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Abstract

Although numerous quantitative trait loci (QTL) influencing disease-related phenotypes have been detected through gene
mapping and positional cloning, identification of the individual gene(s) and molecular pathways leading to those
phenotypes is often elusive. One way to improve understanding of genetic architecture is to classify phenotypes in greater
depth by including transcriptional and metabolic profiling. In the current study, we have generated and analyzed mRNA
expression and metabolic profiles in liver samples obtained in an F2 intercross between the diabetes-resistant C57BL/6
leptinob/ob and the diabetes-susceptible BTBR leptinob/ob mouse strains. This cross, which segregates for genotype and
physiological traits, was previously used to identify several diabetes-related QTL. Our current investigation includes
microarray analysis of over 40,000 probe sets, plus quantitative mass spectrometry-based measurements of sixty-seven
intermediary metabolites in three different classes (amino acids, organic acids, and acyl-carnitines). We show that liver
metabolites map to distinct genetic regions, thereby indicating that tissue metabolites are heritable. We also demonstrate
that genomic analysis can be integrated with liver mRNA expression and metabolite profiling data to construct causal
networks for control of specific metabolic processes in liver. As a proof of principle of the practical significance of this
integrative approach, we illustrate the construction of a specific causal network that links gene expression and metabolic
changes in the context of glutamate metabolism, and demonstrate its validity by showing that genes in the network
respond to changes in glutamine and glutamate availability. Thus, the methods described here have the potential to reveal
regulatory networks that contribute to chronic, complex, and highly prevalent diseases and conditions such as obesity and
diabetes.
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Introduction

Genetic linkage and association studies have the power to establish

a causal link between gene loci and physiological traits. These studies

can make novel connections between biological processes that would

not otherwise be predictable based on current knowledge. The pace

of gene discovery has greatly accelerated in recent years, and

numerous quantitative trait loci (QTL) influencing disease-related

phenotypes have been identified through gene mapping and

positional cloning. While it has become relatively straightforward

to map a phenotype to a broad genomic region, identification of the

individual gene(s) responsible for the phenotype remains difficult.

Consequently, only a few percent of the many QTL that have been

mapped have had their underlying gene(s) identified [1–7]. Another

limitation of traditional QTL mapping is that it is based on

association with a physiological phenotype, but often does not reveal

the molecular pathways leading to that phenotype.

One way to uncover molecular mechanisms of disease states is

to broadly expand the types of phenotypes analyzed in genetic

screens. For example, with microarray technology, one can

measure the abundance of virtually all mRNAs in a segregating

sample. Importantly, mRNA abundance shows sufficient herita-

bility in outbred populations and experimental crosses to allow

mapping of gene loci that control gene expression, termed

expression QTL (eQTL) [8,9]. When eQTL co-localize with a

physiological QTL, one can hypothesize a shared regulator and

offer a potential pathway leading to the physiological trait [9,10].

The pathway between a QTL and a physiological trait often

involves changes in the steady-state levels of metabolic interme-

diates, in addition to changes in mRNA abundance. These

metabolites can correlate with the genetic, transcriptional,

translational, post-translational, and environmental influences on

phenotype [7,11]. Moreover, metabolites are intermediates in

signaling pathways that can regulate gene expression. For
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example, fatty acids act as ligands for several of the PPAR nuclear

hormone receptors, bile acids activate FXR in liver, and

diacylglycerol regulates protein kinase C [12–14]. Metabolite

abundance reflects a biological response to exogenous and

endogenous inputs, and when investigating pathways from

genotype to phenotype, metabolites can provide a powerful

complement to gene expression data and give novel insights into

disease pathogenesis mechanisms [7,11,15–25].

Our laboratories have begun to apply targeted metabolic

profiling to study mechanisms underlying obesity-induced diabetes

[15–20], but have not yet attempted to integrate these methods

with genotyping and transcriptional profiling. This has included

the application of gas chromatography/mass spectrometry (GC/

MS) and tandem mass spectrometry (MS/MS) for measurements

of acyl-carnitine, organic acid, amino acid, free fatty acid, and

long and medium-chain acyl-CoA metabolites in tissue extracts

and bodily fluids. Herein, we have applied these methods to

measure various metabolites in liver samples from mouse strains

that differ in susceptibility to obesity-induced diabetes.

C57BL/6 (B6) leptinob/ob mice are obese but essentially resistant

to diabetes, whereas BTBR leptinob/ob mice are severely diabetic

[22]. In an F2 cohort derived from these parental strains, we have

shown that the range of blood glucose, insulin levels, and body

weight exceeds that of either the C57BL/6 (B6) leptinob/ob or BTBR

leptinob/ob parental strains. We went on to identify several diabetes-

related QTL in this F2 sample [21,22]. In the current study, we

focused on a subset of 60 F2 mice that have previously been

evaluated in detail with regard to liver gene expression profiles

[24] to ask if the abundances of hepatic metabolic intermediates

would show sufficient heritability to enable us to map metabolic

QTL (mQTL). Because we previously performed mRNA

expression profiling on liver samples from this F2 sample, we

were also able to investigate the potential for integrative analysis of

the expression profiling and metabolite data sets.

We show that liver metabolites do map to distinct genetic

regions, thereby demonstrating that tissue metabolite profiles are

heritable. In addition, we show that mQTL co-localize with

eQTL, suggesting common genetic regulators. Finally, as a proof

of principle of the practical significance of this multi-disciplinary

approach, we illustrate the construction of a specific causal

network that links gene expression and metabolic changes, and

demonstrate its validity by targeted gene expression analysis.

