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As one of the most common metastatic sites, bone has a unique microenvironment for
the growth and prosperity of metastatic tumor cells. Bone metastasis is a common
complication for tumor patients and accounts for 15–20% of systemic metastasis,
which is only secondary to lung and liver metastasis. Cancers prone to bone metastasis
include lung, breast, and prostate cancer. Extracellular vesicles (EVs) are lipid membrane
vesicles released from different cell types. It is clear that EVs are associated with multiple
biological phenomena and are crucial for intracellular communication by transporting
intracellular substances. Recent studies have implicated EVs in the development of
cancer. However, the potential roles of EVs in the pathological exchange of bone
cells between tumors and the bone microenvironment remain an emerging area. This
review is focused on the role of tumor-derived EVs in bone metastasis and possible
regulatory mechanisms.
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INTRODUCTION

Malignant tumors are the second leading cause of death worldwide. Distant metastasis of tumor
cells is the most common cause of cancer-related death (Krzeszinski and Wan, 2015; Hiraga, 2019;
Karayazi Atici et al., 2020). Bone is a major target for cancer metastasis, only secondary to the lung
and liver (Yin et al., 2005; Su et al., 2015). Bone has a unique anatomical and physiopathological
state that enhances the metastasis of different cancer types, including prostate, breast, lung, and
gastric cancer and melanoma (Liu et al., 2020; Ma et al., 2020; Wang et al., 2020). Tumor cells may
migrate from their original location to distant skeletal tissues, where they may exhibit accelerated
growth and infiltrate surrounding tissues to form distant metastasis, characteristics associated with
the heterogeneity of tumors (Zhang et al., 2019; Scimeca et al., 2020). Various physiopathological
processes will be induced by the occurrence of affected bones and metastatic tumor cells, such

Abbreviations: EV, extracellular vesicle; miRNAs, micro RNAs; circRNAs, circular RNAs; lncRNAs, long non-coding RNAs;
FGFs, fibroblast growth factors; IGFs, insulin-like growth factors; PTH-rP, parathyroid hormone-related protein; RANKL,
receptor activator for nuclear factor-κB ligand; TGF-β, transforming growth factor-β; DTC, disseminated tumor cells; PCa,
prostate cancer; BCa, breast cancer; LCa, lung cancer; MM, multiple myeloma; AML, acute myelocytic leukemia; PLD2,
phospholipase D2; VCAM1, vascular cell adhesion molecule 1; AREG, amphiregulin; cAMP, adenosine monophosphate;
EGFR, epidermal growth factor receptor ligands; MVB, multivesicular body; TSG101, Wilms tumor type 101 protein; Alix,
ALG-2 interacting protein X; TDEs, tumor-derived exosomes; TME, tumor microenvironment; mTOR, mammalian target
of rapamycin.
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as the adhesion molecules secreted by tumor cells bound to
trabecular bone and stromal cells. Additionally, tumor cells
can induce angiogenesis and bone absorption factors (Zhang
et al., 2019). Once patients develop bone metastasis, there
are no effective therapeutic strategies, and the 5-year survival
rate of these patients is significantly lower. Moreover, bone
metastasis may be accompanied by many complications (e.g.,
serious bone pain, pathological fracture, hypercalcemia, and
spinal cord compression) that affect a patient’s life expectancy
and quality of life (Krzeszinski and Wan, 2015; Vicent et al., 2015;
Yao et al., 2020).

In recent years, the mechanisms underlying bone metastasis
have been a hot research topic, and more and more data support
the “seed and soil” theory, which says that tumor cells can
only grow in a microenvironment suitable for their growth
(Marazzi et al., 2020; Tamura et al., 2020; Yao et al., 2020).
Thus, they form metastatic lesions in specific tissues and organs.
Primary tumor cells proliferate, invade blood vessels, and form
tumor blood vessels. Tumor cells reach each system in the body
through the vasculature, proliferate in the microenvironment
of specific organs and tissues suitable for their growth, destroy
normal tissue structures, and form metastatic lesions. Bone
metastasis involves two processes: (1) cancer cells reach bone
by a certain pathway; (2) cancer cell survival and growth in
the bone. Under normal conditions, the activities of osteoblasts
and osteoclasts are balanced (Laranga et al., 2020; Wang et al.,
2020). When bone metastasis occurs, this balance is disrupted,
and the higher cell activity determines whether the bone
metastasis is osteogenic or osteolytic. Osteogenic bone metastasis
is the result of the activation of osteoblasts and the inhibition
of osteoclasts. Conversely, osteolytic bone metastasis involves
the activation of osteoclasts and the inhibition of osteoblasts
(Wood and Brown, 2020).

