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Summary The last decade has seen rapid improvements in high-throughput single nucleotide poly-

morphism (SNP) genotyping technologies that have consequently made genome-wide

association studies (GWAS) possible. With tens to hundreds of thousands of SNP markers

being tested simultaneously in GWAS, it is imperative to appropriately pre-process, or filter

out, those SNPs that may lead to false associations. This paper explores the relationships

between various SNP genotype and phenotype attributes and their effects on false associ-

ations. We show that (i) uniformly distributed ordinal data as well as binary data are more

easily influenced, though not necessarily negatively, by differences in various SNP attributes

compared with normally distributed data; (ii) filtering SNPs on minor allele frequency

(MAF) and extent of Hardy–Weinberg equilibrium (HWE) deviation has little effect on the

overall false positive rate; (iii) in some cases, filtering on MAF only serves to exclude SNPs

from the analysis without reduction of the overall proportion of false associations; and (iv)

HWE, MAF and heterozygosity are all dependent on minor genotype frequency, a newly

proposed measure for genotype integrity.

Keywords genome-wide association studies, Hardy–Weinberg equilibrium, minor allele

frequency, minor genotype frequency, quantitative traits, single nucleotide polymorphism,

trait-distribution.

Introduction

Genome-wide association studies (GWAS) using single

nucleotide polymorphism (SNP) markers have become

increasingly popular for dissecting the genetics of complex

traits (reviewed in Hirschhorn et al. 2002 and McCarthy

et al. 2008). Therefore, it is invaluable to recognize and

understand how confounding factors embedded within

genotypic and/or phenotypic data may lead to spurious

associations. This is particularly important in GWAS

because associations are tested at tens to hundreds of

thousands of SNP markers, inflating the rate of false asso-

ciations (type I error).

A filtering process, defined by a set of rules, is generally

applied to remove markers from an analysis. The deduction

of these rules may be arbitrary (e.g. Easton et al. 2007;

Sladek et al. 2007) or empirical (The Wellcome Trust Case

Control Consortium 2007), and this is typically based on

various measures or attributes calculated to reflect the

markers� integrity and usefulness. These attributes may

include genotyping call-rate, missing data, monomorphism,

loss of heterozygosity (LOH), observed heterozygosity (Hobs),

minor allele frequency (MAF), and extent of Hardy–Wein-

berg equilibrium (HWE) deviations. In this paper, we also

propose minor genotype frequency (MGF) as a filtering

criterion and explore its value as a quality control measure.

Call-rate and missing data can be used as an indicator of

genotyping error and they remain the most commonly used

measures of genotyping integrity (Di et al. 2005; Shen et al.

2005; Moorhead et al. 2006; Easton et al. 2007; Sladek

et al. 2007; Shifman et al. 2008). Monomorphic SNPs are

uninformative in genetic association studies as there is no
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genotypic difference. LOH (Hobs = 0) SNPs may impact on

statistical power because of loss of information. SNPs with

excessively high Hobs may reflect contamination and poor

genotyping integrity (Teo et al. 2007). SNPs with low MAF

have a frequency imbalance between the two allelic groups,

which may in fact reflect functional importance (Cargill

et al. 1999). SNPs deviating from HWE may confound

trait-allele association as they are thought to reflect geno-

typing error (Clayton et al. 2005; Salanti et al. 2005),

although the contrary has also been argued (Cox & Kraft

2006). Together, these warrant the need to understand

the cost and benefits of filtering SNPs based on these

properties.

To date, little research has been conducted using genome-

wide SNP genotyping in cattle (e.g. Barendse et al. 2007;

Hayes et al. 2007; Khatkar et al. 2007; Hayes & Goddard

2008), and only one group (Barendse et al. 2007) has

reported a GWAS using cattle. Further, the majority of

GWAS have adopted a case–control design whereby the

traits of interest are binary (McCarthy et al. 2008). Appre-

ciating many complex traits are continuous or ordinal, and

recognizing the growing attention on these traits (e.g.