Results

Metabolites of Similar Function Are Highly Correlated
across the F2 Population

We determined the concentration of 67 liver metabolites,

comprised of 15 amino acids and urea cycle intermediates, 45

acyl-carnitines, and 7 organic acids (TCA cycle intermediates and

related metabolites) in the F2 sample. The specific analytes are

summarized in Table S1.

We created a correlation matrix of all pairwise comparisons

among individual metabolites. Unsupervised hierarchical cluster-

ing revealed several ‘‘hot spots’’ of highly correlated metabolites

(Figure 1). It is striking that several hot spots correspond to the

biochemical pathway to which the metabolites belong. For

example, 12 of the 15 amino acids cluster in this matrix.

Moreover, when we consider pairwise correlations between all

amino acids, 75% had absolute correlation coefficients greater

than 0.5 (p,0.01) (Table S2). Permutation analysis of these

pairwise correlations confirm that the 15 amino acids correlate as

a functional group (p,0.001). Several specific acyl-carnitine

derivatives are also clustered, such as hexadecadienoyl carnitine

(C16:2), 3-hydroxy-tetradecanoyl carnitine or dodecenedioyl

carnitine (C14:1-OH/C12:1-DC), and 3-hydroxy-palmitoleoyl

carnitine or cis-5-tetradecenedioyl carnitine (C16:1-OH/C14:1-

DC). The fact that metabolites of a common functional group are

highly correlated suggests that there are potential regulators of

these biochemical pathways segregating in this F2 sample.

In another cluster, pyruvate correlates most highly with alanine

(r = 0.53, p,0.01), and also with lactate and tiglyl carnitine (C5:1)

(p,0.01). Alanine and short-chain acyl-carnitines are products of

peripheral protein and fatty acid catabolism, respectively, and are

delivered to the liver. The liver uses alanine, along with pyruvate

and lactate, as gluconeogenic substrates and rapidly interconverts

these metabolites through transamination and oxidation/reduc-

tion. The clustering of these metabolites based on their relative

concentration in F2 animals suggests that static metabolic profiling

can be used as a marker for changes in flux through certain

metabolic pathways. All metabolite-metabolite correlation coeffi-

cients are listed in Table S2.

It has been demonstrated that mRNA abundance, as deter-

mined with microarray technology, is sufficiently heritable to map

QTL [7,8,10,23–27]. Lan et. al. showed that using expression

mapping, specifically in this F2 intercross, can uncover mecha-

nisms that explain correlations between specific transcripts [8]. We

therefore sought to determine if metabolite abundance, as

measured in F2 liver samples by mass spectrometry, was similarly

heritable. If so, resulting metabolic QTL (mQTL) could be

integrated with expression QTL (eQTL) to form network models

of gene expression that might ultimately help to explain diabetes

susceptibility and resistance in the BTBR leptinob/ob and B6 leptinob/ob

strains, respectively [28,29].

We found that individual metabolites mapped to specific regions

of the genome. By permutation analysis, 21% of the metabolites

map significantly to genomic regions (LOD.5.0, p,0.05),

indicating those genomic regions could potentially influence

(either directly or indirectly) the abundance of these metabolites.

We used LOD threshold of 3.0 to investigate both major and

minor putative mQTL where groups of metabolites map. Figure 2

displays a heat map, with metabolites organized by hierarchical

Author Summary

Although numerous quantitative trait loci (QTL) influenc-
ing disease-related phenotypes have been detected
through gene mapping and positional cloning, identifying
individual genes and their potential roles in molecular
pathways leading to disease remains a challenge. In this
study, we include transcriptional and metabolic profiling in
genomic analyses to address this limitation. We investi-
gated an F2 intercross between the diabetes-resistant
C57BL/6 leptinob/ob and the diabetes-susceptible BTBR
leptinob/ob mouse strains that segregates for genotype
and diabetes-related physiological traits; blood glucose,
plasma insulin and body weight. Our study shows that
liver metabolites (comprised of amino acids, organic acids,
and acyl-carnitines) map to distinct genetic regions,
thereby indicating that tissue metabolites are heritable.
We also demonstrate that genomic analysis can be
integrated with liver mRNA expression and metabolite
profiling data to construct causal, testable networks for
control of specific metabolic processes in liver. We apply
an in vitro study to confirm the validity of this integrative
method, and thus provide a novel approach to reveal
regulatory networks that contribute to chronic, complex,
and highly prevalent diseases and conditions such as
obesity and diabetes.

Metabolic Networks Integrating mQTL and eQTL
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Figure 1. Heat map of correlations between liver metabolites. Each square represents the Spearman’s correlation coefficient between the
metabolite of the column with that of the row (|r|.0.254, p,0.05; |r|.0.330, p,0.01). Metabolite order is determined as in hierarchical clustering using the
distance function 1-correlation. Self-self correlations are identified in black. Acyl-carnitines are annotated according to clinical acyl-carnitine profile shorthand
and amino acids by three letter code; other metabolite abbreviations are found in Table S1. Individual correlation coefficients can be found in Table S2.
doi:10.1371/journal.pgen.1000034.g001
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clustering as in Figure 1. The twelve amino acids that clustered

based on correlation (citrulline, tyrosine, and alanine are the

exceptions) map to common mQTL, e.g., an overlapping region of

chromosome 9. Amino acids that act together in specific pathways

show additional common mQTL. For example glx (glutamine+-
glutamate) and urea cycle intermediates arginine, asx (asparagi-

ne+aspartate), and ornithine, map to a common region of

chromosome 7. The gluconeogenic substrates alanine and

pyruvate have a mapping profile distinct from the majority of

amino acids in that they lack the prominent mQTL on

chromosome 9 (Figure 2). This unique alanine/pyruvate mQTL

may explain why alanine clusters with pyruvate rather than the

amino acids in the correlation matrix (Figure 1).