Extracellular vesicles (EVs) are bi-layered membrane
vesicles with a diameter of 30–100 nm secreted into the
microenvironment via exocytosis by multiple cells. EVs are
rich in many components, including cell-specific proteins,
lipids, and RNA (i.e., mRNA, miRNA, and other non-coding
RNA) (Dai et al., 2020; Yang E. et al., 2020). These vesicles are
secreted by multiple cell types (e.g., tumor cells, macrophages,
and fibroblasts) and are widely distributed in the blood, urine,
ascites, synovial fluid, breast milk, and other body fluids. EVs
carry and transmit important signaling molecules that affect the
physiological and pathological state of their target cells (Cheng
et al., 2020; LeBleu and Kalluri, 2020). Studies have shown
that EVs participate in intercellular communication, immune
responses, angiogenesis, and tumor cell growth (Yi et al.,
2020). They have now been discovered in multiple cell types.
Indeed, tumor cell-derived EVs have become a hot research
area in the field of cancer (Tamura et al., 2020), and there
have been many reports on EVs in cancer. For instance, EVs
may release self-carrying cytokines to enhance the occurrence,
development, proliferation, and migration of tumors and make
tumors drug-resistant (Vasconcelos et al., 2019; Wortzel et al.,
2019). In addition, the anticancer activity of miR-124 delivered
by BM-MSC-associated EVs can act on the proliferation,
epithelial-mesenchymal transition, and chemotherapy sensitivity

of pancreatic cancer cells (Xu Y. et al., 2020). Endometrial cancer
cells can promote M2-like macrophage polarization by delivering
exosomal miRNA-21 under hypoxia conditions (Xiao et al.,
2020). Furthermore, exosomal miR-92a-3p derived from highly
metastatic cancer cells promotes the epithelial-mesenchymal
transition and the metastasis of low-metastatic cancer cells by
regulating the PTEN/Akt pathway in hepatocellular carcinoma
(Yang B. et al., 2020). Moreover, neuroblastoma-secreted EVs
carrying miR-375 promote osteogenic differentiation of bone
marrow mesenchymal stromal cells (Colletti et al., 2020).

In recent years, many studies have demonstrated that
tumor-derived EVs are an important component of the
microenvironment of bone tumors. This article reviews the roles
of tumor-derived EVs in bone metastasis and their potential
molecular mechanisms and provides new insights for inhibiting
bone metastasis.

GENERATION, COMPOSITION, AND
MAJOR BIOLOGICAL FUNCTIONS OF
EXTRACELLULAR VESICLES

The formation of EVs mainly involves four processes, including
sprouting, invagination, multivesicular body formation, and
secretion (Mathew et al., 2020; Zhang Y. et al., 2020). EVs are
generated in endosomes. Invagination of the cell membrane
results in the formation of early endosomes, and late endosomes
sprout inward to form luminal vesicles that are transformed into
multivesicular bodies (MVBs) with multiple small vesicles. After
the MVBs fuse with the cell membrane, the inner vesicles sink
again, and granular vesicles sprout and are released out of the
cell as EVs (Li et al., 2020; Naseri et al., 2020). Upon reaching
recipient cells, the EVs release their contents in specific cells
through ligand binding, phagocytosis, and fusing with the cell
membrane to change the physiological state and function of cells
(Huyan et al., 2020).