Scuteri et al. 2007; Weedon et al. 2008), we also focus on

the effects of trait properties on GWAS. We first introduce

and report on the SNP attributes of an empirical data, then

we proceed to examine the combined effects of various

genotype and phenotype properties on false associations in

GWAS.

Materials and methods

Samples and SNP genotype data

Five hundred and sixty-five Brahman cows were genotyped

at 9075 SNPs using the MegAllele� Genotyping Bovine 10k

SNP Panel (Hardenbol et al. 2005). Genotyping calls were

made, as part of Affymetrix’s genotyping service, using

TrueCall� Analyzer (ParAllele BioScience; Moorhead et al.

2006).

Partial or full parentage for 486 animals was known. They

were sired by 55 bulls averaging 10 (±7.6 SD) progenies/bull

(max 47 progenies/bull) and 478 dams averaging one (±0.2

SD) progeny/dam (max three progenies/dam). Kinship coef-

ficients were estimated using pedigree information of 9082

animals spanning up to seven generations and the PARENTE

program of the PEDIG package (Boichard 2002).

Simulated phenotype data

Five trait-types were simulated according to the following

distributions reflecting the majority of real data structures:

1. Continuous data with normal distribution, Normal

(l = 0, r2 = 1).

2. Ordered categorical data with normal distribution,

Binomial (n = 10, P = 0.5).

3. Ordered categorical data with discrete distribution,

Binomial (n = 10, P = X), where X � Uniform (a = 0,

b = 1).

4. Ordered categorical data with uniform distribution,

Uniform (a = 0, b = 1).

5. Binary data with binomial distribution, Binomial

(n = 1, P = 0.5).

For each trait-type, 1000 simulations were generated

under the null hypothesis of no association where in each

simulation, 565 random deviates were generated from the

corresponding distribution.

Test for Hardy–Weinberg equilibrium

Deviation from HWE was assessed using the chi-squared

goodness-of-fit test and Fisher�s Exact test on the null

hypothesis that p2 + 2pq + q2 = 1, where p and q are the

two allelic frequencies (Emigh 1980). P-values for the two

tests were obtained from the chi-squared (1 d.f.) and

hypergeometric distributions respectively as per the pchisq()

and fisher.test() functions in R/STATS (R Development Core

Team 2007).

Genome-wide association test

Association between each trait at each polymorphic SNP

was assessed using linear regression, where the simulated

trait values across the 565 individuals were regressed onto

the numeric code of each SNP genotype (i.e. 0, 1, or 2 copies

of the alleles); this tested the null hypothesis of the additive

allelic effect on the trait. Regression analyses were per-

formed using lm() and P-values obtained from the F-distri-

bution using pf() in R/STATS. Significant associations were

defined at point-wise P < 0.001 to ensure an average of one

significant (and spurious) association per SNP across the

1000 replicates.

Test for uniform distribution of P-values

To test whether association is independent of SNP attri-

butes, we compared, using the Kolmogorov–Smirnov (KS)

test, the observed distribution of the 8623 P-values (one

from each polymorphic SNP) against the null distribution (a

uniform distribution in the [0, 1] interval). P-values were

obtained using the ks.test() function in R/STATS. The median

P-values from the 1000 KS tests were 0.14 ± 0.30 SD for

continuous normal traits, 0.12 ± 0.24 SD for categorical

normal traits, 0.12 ± 0.27 SD for categorical discrete traits,

0.12 ± 0.27 SD for categorical uniform traits and

0.02 ± 0.14 SD for binary traits.

Correlation tests

To ascertain the relationship between a SNP attribute and

the number of false positives (FPs), Spearman�s correlation
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coefficients (q) were calculated. Significant correlation was

only asserted if |q| ‡ 0.1 at P < 0.05 (two-sided test

against the null that q = 0). As per the cor.test() function in

R/STATS, P-values were computed using the AS 89 algo-

rithm.