Expected and Novel Correlations between Transcripts
and Metabolites

The foregoing results demonstrate that metabolites of a

functional class often are correlated with one another and have

common mQTL. To better understand how gene expression and

metabolites are related, we adopted the approach used by Carrari

[30] and created a correlation matrix between liver metabolites

and selected liver transcripts of our 60 F2 mice. Three categories

of transcripts were chosen, based on gene ontology terms relating

to the biological process in which they play a role: 1) carbohydrate

metabolism (glucose metabolism, gluconeogenesis, glycolysis,

carbohydrate biosynthesis, TCA cycle, glucose transport, and

glycogen metabolism); 2) lipid metabolism (fatty acid biosynthesis,

fatty acid oxidation, steroid metabolism, cholesterol metabolism

and biosynthesis, and lipid biosynthesis); and 3) protein metabo-

lism (urea cycle, amino acid biosynthesis, protein catabolism, and

amino acid transport). We organized the metabolites into

functional classes to reveal whether biochemical groups of

metabolites correlated in a specific pattern with transcripts of a

particular pathway (Figure 3).

We found evidence for correlations among functionally similar

metabolites and transcripts when organized by biological process.

For example, several long-chain acyl-carnitine species show a

positive correlation with groups of transcripts involved in

glycolysis, fatty acid biosynthesis, steroid metabolism, cholesterol

metabolism, and lipid biosynthesis. In contrast, a subset of

medium-chain acyl-carnitines and short chain acyl-carnitines

exhibit a negative correlation to these same individual transcripts.

These findings are consistent with recent studies from our

laboratories showing that long-chain acyl-carnitines accumulate

in muscle of animals with diet-induced obesity at the expense of

short-chain acyl-carnitines, and that this abnormality is resolved

when obese animals are exercised [17].

The 15 amino acids displayed a common correlation pattern

with mRNA transcripts in pathways of protein metabolism, as

well as glycolysis, the TCA cycle, and several lipid metabolism

transcripts. These amino acids are very tightly correlated with

one another, leading us to investigate the role played by

individual transcripts in control of amino acid abundance. Our

data show that two very highly correlated metabolites often
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correlate with the same set of individual transcripts. However, we

also see that within this metabolite group, subsets of amino acids

will have a unique transcript correlation pattern (Table S3, Table

S4). For example, thirteen of fifteen amino acids correlate

(r.0.35, p,0.01) with Slc38a3, a sodium-dependent transporter

that mediates entry of a select group of amino acids across the

plasma membrane. There are pathways by which the few known

Slc38a3 amino acid substrates (alanine, asparagine, histidine, and

glutamine) could serve as precursors for biosynthesis of non-

substrate amino acids that also correlate with this transporter

[31,32]. In contrast, only valine and leucine+isoleucine correlate

as highly (r.0.35, p,0.01) with Ppargc1a mRNA, and could

represent a unique metabolic pathway involving the branched-

chain amino acids.
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Figure 3. Heat map of correlations between liver metabolites and select liver transcripts. Each square represents the Spearman’s
correlation coefficient between the metabolite of the column with the transcript of the row (|r|.0.254, p,0.05; |r|.0.330, p,0.01). Metabolites are
organized into their biochemical class; transcripts are selected based on gene ontology terms relating to biological processes in which they play a
role. Correlation coefficients between individual amino acids with select transcripts are found in Table S3.
doi:10.1371/journal.pgen.1000034.g003
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Correlations and Co-Mapping of Transcripts and
Metabolites Produce Causal Network Models

One hypothesis that follows from our results is that unique

genetic regulators could affect the abundance of clusters of

metabolites. Unlike mRNA transcripts, metabolites can be

interconverted with other metabolites, generating a cluster to

which the precursor metabolite will be highly correlated [33]. The

downstream product metabolites will also be correlated with the

regulatory transcript and co-map with the eQTL of the regulatory

transcript [7,34].

Glutamate is a substrate and product in amino acid catabolic

and biosynthetic pathways. Glutamate can act either as an

ammonium donor or acceptor in transamination reactions (via a-

ketoglutarate) and the glutamate dehydrogenase reaction, and can

also be rapidly synthesized from glutamine via glutaminase, thus

providing precursor metabolites for the generation of other

organic acids and amino acids. Glutamine can also act as a

signaling molecule to alter expression of urea cycle and

gluconeogenic enzymes [35–39]. Given that glutamine and

glutamate (glx) can generate a network of related metabolites

and can also change gene expression, we focused on glx as the

start-point for building a proof-of-principle causal network from

the F2 liver expression and metabolite profiling data sets. We

generated a network featuring glx and a limited number of

transcripts that passed multiple, stringent selection filters (see

materials and methods). This provided a testable network that

would enable us to gain insights into metabolite-transcript

relationships.

