the same mechanism (Zhang
et al., 2017). Additionally, Sr0161 represses T3SS, consistent
with its role in shaping P. aeruginosa phenotypes suited for
the CF lung environment. The same study identified yet
another sRNA, Sr006, which increases bacterial recalcitrance to
polymyxin as well as decreases the pro-inflammatory profiles
of the lipopolysaccharide, which can be considered important
adaptations to the CF lung niche.

CONCLUSION

Robust approaches for characterizing sRNA targetomes in
bacteria have revolutionized our understanding of the gene
regulatory patterns facilitated by these regulatory RNAs and
their associated chaperones such as Hfq (Santiago-Frangos and
Woodson, 2018). Development of techniques such as MAPS
(Lalaouna et al., 2017), RilSeq (Melamed et al., 2018), ClipSeq
(Andresen and Holmqvist, 2018), and Grad-seq (Smirnov

TABLE 2 | Riboswitches explored as targets.

Riboswitch References

FMN Lee et al., 2009; Howe et al., 2015

glmS Mayer and Famulok, 2006; Fei et al., 2014

Guanine-binding riboswitch Kim et al., 2009; Mulhbacher et al., 2010

Cyclic di-GMP riboswitch Furukawa et al., 2012

T-box riboswitch Means et al., 2006; Anupam et al., 2008

Thiamine pyrophosphate riboswitch Sudarsan et al., 2005

Lysine riboswitch Sudarsan et al., 2003

et al., 2016) techniques are important milestones in the
field. Additionally, obtaining information about sRNA-based
regulation even at the single cell level is now possible, but
nevertheless needs improvement (Saliba et al., 2014). We now
have significant knowledge about RNA mediated regulation in a
wide range of bacterial pathogens (Table 1, Figure 1) that has the
potential to tremendously bolster the development of therapeutic
approaches targeting these signaling pathways. This is critical,
given the rapid expansion of antibiotic resistance in bacteria
(Ventola, 2015; Hofer, 2019) and increasing ineffectiveness of
existing antimicrobial treatments.

There are certain considerations when targeting sRNAs for
developing antimicrobial therapeutics. First, sRNAs and their
mechanisms of action are often not conserved (Richter and
Backofen, 2012; Colameco and Elliot, 2017) and thus antibiotics
targeting a certain sRNAmight have limited spectrum. Secondly,
lack of defined structural configurations in sRNAs like that of
rRNAs and tRNAs (both of which are targets of numerous
known antibiotics Chopra and Reader, 2014; Hong et al., 2014),
makes the design of small molecule inhibitors challenging. In
this regard, as certain studies (El-Mowafi et al., 2014) have
already addressed this, sRNA chaperones such as Hfq might
be a more lucrative target because of its conserved three-
dimensional structure across bacterial species. Finally, most
sRNAs act as fine tuning regulators of gene expression rather
than as a binary on/off switch. This limits their promise in
being a molecule target that can decisively clear an infection.
Rather, targeting sRNAs could likely be a potential way to
bolster conventional antibiotic strategies. Nevertheless, studying
mechanisms of sRNA action, give us information on gene
regulation right at the nucleotide resolution. This has been
exploited in studies exploring “nucleotide-based antimicrobials”
(Nikravesh et al., 2007).

The prospects of antimicrobial development demonstrate
more potential with riboswitches. On the one hand, often
riboswitches dictate major metabolic transitions (for example,
see ethanolamine utilization by a riboswitch in L. monocytogenes
described previously), rather than functioning only as a fine
tuner of gene expression as sRNAs do. On the other hand,
riboswitches, by nature, are excellent binders of small ligands.
Another major advantage with riboswitches is that they have
so far been never found in humans (Colameco and Elliot,
2017), and thus greatly reduce the chances of host toxicity.
Though still in its infancy, there have been a few studies
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on targeting riboswitches for antimicrobial development. Some
of them are summarized in Table 2. Such attempts should
continue to grow and improve, as our knowledge about
the occurrence and mode of action of more riboregulatory
agents increases.
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