For each trait-type, we tested the null hypothesis that the

numbers of SNPs across eight FP bins (FP = 0, 1, 2, 3, 4, 5,

6)10, >10) are the same between the �good� and �bad� SNP

sets. Pearson�s chi-squared test was used for this purpose,

with P-values obtained from 10 000 permutations using

chisq.test() in R/STATS.

Two tests were used for comparing the distributions of the

same SNP attribute between FP-free (FP = 0) and FP-prone

(FP ‡ 4) SNPs: (i) Pearson�s chi-squared test for LOH; and

(ii) Mann–Whitney test for all other (non-binary) SNP

attributes. P-values for the chi-squared test were determined

from 10 000 simulations using chisq.test() and those for the

Mann–Whitney tests were approximated from a Gaussian

distribution using wilcox.test() in R/STATS.

Results

SNP attributes

Each SNP has a median call-rate of 99.8% (85–100%), a

median of one (range: 0–90) missing genotype, and 5% of

SNPs are monomorphic. Excluding monomorphic SNPs,

Hobs = 0.21 ± 0.17, of which 0.4% (33/8623) have LOH

(Hobs = 0).

In this paper, we introduce and examine the effects of

MGF on GWAS. The necessity to include MGF in addition to

MAF is justified because SNPs with low MGF do not always

imply low MAF (Fig. 1). An extreme example is LOH; of the

33 LOH SNPs, two have MAF > 0.4, suggesting equal

selection pressure on the two homozygotes. Furthermore,

the inclusion of MGF in addition to the test of HWE is

because SNPs with low MGF do not necessarily deviate from

HWE, as in the case when the minor genotype is one of the

homozygotes. Of the 638 SNPs with 0 < MGF < 0.002

(averaging only one individual harbouring the minor

genotype), 507 (79.5%) are in HWE.

Minor allele frequency is 0.10 ± 0.14 SD across all SNPs

and MGF is 0.05 ± 0.07 SD, with the former figure

increasing to 0.16 ± 0.14 SD following the exclusion of

monomorphic markers, whilst the latter figure for MGF

remains unchanged. Depending on the test statistic and

associated criteria, between 13.6% [Fisher�s Exact test at

P < 0.0001 for autosomal SNPs with MAF ‡ 0.05 as in

Khatkar et al. (2007)] and 23.6% [Pearson�s chi-squared

test at P < 0.05 for autosomal SNPs with at least five

expected samples per genotypic group as in Barendse et al.

(2007)], SNPs deviate from HWE. Our notably left-skewed

MAF distribution [relative to that reported in Barendse et al.

(2007)] and large numbers of HWE deviations are attrib-

uted to the elevated shared ancestry within our samples:

average kinship coefficient is 0.020 ± 0.024 SD. In this

paper, we use this to our advantage to explore the effect of

HWE deviation on the extent of type I errors.
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Figure 1 Relationship between minor geno-

type frequency (MGF) and minor allele

frequency (MAF) for 9075 SNPs from 565

individuals. SNPs deviating from HWE at

P < 0.05 (circle), P < 0.0001 (triangle) and

P < 10 x 10-10 (cross) are indicated.
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Effects of SNP and phenotypic attributes on GWAS

We examined the effects of SNP attributes on type I errors in

GWAS in consideration of five types of phenotypic traits. As

we are interested in the extent of false associations, we

chose to simulate these traits under the null hypothesis of

no association: traits were purely simulated under the

specified distribution independent of the animals and their

genotypes, i.e. no genetic structure was simulated.

Extent of false associations

Under our null hypothesis, two observations are expected:

(i) P-value distributions should be uniform for each GWAS

(i.e. each simulated trait); and (ii) an average of one FP

should be observed for each SNP. Here, FP is the number of

1000 simulated traits passing the significance threshold of

P < 0.001, and thus each SNP is expected to falsely asso-

ciate with one of the 1000 simulated traits by chance alone

(FP = 1).