Transcript nodes of the network are highly correlated to glx

(p,0.05 by 10,000 permutations) as well as other amino acids

(Table 1, Table S4). Table 1 depicts the overlap of the glx mQTL

interval and the physical location of the transcripts or their eQTL

encompassing a 1.5 LOD support interval around LOD peaks that

are at least 3.0 [40,41]. We note that glx is correlated with mRNA

of two transporters: sodium-dependent amino acid transporter

Slc38a3 and glutamate transporter Slc1a2, whose genes are located

on chromosomes 9 (102.5 Mb) and 2 (107.5 Mb), respectively.

Additionally, the glx mQTL on chromosome 9 spans a region

containing Slc38a3 and the mQTL on chromosome 2 and 9

overlaps with the eQTL of Slc1a2 (Table 1). We hypothesize that

both Slc1a2 and Slc38a3 could mediate the entry of glx into liver

cells, but that Slc1a2 may also have expression regulated by glx

abundance.

Table 1 also shows that glx is significantly correlated to

argininosuccinate synthetase 1 (Ass1), arginase 1 (Arg1), phospho-

enolpyruvate carboxykinase 1 (Pck1), isovaleryl coenzyme A

dehydrogenase (Ivd) and alanine:glyoxylate aminotransferase (Agxt)

mRNAs. The physical location and/or mapping location of these

transcripts with respect to the glx mQTL indicates that the

metabolite-transcript relationship may go beyond correlation. For

example, on chromosome 2, we see that the glx mQTL co-maps

with the eQTL for Agxt, Arg1, Ass1, and Ivd [41]. This is consistent

with network models in which the QTL regulates glx, which then

regulates gene expression or conversely, the QTL regulates

mRNA abunance of the four transcripts, which then regulate glx

[9].

Using the method described by Chaibub et al. (in review), we

generated a causal network consisting of glx and these highly

correlated transcripts (FDR = 0.014), incorporating mQTL and

eQTL to determine directionality between the nodes (Figure 4).

This network model predicts that modulation of glutamine and/or

glutamate levels should lead to a change in the expression of Agxt,

Arg1, and Pck1. To test this prediction, we isolated hepatocytes

from lean B6 and BTBR parental strains and measured changes in

gene expression as a result of addition of 10 mM glutamine to the

cultured cells. Glutamine exposure changed transcript abundance,

and no transcript-specific strain differences in glutamine effect on

gene expression were found (p = 0.53) (Figure 5). Glutamine

significantly increased expression of Agxt, Arg1, Pck1, and Ass1 in

both strains (p,0.05 for both strains); the increases in Pck1 and

Ass1 confirm prior studies [36–39].

Given its role as a glutamate transporter, it is not surprising that

Slc1a2 is upstream of glx in the best proposed causal network

(BF = 163) (Figure 4, solid lines). However, glutamine exposure in

vitro reduced Slc1a2 expression in isolated hepatocytes from either

mouse strain, supporting the second-best causal network solution

(Figure 4, dotted lines). Glutamine also reduced Ivd expression in

the B6 strain but showed no effect in the BTBR strain, despite Ivd

being upstream of glx in our best causal network. Our causal

network predicts Slc38a3 should be unchanged by glutamine

treatment. Our hepatocyte experiments confirm this prediction

(Figure 5). Argininosuccinate lyase (Asl), which is neither correlated

nor co-maps with glx, served as a negative control and indeed was

not altered by glutamine treatment.

Discussion

Genomics, transcriptomics, proteomics, and metabolomics have

delivered large arrays of data, allowing one to correlate

physiological states with patterns of gene expression, protein

levels, and metabolite abundance. A major challenge in the

analysis and interpretation of this data is delivering models of

causation from correlations [9,42]. Mouse models of diabetes

provide a unique method for exploring correlation structure since

metabolic dysregulation creates a window for simultaneous

application of multiple ‘‘omic’’ technologies.

We have previously shown that diabetes traits show strong

heritability in an F2 intercross between the diabetes-resistant

C57BL/6 leptinob/ob and the diabetes-susceptible BTBR leptinob/ob

mouse strains. We assume that the disease phenotype is brought

about by a complex pattern of gene expression changes in key

tissues [21,22]. However, we also recognize the complexity

inherent in discriminating the gene expression changes that cause

diabetes from those that occur as a consequence of the disease. For

example, many genes are known to be responsive to elevated

blood glucose levels [43]. Through correlation alone, it is difficult

to distinguish these ‘‘reactive’’ genes from ones that are ‘‘causal’’

for the disease.

We have taken advantage of the high heritability of mRNA

abundance phenotypes, and via microarray technology, have

mapped gene loci controlling gene expression at the genome-wide

level [8]. This establishes at least one node in a network simply

because genetic variation leads to changes in gene expression and

not vice versa. However, it does not establish whether the link

between a locus and a phenotype is direct or via multiple steps and

pathways [27,44].

The purpose of the current study was to explore the possibility

that the levels of metabolites in tissues are sufficiently heritable in

an F2 intercross to provide significant linkage signals, leading to

metabolic QTL. Given that many pathways converge upon

common metabolites and that these pathways have multiple

controllers, any one genetic locus may not alter metabolite levels

significantly, and therefore may not be identified as a metabolite

QTL. Nonetheless, in our F2 sample, we found significant linkage

signals, including some that are quite strong (e.g. tyrosine:

LOD.7, p,0.005; chromosome 2).

Our results reveal that metabolites can be mapped to distinct

genetic regions, much like mRNA transcripts. Although QTL
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mapping in an F2 sample does not provide sufficient resolution to

identify individual genes with high certainty, it can yield novel

information about regulatory networks. Phenotypes mapping to

the same locus can be hypothesized to be co-regulated by that

locus. With our definition of ‘‘phenotype’’ now including

transcripts, metabolites, and physiological traits, we can begin to

devise relationships between these phenotypes and genetic regions.