Extracellular vesicles are mainly composed of proteins, nucleic
acids, and lipids (Kalluri and LeBleu, 2020; Zhao X. et al.,
2020). All EVs express membrane-bound proteins, such as
tetraspanin (CD9, CD63, CD81, and CD82), which may be used
as biomarkers and are associated with the biogenetic derivation of
EVs (Mathieu et al., 2019; Pegtel and Gould, 2019). EVs derived
from different cells express specific proteins, such as ALG-2
interacting protein X (ALix), Wilms tumor type 101 protein
(TSG101), and heat shock protein HSP70, and are associated
with specific cell functions. EVs also include nucleic acids, such
as mRNA, miRNA, and lncRNA (Mathew et al., 2020; Zhang Y.
et al., 2020). These nucleic acids fuse with target cells and regulate
protein expression and signaling in recipient cells. The lipids
in the EVs include cholesterol, diacylglycerol, and phospholipid
(Mathew et al., 2020; Zhang Y. et al., 2020). The lipids not only
participate in the formation and maintenance of EV morphology
but also participate in intercellular communication as signal
molecules. These contents are transported to target cells via body
fluids and are implicated in angiopoiesis and the occurrence,
development, and metastasis of tumors (Kalluri and LeBleu, 2020;
Slomka et al., 2020; Zhao X. et al., 2020; Zhang Y. et al., 2020;
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FIGURE 1 | The components of extracellular vesicles (ideograph). EVs can be secreted by various types of cells. EVs carry a variety of proteins, lipids, DNA, mRNA,
and non-coding RNAs. Moreover, EV surface proteins contain the following substances: MHC class I/II molecules, heat shock proteins (HSP70, HSP90), and four
transmembrane family proteins (CD63, CD9, CD81, and CD82, etc.). miRNAs, microRNAs; lncRNAs, long non-coding RNAs; circRNAs, circular RNAs; mRNAs,
messenger RNA; tRNA, transfer RNA.

Figure 1). Potential exosomal biomarkers and clinical targets are
displayed in Table 1.

Extracellular vesicles are important carriers for intercellular
communication, immunoregulation, and disease diagnosis and
prognostic markers (Melo et al., 2015; Tang et al., 2018).
Circulating EVs can be used as non-invasive biomarkers and
liquid biopsies for early detection, diagnosis, and treatment
of cancer (Kalluri, 2016; Hsu et al., 2017; Pan et al., 2017;
Fu et al., 2018; Goto et al., 2018). For example, EVs derived
from chronic myelogenous leukemia cells contain the cytokine
TGFβ1, which binds to the TGFβ1 receptor on leukemia cells,
thereby promoting tumor growth by activating ERK, Akt,
and anti-apoptotic pathways (Raimondo et al., 2015). Many
tumor types are dependent on mitochondrial metabolism by
triggering adaptive mechanisms to optimize their oxidative
phosphorylation with respect to substrate supply and energy
demands. Exogenous EVs may induce metabolic reprogramming
through the recovery of cancer cell respiration and the
suppression of tumor growth (Tomasetti et al., 2017). Lugini et al.
(2016) found that EVs from human colorectal cancer induce a
tumor-like behavior in colonic mesenchymal stromal cells, which
may be involved in cancer progression or interfere with cancer.
Cossetti et al. (2014) discovered that somatic RNA is transferred

to sperm cells, which can therefore act as the final recipients of
somatic cell-derived information.

Exosomal miRs involved in the modulation of cancer
metabolism may potentially optimize diagnosis and therapy (Le
et al., 2014; Zhou et al., 2014; Tominaga et al., 2015; Baroni et al.,
2016; Zheng et al., 2017). Moreover, tumor-derived exosomes
(TDEs) are implicated in the formation and progression of
different cancer processes, including tumor microenvironment
(TME) remodeling, angiogenesis, metastasis, invasion, and drug
resistance (Mashouri et al., 2019). In recent years, the study of
EVs has become a new direction for further applied research.
For glioblastoma patients, an invasive blood sample is used to
diagnose and follow the response to therapy. The protein cargo
of plasma GBM EVs can be used to detect a tumor, characterize
its molecular profile, and tailor treatment (Osti et al., 2018).
In addition, high levels of EVs in the plasma of melanoma
patients represent a method for clinical management through
the expression of CD63 and caveolin-1 (Logozzi et al., 2009).
Rodríguez Zorrilla et al. (2019) also found CD63 expression
induced by a dramatic reduction in plasmatic EV after surgical
treatment in oral squamous cell carcinoma (OSCC) patients.
Lower plasma EV levels correlated with a better life expectancy
in OSCC patients (Rodríguez Zorrilla et al., 2019). Expression of
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TABLE 1 | Potential exosomal biomarker and targets in a clinical setting.