The first expectation is satisfied by four trait-types; only

simulated binary traits have P-values that are significantly

non-uniform (median P = 0.02 for tests of uniformity),

signifying an increased sensitivity of binary traits to various

SNP attributes. The second expectation is satisfied by all but

categorical-discrete traits (Fig. 2, top panel); instead of the

majority of SNPs having FP = 1, only 10% SNPs complied,

while >78% show no significant association (FP = 0).

What SNP properties affect FP?

To identify SNP attributes that may influence false associ-

ations, we assessed the level of correlations between FP and

each SNP attribute. Here, significant correlation is only

asserted if |q| ‡ 0.1 and corresponding P < 0.01. Results

show only significant correlations for categorical-uniform

and binary traits (Table 1).

The extent of false associations is not affected by call-rate,

missing data, or LOH. It is, however, significantly affected by

Hobs for categorical-uniform (q » 0.2) and binary (q » 0.3)

traits. Because of the relationships between MAF, MGF and

Hobs (MAF = x + ½ Hobs, where 0 £ x £ 1; MAF ‡ MGF ·
1.5), FPs are also significantly influenced by MAF and MGF

with 0.16 £ q £ 0.28 for categorical-uniform and binary

traits.

Can filtering of SNPs reduce the extent of FPs?

Significant correlations between FP and various SNP

attributes suggest that FP should decrease if problematic or
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Figure 2 Proportions of SNPs with the

corresponding number of false associations for

the five trait-types. Shown are the proportions

of all SNPs (top), �good� SNPs (middle) and

�bad� SNPs (bottom). The five types of

quantitative traits are: normally distributed

continuous data (cont-norm), normally

distributed ordered-categorical data

(cat-norm), discretely distributed ordered-cat-

egorical data (cat-disc), uniformly distributed

ordered-categorical data (cat-unif) and

binomially distributed binary data (bin-bin).
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�bad� SNPs are eliminated prior to association. Here we

assess this by comparing the extents of FPs from �good� and

�bad� SNPs. As our objective was to investigate the impact

of various SNP attributes on false associations, our null

hypothesis here was that the extent of FPs are equal be-

tween the set of �good� and �bad� SNPs. In GWAS, SNPs are

commonly excluded based on several criteria that gener-

ally reflect their informativeness and level of variation.

These criteria are variable in the literature, and for the

purpose of this study, �good� SNPs are defined as those

passing the following set of criteria derived from recent

literature:

1. Call-rate ‡ 95% (e.g. Easton et al. 2007; Sladek et al.

2007; Shifman et al. 2008).

2. MAF ‡ 0.01 (e.g. Sladek et al. 2007).

3. HWE P ‡ 0.001 (e.g. Cupples et al. 2007; Sladek et al.

2007; Shifman et al. 2008).

These criteria classified 25% of polymorphic SNPs as �bad�
and 75% as �good�.

The extent of false associations between �good� and �bad�
SNPs is not significantly different (P > 0.05; Fig. 2) for

continuous-normal traits. Conversely, and paradoxically,

the proportion of �good� SNPs with FP = 0 is lower com-

pared with that of �bad� SNPs (Fig. 2, bottom two panels) for

the remaining four trait-types, suggesting �bad� SNPs are less

vulnerable to spurious associations. This phenomenon

extends to FP > 0; there is significant difference in the

proportion of �good� and �bad� SNPs across the eight FP bins

(P < 0.01) for all but continuous-normal traits. In partic-

ular, >59% of �bad� SNPs have FP = 0 for categorical-

uniform traits and <40% of the �good� SNPs have FP = 0 for

binary traits.