This F2 study provides evidence of co-regulation of biologically

related pathways. An example is the correlations we found

between amino acids and short-chain acyl-carnitine derivatives.

These findings are consistent with our understanding of metabolic

physiology. In a catabolic, ‘‘glucose starved’’ state, muscle

degrades proteins and delivers amino acids to the liver for glucose

production. The liver transaminates amino acids to corresponding

a-keto acid gluconeogenic substrates. Alpha-ketoglutarate is often

the a-keto acid acceptor for these transaminase reactions,

generating glutamate as a product. Glutamate, which can also

be generated from glutamine in the glutaminase reaction, is then

deaminated to produce ammonia by glutamate dehydrogenase, to

be fixed through the urea cycle. Additionally, hepatic fatty acid

oxidation and amino acid catabolism yield even and odd-

numbered short-chain acyl CoAs, which can be used for fuel

and for production of ketone bodies. These short-chain acyl-CoA

species are readily converted to the cognate carnitine esters, which

we have profiled by MS/MS in this study.

The amino acid metabolites provide the most striking evidence

of functional clustering. We see in both the correlation matrix

(Figure 1) and the genetic linkage data (Figure 2) that the majority

of amino acids group together. However, a subset of the amino

acids, asx, glx, arginine, and ornithine uniquely map to

chromosome 7. Our data predict that these metabolites are driven

by different genetic regulators, leading to a unique mapping

signature, even within a group of highly correlated metabolites.

The C/EBP transcription factors have been shown to alter

expression of enzymes acting in the urea cycle and gluconeogenic

pathway [45–51], and the C/EBPa isoform is encoded on

chromosome 7. Although we cannot determine that metabolites

are mapping to the same individual genes, we can identify genetic

regions that coordinate groups of metabolites and transcripts and

contain plausible candidate genes.

The relationship between mRNA transcripts and metabolites,

however, can be bi-directional. Our network identifies a specific

metabolite, glx that regulates gene expression. This is consistent

with previous studies where glutamine alone increases hepatic

expression of argininosuccinate synthetase and phosphoenolpyr-

uvate carboxykinase, but when combined with other essential

amino acids, alters additional transcripts of urea cycle and

gluconeogenic pathways [36–38,52]. Our work extends these

prior observations by showing that glutamine also changes

expression of Agxt, Arg1, Ivd, and Slc1a2, but does not alter

Slc38a3, despite the positive correlation with this transcript. The

combination of pathway construction based on transcriptional and

metabolic profiling and direct model testing in living cells provides

evidence for a new pathway by which glx can regulate a key
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Figure 4. Glx network. This network consists of a select number of transcripts (grey circles) among the 250 mRNA that are most correlated to glx
(black rectangle) (p,0.002). The microsatellite marker (Mb) for peak eQTL or mQTL altering levels of transcripts and metabolites, respectively, are
given. For any two phenotypes connected by an edge, the direction LOD score and p-value are indicated (insert). The best solution was determined
by an approximate Bayes factor (BF) and indicated in solid lines, the second best solution in dotted lines.
doi:10.1371/journal.pgen.1000034.g004
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gluconeogenic enzyme. Future studies will be needed to investigate

if this pathway is perturbed in development of diabetes.

The glutamine induced reduction in Slc1a2 expression was

unexpected given that this glutamate transporter is upstream of glx

in the best-proposed causal network (Figure 4, solid lines). Slc1a2

mRNA abundance, however, maps in trans (to a locus distinct from

the physical location of the gene) to chromosome 9, its eQTL

overlapping with the glx mQTL. It is therefore possible that

glutamine could regulate Slc1a2, as indicated by the second causal

network (Figure 4, dotted lines). Several studies have shown that

Slc1a2 expression in astrocytes is reduced by increased ammonia

[45–47,51,53–55]. Despite the positive correlation between Slc1a2

and glx in vivo, the glutamine-treated hepatocytes produce

ammonia via glutaminase, and could decrease expression of

hepatic Slc1a2 in vitro. We also did not predict altered expression

of Ivd, an enzyme of leucine oxidation. It is interesting to note that

Ivd is a case where a gene maps both in cis (to the locus containing

the Ivd gene) and in trans, here overlapping with the glx mQTL on

chromosomes 2 and 13. Studies have shown that glutamine has an

inverse relationship with leucine oxidation, and this could be

mediated by glutamine-induced decreased Ivd expression [48,50].

We show that the combined use of eQTL and mQTL, with

correlations allows one to derive a network and establish data-

driven hypotheses about metabolite and gene expression relation-

ships. For example, glycine and serine are the two amino acids

most highly correlated with glx, and the transcript most highly

correlated with glx is Agxt (Table 1, Table S2). Indeed, in our

experiments, Agxt was upregulated by glutamine. We hypothesize

that the upregulation by glx of Agxt is one mechanism by which glx

is correlated with glycine and serine since Agxt catalyzes the

transamination of glyoxalate to form glycine, which can then be

converted to serine. In further support of this hypothesis, in the F2

sample, serine and glycine correlate (r.0.5, p,0.01) to Agxt.