Cargo Type Signaling pathway EVs function References

TGFβ1 Protein Activating ERK, Akt, and anti-apoptotic
pathway

Promotes tumor growth Raimondo et al.,
2015

E-cadherin Protein Activating β-catenin and NF-kB
signaling pathway

Angiogenesis Tang et al., 2018

miR-23a miRNA Targeted to ZO1 Increases vascular
permeability and
cancer migration

Hsu et al., 2017

miRNA-191, miR-21,
miR-451a

miRNAs / Biomarkers for
pancreatic cancer

Goto et al., 2018

miR-17-5p,
miR-92a-3p

miRNAs / Biomarkers for colon
cancer

Fu et al., 2018

Glypican-1 Protein / Biomarkers for
pancreatic cancer

Melo et al., 2015

MET Protein Activating MET signaling Priming premetastatic
niches

Peinado et al.,
2012

miR-9 miRNA / Increasing cancer
growth

Baroni et al.,
2016

miR-21 miRNA Regulating PTEN/PI3K/AKT pathway Inhibits apoptosis and
increase drug

resistance

Zheng et al.,
2017

miR-105, miR-181c,
miR-200

miRNAs / Increases metastasis Le et al., 2014;
Zhou et al., 2014;
Tominaga et al.,

2015

ZFAS1 lncRNA Regulating MAPK signal and EMT Increases cancer
growth and metastasis

Pan et al., 2017

both CD81 and PSA are high only in prostate cancer patients,
and the levels of tumor biomarkers (e.g., PSA-EVs) may represent
a prostate cancer diagnosis (Logozzi et al., 2017). Logozzi et al.
(2019a) found that plasma EVs expressing PSA (Exo-PSA) could
distinguish prostate cancer patients from healthy individuals
both in specificity and sensitivity (Logozzi et al., 2019a).

ROLES AND MECHANISMS OF THE
BONE MICROENVIRONMENT IN BONE
METASTASIS

The tumor microenvironment plays an important role in
tumor development by establishing interactions between host
components and the tumor cells. Factors produced by tumor
cells can alter the microenvironment at distant organs, generating
pre-metastatic niches for subsequent metastasis. Pre-metastatic
niche formation occurs as a sequence of events generated by
the tumor cells that effectually prime the target site of disease
for arrival, metastasis, and survival. Importantly, the existence
of a pre-metastatic niche implies that metastasis to a particular
organ is a predetermined event. Endothelial growth factor plays
a critical role in the formation of the pre-metastatic niche.
The bone microenvironment is rich with different cell types,
including osteoblasts, osteoclasts, bone marrow stromal cells,
immune cells, and vascular endothelial cells (Browne et al., 2014;
Waning and Guise, 2014; Coleman et al., 2020). Osteoblasts
and osteoclasts are key cell players in this microenvironment
that induce osteolytic, osteogenic, or mixed bone metastasis

(Esposito and Kang, 2014; Croucher et al., 2016; Coleman et al.,
2020). However, bone marrow stromal cells exert inhibitory
effects on bone metastasis through the integrins (αvβ3, α2β1,
α4β1), TGFβ family members, bone resident proteins (BSP, OPG,
SPARC, OPN), RANKL, and PTHrP (Lipton, 2006; Esposito and
Kang, 2014). Moreover, immune surveillance, immune killing,
the formation of pre-metastatic lesions, the cooperation of
osteoclasts and immune cells, and the bone nutrient supply of
vascular endothelial cells are important during bone metastasis
(Guise et al., 2006; Quayle et al., 2015; Yao et al., 2020). During
this metastatic process, tumor cells interact with cells in the bone
microenvironment (Coleman et al., 2020; Mukaida et al., 2020;
Figure 2).