Retrospectively, these results are unsurprising, as �bad�
SNPs are less informative than �good� SNPs and so should

be more likely to incur false negatives. Yet, as our interest

is in false positives, these results raise the question of

which of the SNP attributes, if any, can �protect� against

FP. To address this, we compared various attributes of

SNPs that are FP-free (FP = 0) and FP-prone (FP ‡ 4) and

found (Table 2): (i) FP-prone SNPs have significantly

higher frequencies of heterozygotes compared with FP-free

SNPs in non-normally distributed traits; (ii) FP-prone

SNPs have significantly higher MAF and MGF for all but

continuous-normal traits; and (iii) many more FP-free

SNPs have MGF = 0 (35–58%) compared with FP-prone

SNPs (10–19%). These observations suggest low Hobs,

MAF, or MGF can limit false associations, particularly for

ordinal and binary traits.

Table 1 Spearman�s q-correlation between number of false associations and various SNP attributes.

SNP attributes Continuous normal Categorical normal Categorical discrete Categorical uniform Binary

Call-rate – – – – –

Missing values – – – – –

LOH – – |q| < 0.1 (P = 0.009) – –

Hobs – |q| < 0.1 (P < 10)7) |q| < 0.1 (P < 10)4) q = 0.20 (P < 10)16) q = 0.29 (P < 10)16)

MAF – |q| < 0.1 (P < 10)7) |q| < 0.1 (P < 10)4) q = 0.20 (P < 10)16) q = 0.28 (P < 10)16)

MGF – |q| < 0.1 (P < 10)6) |q| < 0.1 (P < 10)3) q = 0.16 (P < 10)16) q = 0.23 (P < 10)16)

HWE: v2-statistic – |q| < 0.1 (P < 10)4) |q| < 0.1 (P = 0.017) q = 0.11 (P < 10)16) q = 0.12 (P < 10)16)

HWE: Fisher�s odds ratio – – – – |q| < 0.1 (P < 10)4)

Only correlations where either |q| ‡ 0.1 or the corresponding P < 0.05 are shown, otherwise �–� is indicated, and only when both criteria are satisfied

is significance asserted (bold). For test of HWE, the chi-squared test was used for all SNPs, and Fisher�s Exact test was used only on SNPs with n ‡ 5.

Table 2 The significance of testing the null hypothesis of no difference between FP-free (FP = 0) and FP-prone (FP ‡ 4) SNPs.

FP = 0 vs. FP ‡ 4 Continuous normal Categorical normal Categorical discrete Categorical uniform Binary

Call-rate – – – – –

No. missing – – – – –

LOH – – – – –

Hobs – – <10)3 (higher) <10)9 (higher) <10)16 (higher)

MAF – 0.023 (higher) <10)3 (higher) <10)10 (higher) <10)16 (higher)

MGF – – 0.001 (higher) <10)8 (higher) <10)13 (higher)

MGF = 0 – 0.001 (lower) <10)3 (lower) <10)4 (lower) <10)4 (lower)

HWE: v2-test – 0.007 (higher) 0.008 (higher) 0.017 (higher) 0.009 (higher)

HWE: Fisher�s Exact test – – – – –

Only significant differences (P < 0.05) are shown, otherwise, �–� is indicated. �Higher� and �lower� in parentheses indicate if the distributions are right

or left shifted respectively in FP-prone compared with FP-free SNPs. For the test of HWE, the chi-squared test was used for all SNPs, and Fisher�s

Exact test was used only on SNPs with n ‡ 5.
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False positive-prone SNPs deviate from HWE more often

than FP-free SNPs, but this difference disappears when 49%

SNPs with at least one of the three genotypes represented by

less than five (or <1%) individuals are excluded. We infer

from this that deviation from HWE alone does not affect

false associations, rather FP is dependent on low MGF-

induced HWE deviation. Again, continuous-normal traits

appear unaffected by this.