The concurrent use of transcriptomics and metabolomics is not

limited to one biochemical pathway. For example, the correlation

between amino acids and transcripts of carbohydrate and lipid

metabolism might reflect a broader signaling function of amino

acids beyond pathways of protein metabolism. Furthermore, this

correlation, co-mapping, and causal network analysis can uncover

roles for transcripts of unknown function. We note Riken clones

and ESTs are among the transcripts highly correlated to individual

metabolites (Table S3). By incorporating these transcripts of

unknown function as nodes into causal networks, along with

transcripts from known pathways, we may infer the functions of

these previously unidentified mRNA species.

In conclusion, this study shows that metabolites, in addition to

transcripts and physiological traits, can be mapped to genetic

regions, providing a powerful tool to establish connections

between genetic loci and physiological traits. The groups of

metabolites and transcripts that are correlated or co-map to

physiological traits in our F2 sample may offer insight into

metabolic pathways that are causal or reactive to diabetes

pathology.

Materials and Methods

Animals
BTBR, B6, and B6-ob/+ mice were purchased from The

Jackson Laboratory (Bar Harbor, ME) and bred at the University

of Wisconsin. The lineage and characteristics of the BTBR strain

have been reviewed by Ranheim et al. Mice were housed in an

environmentally controlled facility (12-hour light and dark cycles)

and were weaned at 3 weeks of age onto a 6% fat diet (Purina;

#5008). Mice had ad libitum access to food and water, except for

4 hour fasting periods before blood draws and killing (by CO2

asphyxiation). Plasma glucose levels were measured using a

commercially available kit (994-90902; Wako Chemicals). Plasma

insulin levels were measured by radioimmunoassay (RI-13K;

Linco Research).

The facilities and research protocols were approved by the

University of Wisconsin Institutional Animal Care and Use

Committee.

Genotyping
Sixty F2 leptinob/ob mice ranging in age from 13 to 26 weeks were

genotyped as previously described [22]. Mapmaker/EXP was used

to compile genotype data into framework map.

RNA Collection and Microarray
Liver RNA was arrayed as described in Lan et. al [8]. Ten to

12 week old male and female F2 leptinob/ob mice were killed by CO2

asphyxiation after a 4-h fast. Total RNA from sixty F2 mice using

RNAzol reagent (Tel-Test) and was further purified using an

RNeasy kit (Qiagen). The sample labeling, microarray hybridiza-

tion, washing, and scanning were performed according to the

manufacturer’s protocols (Affymetrix). Labeled cRNA was pre-

pared and hybridization assay procedures including preparation of

solutions were carried out as described in the Affymetrix

GeneChip Expression Analysis Technical Manual. A total of 60

MOE430A and MOE430B arrays were used to monitor the

expression levels of approximately 45,000 genes or ESTs. The

distribution of fluorescent material on the array was obtained

using G2500A GeneArray Scanner (Affymetrix). Microarray Suite

(MAS) version 5.0 and GeneChip Operating Software (GCOS)

supplied by Affymetrix was used to perform gene expression

analysis. Expression levels of all the transcripts were estimated

using the RMA algorithm [49].

BTBR
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Figure 5. Glutamine changes hepatic gene expression. Hepato-
cytes from 10-week old lean B6 (A) and BTBR (B) were treated overnight
+/2 10 mM glutamine (n = 5 per strain). Transcripts were measured by
RT-PCR and expression was normalized to Actb control. Significance
calculated based on the difference of delta CT value of each transcript
between the untreated and glutamine treated hepatocytes for each
individual animal (*p,0.05, **p,0.005).
doi:10.1371/journal.pgen.1000034.g005
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Liver Metabolite Quantification
Amino acids, acyl-carnitines and organic acids were measured

using stable isotope dilution techniques [15,18,56]. Amino acids

and acyl-carnitine species were measured using flow injection

tandem mass spectrometry and sample preparation methods

described previously [15,56]. Briefly, samples were equilibrated

with a cocktail of internal standards, de-proteinated by precipita-

tion with methanol, aliquoted supernatants were dried, and then

esterified with hot, acidic methanol (acyl-carnitines) or n-butanol

(amino acids). The data were acquired using a Micromass Quattro

micro TM system equipped with a model 2777 autosampler, a

model 1525 m HPLC solvent delivery system and a data system

controlled by MassLynx 4.0 operating system (Waters, Milford,

MA) [15,56]. Organic acids were quantified using a previously

described method that utilizes Trace GC Ultra coupled to a Trace

DSQ MS operating under Excalibur 1.4 (Thermo Fisher

Scientific, Austin, TX) [18].

Sixty-seven liver metabolites were measured, comprised of 15

amino acids and urea cycle intermediates, 45 acyl-carnitine

derivatives, and 7 organic acids (TCA cycle intermediates and

related analytes). The specific metabolites are listed in Table S1.

All MS analyses employed stable-isotope-dilution. The standards

serve both to help identify each of the analyte peaks and provide

the reference for quantifying their levels. Quantification was

facilitated by addition of mixtures of known quantities of stable-

isotope internal standards from Isotec (St. Louis, MO), Cambridge

Isotope Laboratories (Andover, MA), and CDN Isotopes (Pointe-

Claire, Quebec, CN) to samples, as follows: Acyl-carnitine assays–

D3-acetyl, D3-propionyl, D3-butyryl, D9-isovaleryl, D3-octanoyl,

and D3-palmitoyl carnitines; Amino acid assays–15N1,13C1-gly-

cine, D4-alanine, D8-valine, D7-proline, D3-serine, D3-leucine, D3-

methionine, D5-phenylalanine, D4-tyrosine, D3-aspartate, D3-

glutamate, D2-ornithine, D2-citrulline, and D5-arginine; Organic

acid assays–D3-lactate, D3-pyruvate, 13C4-succinate, D2-fumarate,

D4-glutarate, 13C1-malate, D6-alpha-ketoglutarate, and D3-citrate.