Trade-off between reduction in false positives and loss
of SNPs

Finally, we explored the trade-off between the number of FP

we can reduce and the number of useful SNPs we can

retain. In particular, we examined the effects of all three-

way combinations of MAF, MGF and HWE threshold at:

1. MGF ‡ 0, MGF > 0, MGF > 0.005, MGF > 0.01,

MGF > 0.05, MGF > 0.1.

2. MAF > 0, MAF > 0.005, MAF > 0.01, MAF > 0.05,

MAF > 0.1.

3. HWE: P ‡ 0, P > 10)6, P > 10)5, P > 10)4, P > 10)3,

P > 10)2, P > 0.05.

For most traits, the rate of FP reduction is proportional to

the rate of SNP loss (Fig. 3), i.e. removing x% of the SNPs

removes �x% of FP. This is particularly true for continuous-

normal traits, reaffirming that the loss (and gain) of FP is

random and thus proportional to the number of SNPs

excluded from analysis.

However, for binary, categorical-discrete and categorical-

uniform traits, some combinations of SNP filtration criteria

result in more rapid SNP loss than FP loss. Specifically, an

increase in MAF stringency only serves to increase the

number of excluded SNPs but does not reduce the extent

of false associations. (In Fig. 3, there is a shift of data-points

above line of negative unity with increasing MAF

stringency.) And finally, we show that the reduction in

SNPs (and FPs) is more rapid from no filtration on MGF

(circle) to MGF £ 0.05 (upside-down triangle) compared

with no filtration on HWE deviation (smallest circle) to

deviation at P £ 0.05 (largest circle).
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Figure 3 Rates of reduction in the proportion of false associations to the proportion of excluded SNPs at various combinations of MAF, MGF and

HWE deviation thresholds. Filtration on MGF is indicated by different plotting symbols (circle: no filtration on MGF, triangle: MGF > 0, plus:

MGF > 0.005, cross: MGF > 0.01, diamond: MGF > 0.05, inverse triangle: MGF > 0.01), filtration on MAF is indicated by different colours [red:

polymorphic (MAF > 0), green: MAF > 0.005, blue: MAF > 0.01, cyan: MAF > 0.05, magenta: MAF > 0.01] and filtration on HWE deviation is

indicated by different plotting sizes (smallest: no filtration on HWE deviation, to the largest: P > 0.05). The red line indicates the line of unity.
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Discussion

Association studies are based on the fundamental assump-

tion that the genetic variants underlying a phenotypic trait

will co-segregate with the trait of interest in a given popu-

lation. The statistical analyses are thus aimed at identifying

the markers whose genotypes correlate best with the trait

values across a population of individuals. Clearly, factors

affecting the characteristics of either or both the phenotypic

or genotypic data can severely affect the power and accu-

racy of detection.

In this paper, we have shown that some, but not all, of

the examined SNP-attributes can influence spurious asso-

ciations, and that the effect is not always negative and

certainly not applicable to all trait-types. In particular, none

of the SNP attributes appear to have major effects on

normally distributed traits, be it continuous or ordered-

categorical (Table 1). Only when we compare attributes of

FP-prone and FP-free SNPs do we notice the effects of

several SNP attributes on false associations of the latter

trait-type (Table 2).

One such attribute is MGF. The influence of zero or near-

zero MGF is not limited to categorical-normal traits and its

effect is, surprisingly, not negative with respect to type I

error. We have shown repeatedly that SNPs with low MGF

tend to have fewer false associations across all trait-types.

Ironically, this is a consequence of reduced statistical power

in association tests, which would normally prevent, or

reduce true as well as false associations. Thus, although we

have shown that SNPs with zero or near-zero MGF tend to

protect against false associations, we suspect it would

conversely inflate false negatives (type II error).