In addition to mass, analytes are identified on the basis of the

particular MS/MS transitions that we monitor for each class of

metabolites. For example, all acyl-carnitine methyl esters produce

a fragment m/z 99. We make the assumption that all even mass

precursors ions of m/z 99 are acyl-carnitines to which we assign

plausible molecular structures. We differentiate isobaric structures

e.g., dicarboxylic and hydroxylated acyl-carnitines, by comparing

of MS/MS spectra for precursors of m/z 85 butylated acyl-

carnitine species. We can infer whether the original compound

had one or two carboxyl groups on the basis of the mass change

from methyl to butyl esters.

Given our sample size, we initially analyzed metabolite

abundance by hierarchical clustering using the distance function

1-correlation [40,57–60]. Pairwise Spearman correlation coeffi-

cients of r.0.254 and r.0.330 reflected p-values p,0.05 and

p,0.01, respectively. To test whether the 15 amino acids are

significantly correlated as a group, groups of 15 metabolites were

permuted 1,000 times and the percentage of pairwise correlations

exceeding 0.5 was recorded for each group. The fifteen amino

acids cluster significantly as a group based on 1,000 permutations

(p,0.001).

QTL Analysis
Detection and mapping of QTL was performed as previously

described [8,22]. Briefly, genotypes of 512 F2 mice at 293 markers

were assembled using MAPMAKER/EXP [61]. A previously

established subset of 60 mice with transcript data was used for

expression QTL analysis [24]. Interval mapping methods adjusted

for sex as implemented in R/qtl [62] were used to compute linkage

to the traits of interest and to investigate mode of inheritance. The

traits included the 45,265 probe sets surveyed by microarray

analysis, and the 67 liver metabolites assayed by MS methods.

We used standard interval mapping implemented in R/qtl to

map each of the transcripts and liver metabolites at 1-cM

resolution with age as additive covariates and sex as both additive

and interactive covariates [62]. A LOD threshold of 5.0 is required

to reach a level of p,0.05 in this data set with sample size 60

based on 10,000 permutations. We used threshold of 3.0 in order

to highlight genetic regions to which groups of metabolites map.

To visualize regions of mQTL co-localization in highly correlated

metabolites (Figure 2), we constructed heat maps where metab-

olites are ordered as in hierarchical clustering using 1-correlation,

as in Figure 1. When mice with the B6 allele at a marker have

greater levels of metabolites on average than mice with the BTBR

allele at that marker, the LOD score at that marker is multiplied

by 21. This adjustment allows us to visualize whether the B6 or

BTBR allele results in elevated metabolite abundance.

In Vitro Hepatocyte Experiments
Hepatocytes from 10-week lean male and female BTBR and B6

parental strain mice (n = 5 for each genotype) were isolated by liver

perfusion [63]. Hepatocytes were seeded at subconfluency (3.5 6
106 cells/6 well plate) in low glucose DMEM (GIBCO) supple-

mented with FBS (10% vol/vol; GIBCO), pen/strep antibiotic

(1%, GIBCO), glutamine (2 mM; GIBCO), and pyruvate (1 mM;

GIBCO). Cells were left to attach for 3 hours in an incubator at

37uC, 5% CO2. After a wash with PBS, the cells were treated with

unsupplemented DMEM (Sigma) with 1 g/L glucose, pen/strep

(1%), and +/2 10 mM glutamine. Cells were treated for 24 hours.

RNA was extracted from hepatocytes using RNeasy kits

(Qiagen) after treatment described above. Hepatocytes in 6-well

plates were homogenized in 0.35 ml of RLT buffer and stored at

280 C. RNA was purified using RNeasy-mini columns (Qiagen)

according to the manufacturer’s directions. The ratio of the optical

densities from RNA samples measured at 260 and 280 nm was

used to evaluate nucleic acid purity and total RNA concentrations

were determined by the absorbance at 260 nm. The quality of

total RNA was estimated based on the integrity of 28S and 18S

rRNA separated using 1% agarose gel electrophoresis.

Gene expression was measured using a 7500 fast real-time PCR

system (Applied Biosystems). cDNA was synthesized from 1 ug of

total RNA using the SuperScriptIII first-strand cDNA synthesis kit

(Invitrogen) primed with a mixture of oligo-dT and random

hexamers. Primers were obtained from Integrated DNA Tech-

nologies and MWG Biotechnology. The SYBR Green PCR core

reagent kit (Applied Biosystems) was used to determine relative

expression. The housekeeping gene Actb was used as a normali-

zation control. Primer sequences and gene accession codes for

transcripts of the glx network are provided in Table S5.

Networks
Causal networks were constructed using the methods of

Chaibub, et al. (in review). Although the network has the ability

to accommodate 100 or more transcripts, we chose a limited

number of transcripts passing several selection filters. The

transcripts for the glx network were derived from the top 250

most correlated transcripts (p,0.002) according to the WebQTL

software (www.genenetwork.org). A hypergeometric test was

performed and identified the GO term category ‘‘metabolism’’

as one of the two processes significantly enriched by these

correlates (p,0.004). Transcripts were chosen from this category,

with an additional requirement being that they have at least one

eQTL overlapping with the glx mQTL (Table 1). QTL in the
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genetic region encompassing a 1.5 LOD support interval around

LOD peaks that are at least 3.0 are also included [41,42]. Based

on 10,000 permutations for each of the transcripts, the LOD

threshold is significantly higher to reach significance (LOD.5.0 is

required for p,0.05), but the 3.0 threshold was used include

major and minor putative QTL [8,24].

If more than one probe set was used to identify a transcript of

interest, only probe sets with a grade A annotation on Affymetrix

were considered. For these probe sets, only those with all eleven

oligonucleotides aligning (via BLAST) to their appropriate target

sequence provided by the National Center for Biotechnology

Information (www.ncbi.nlm.nih.gov) were considered acceptable.

If more than one primer set still identified the transcript, an

average of the probe sets in the network.

We built an undirected dependency graph (UDG) of order 6

with glx and these transcripts as nodes with a two-tailed

significance level of 0.05 [64]. We remove edges that are based

on spurious or partial correlations, and then orient causal edges

between all pairs of connected phenotypes using associated

multiple QTLs to break likelihood equivalence. Quantitative trait

loci for glx and the selected transcripts were identified with R/qtl

[62] using a 3.0 LOD cutoff; the marker closest to each peak

provided key information for inferring causal direction. We

oriented phenotype edges using our QTL-directed dependency

graph (QDG) approach. For any two phenotypes connected by an

edge, the direction LOD score was computed by regressing these

phenotypes on each other and on their respective multiple QTLs,

adjusting for age and for QTL-sex interactions, and by other

phenotypes that might be directly connected to either phenotype

by an UDG edge. For each edge, we evaluate a LOD score

comparing the two possible orientations and we orient the edge in

favor of the direction with the higher likelihood in the ratio. P-

values for the direction of the edges were computed using 10,000

permutations. Our QDG algorithm used random starts to

converge to possible solutions. The best solution was determined

by an approximate Bayes factor (BF) [65,66]. A detailed materials

and methods section describing the construction of causal

networks is provided in Supporting Protocols (Protocol S1).

We estimated network parameters from the true data and

simulated synthetic data according to the causal network in

Figure 4. We simulated 1,000 realizations from the causal network

and for each edge, we recorded the percentage of undirected edges

recovered by the UDG algorithm and the percentage correctly

inferred direction by the orientation steps of the QDG algorithm.

Overall, the average percentage of true recovered edges was 75%

and the average percentage of correctly inferred direction was

83%. False edges were detected at a rate below 2%. To calculate

the false discovery rate for the network, we simulated 1,000 data

sets from the true network. For each data set, the UDG algorithm

was used to infer the network topology, and computed the fraction

of false edges (those detected that do not exist in the true network)

relative to the total number edges detected by the UDG algorithm.

The FDR for the network topology, computed as the average

fraction for these 1,000 simulations, is 0.014.

Gene Expression Analysis
The fold changes relative to the untreated hepatocytes for each

animal were calculated. An overall ANOVA analysis was

performed with gene transcripts nested within subject; interest

focused on gene transcript effects and possible gene transcript

differences between strains. This analysis showed that glutamine-

induced expression change differed by gene (p,0.0001). Signif-

icant overall gene transcript effects allows separate transcript-

specific paired t-tests between the difference in delta CT values of

untreated and glutamine induced gene expression (relative to Actb)

in each strain separately. Statistics on these data were analyzed

with Prism software version 4.02 (Graph Pad Software) and the

aov command in R (www.r-project.org).

Supporting Information

Protocol S1 Causal network reconstruction.

Found at: doi:10.1371/journal.pgen.1000034.s001 (0.05 MB

DOC)

Table S1 Metabolite codes. Acyl-carnitines are annotated

according to clinical acyl-carnitine profile shorthand; conventional

amino acids are annotated by their three-letter code. In the cases

where two acyl-carnitine derivatives were unable to be distin-

guished by MS analysis alone, both are reported, indicating that

either analyte could be the predominant species.

Found at: doi:10.1371/journal.pgen.1000034.s002 (0.02 MB

XLS)

Table S2 Metabolite correlation matrix. All pairwise correla-

tions between the 67 metabolites were calculated and recorded as

the Spearman’s correlation coefficient (|r|.0.254, p,0.05;

|r|.0.330, p,0.01). Metabolites are ordered according to the

strength of their correlation as in Figure 1.

Found at: doi:10.1371/journal.pgen.1000034.s003 (0.10 MB

XLS)

Table S3 Correlation of amino acids and individual transcripts

metabolic pathways. Transcripts that had Spearman’s correlation

r.0.4 to any individual amino acid are included (|r|.0.254,

p,0.05; |r|.0.330, p,0.01). The physical location of the gene is

provided (Mb). Amino acids are ordered as in Figure 3.

Found at: doi:10.1371/journal.pgen.1000034.s004 (0.81 MB

XLS)

Table S4 Glx network correlations. The Spearman’s correlation

coefficient of the 15 individual amino acids with the transcripts of

the glx network is recorded (|r|.0.254, p,0.05; |r|.0.330,

p,0.01). Amino acids are ordered as in Figure 3.

Found at: doi:10.1371/journal.pgen.1000034.s005 (0.02 MB

XLS)

Table S5 Primer sequences. Integrated DNA Technologies

(Agxt, Pck1, Slc38a3) and MWG Biotechnology (Actb, Arg1,

Asl, Ass1, Ivd, Slc1a2).

Found at: doi:10.1371/journal.pgen.1000034.s006 (0.02 MB

XLS)
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