In addition (and in some cases as a consequence of) low to

zero MGF, low MAF, low Hobs and deviation from HWE can

also protect against false associations; this is especially true

for categorical-uniform and binary traits. Again, this is be-

cause SNPs with these attributes are susceptible to false

negatives. In the case of deviation from HWE, and possibly

for low Hobs and MAF, its effect is only manifested when the

corresponding SNP also has near zero MGF. In fact, we

failed to establish any connection between deviation from

HWE and false associations with any trait-type for SNPs

with MGF < 0.009 (corresponding to fewer than five indi-

viduals per genotype). This finding is of particular impor-

tance in GWAS, because deviation from HWE is a widely

used SNP quality control measure.

While HWE deviation-induced FP for binary traits have

been noted previously (Schaid & Jacobsen 1999), we have

further demonstrated that the effect extends to categorical-

uniform traits and that the effect is likely restricted to low

MGF-induced HWE deviation. Moreover, while LOH

(Hobs = 0) markers (with sufficiently low MAF to escape

detection from HWE deviation) have been shown to cause

false associations in transmission-disequilibrium tests

(Hirschhorn & Daly 2005), here we demonstrated that the

effect of near-zero Hobs is only a subclass of the larger

problem of near-zero MGF in GWAS. For this reason, we

strongly advise that deviation from HWE be used with

caution or in conjunction with MGF as an inclusion/

exclusion measure for genetic association studies.

To allow for easy comparison of the effects of genotype

attributes on different trait-types, we have chosen to use a

linear regression model for test of association for all trait-

types. This is generally acceptable for quantitative traits,

which are either normal or can be transformed to normality

(e.g. Scuteri et al. 2007). However, this is not applicable to

truly non-normal data. For this reason, such data types can

be more prone to type I errors. We have shown this to be

particularly true for binary and uniformly distributed ordinal

traits, because of the relative increased probability of sam-

pling from the tails of these distributions. For binary traits,

alternate association test methods such as logistic regression

(e.g. The Wellcome Trust Case Control Consortium 2007)

and the Cochran–Armitage test (e.g. Fellay et al. 2007) are

well-developed and commonly adopted. Conversely, there is

little research into more appropriate methods for analysing

ordinal and non-normally distributed traits. With the

increasing popularity of GWAS, perhaps it is time for the

community to direct more attention to this area.

Finally, two technical points are of note here. First,

although we recognize that the genotype data used in this

study are from one cattle population with its inherent

family structure, the relationship between SNP and phe-

notypic attributes and their effects on spurious genetic

associations are population-independent and thus should

be applicable to other (non-cattle) populations. For exam-

ple, although this population demonstrated a relatively low

MAF across all SNPs (32% polymorphic SNPs with

MAF < 0.05), the only difference compared with a popu-

lation with a higher average MAF is the extent of FP. The

nature of the effect of low MAF and the fact that the effect

would be more prominent for categorical-uniform and

binary traits is indisputable. Clearly, in order to make

inference on statistical power and type II error, one would

have to model family structure into the phenotype data

and then account for it in the association test (e.g.

Marchini et al. 2004).

Secondly, several studies have claimed that genotyping

error can confound association studies because of distortion

of allele frequencies (e.g. Gomes et al. 1999; Hosking et al.

2004; Salanti et al. 2005). Although we did not find any

effect of genotyping call-rate and genotyping failure (miss-

ing data) on GWAS, we acknowledge that these are not true

measures of genotyping accuracy. These measures are

highly dependent on the genotyping platform, correspond-

ing genotype-calling algorithm and their inherent limita-

tions (Hardenbol et al. 2005). Thus, it remains unclear

whether a more accurate measure of genotyping call-rate

that is more reflective of genotyping error would reveal

significant impact on GWAS; again, further study is needed.
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In conclusion, we emphasize that whether an SNP is FP-

free or FP-prone is highly dependent on Hobs, MAF and

MGF, as well as the characteristic and distribution of the

trait which the SNP is to be tested against. Furthermore, the

fact that an SNP is FP-free does not necessarily imply that it

will be more efficient in a test of association, because the

FP-free nature may simply be a reflection of the SNP�s
inherent lack of statistical power for such a purpose.
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