Cancer acidity has a major role in inducing increased EV
release by human cancer cells. Previous studies demonstrated
that low pH was a sign of tumor malignancy that could
influence EV release and uptake by human cancer cell lines
of different histotypes, particularly prostate cancer (Parolini
et al., 2009; Logozzi et al., 2018). Besides, the acquisition of
a osteoblastic/osteolytic phenotype, such as CAIX, has been
detected both in vitro, increased by the low pH condition, and
in the plasma of patients, where a clear enzymatic activity,
together with a reduced intraluminal pH of EVs was seen
(Logozzi et al., 2019b). Tumor acidity and EV levels are
strongly related and contribute to the malignant tumor.
Buffering, alkalinization, or anti-acidic treatment reduces
EV levels in cancer cells. Furthermore, plasma EV levels
allow for an early diagnosis of the disease. Therapeutic
strategies are being actively pursued to counteract the
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FIGURE 2 | The roles and mechanisms of the bone microenvironment in tumor metastasis to bone. A complex and abnormal cycle of bone metastasis involving
mutual interactions between tumor cells, bone cells (osteoclasts and osteoblasts), and the bone matrix. As shown in this figure, in situ cancer cells enter the blood
vessels, causing proliferation, migration, and invasion. Then, these cells act on osteoblasts by regulating PTH-rP, which affects preosteoclasts and osteoclasts
through the mediation of a related protein (such as RANKL). Osteoblasts and osteoclasts affect bone metastases by mediating the expression and secretion of
factors (for example, IGFs, TGF-β, FGFs, CA2+). FGFs, fibroblast growth factors; IGFs, insulin-like growth factors; PTH-rP, parathyroid hormone-related protein;
RANKL, receptor activator for nuclear factor-κB ligand; TGF-β, transforming growth factor-β.

immunosuppressive and tumor-promoting activities of EVs
(Logozzi et al., 2019c).

Autoregulation of Tumor Cells
The autoregulation of tumor cells is important for determining
whether they maintain a latent, dormant state within the bone
microenvironment long-term and is a key mechanism against
autoimmunity and chemical drugs (Aguirre Ghiso, 2002; Sosa
et al., 2014). When tumor cells encounter severe conditions
(e.g., hypoxia, hypoglycemia, high acid environment), they
may change the modification of proteins in the endoplasmic
reticulum. In addition to inhibiting self-proliferation, tumor cells
also control their quantity via autophagy (Aguirre Ghiso et al.,
1999; Liu et al., 2002). The autophagy of tumor cells is mainly
associated with the mammalian target of rapamycin (mTOR)
(Malladi et al., 2016). In the case of cellular deficiency, mTORC1
kinase activity is reduced, which induces the autophagy of tumor
cells, and they enter into a quiescent period. Tumor cells can
also enter a Sox-dependent stem-like state and silence the Wnt
signaling pathway, which are important for bone metastasis
(Malladi et al., 2016). The autoregulation of tumor cells is a
major mode of tumor cell cycle quiescence. When studying the
influence of the bone microenvironment on metastatic factors,
attention should be paid to the relationship between the bone
microenvironment and the intrinsic factors of tumor cells.

Osteoblasts and Tumor Cells
The interaction between tumor cells and osteoblasts is mainly
reflected in the promotion of tumor cell adhesion and
colonization by osteoblasts. With continuous research on bone
metastasis, more and more experiments have put forth the
concept of “pre-metastatic lesions;” that is, after tumor cells
reach the target organ, they become infiltrating tumor cells
and enter a dormant period (i.e., no proliferation or activation
in the short term, Ki67-negative) (Ren et al., 2015; Wang
et al., 2018). However, in bone metastasis, the colonization
of disseminated tumor cells (DTC) is closely associated with
osteoblasts (Grudowska et al., 2017). In addition, Wang et al.
(2015) showed that cell activation in early bone metastasis
is associated with N–E cadherin and E–E cadherin on the
cell membranes of osteoblasts. The binding of osteoblastic
N-cadherin to N-cadherin on tumor cells activates the mTOR
signaling pathway to enhance the activation and proliferation
of dormant tumor cells. Moreover, osteoblasts are involved
in the proliferation process following the activation of the
quiescent tumor cells. Thus, osteoblasts participate in a “vicious
cycle” between tumor cells and the bone microenvironment,
whereby the destruction of the bone microenvironment and
tumor cell proliferation promote each other by releasing vascular
endothelial growth factor-(VEGF), matrix metalloproteinases
(MMPs), thrombospondin, and inflammatory and coagulation
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factors (Hirshberg et al., 2014; Wang et al., 2015). Recent
studies have shown that osteoblasts assist tumor cell colonization
through receptors in the early stage of bone metastasis and mainly
participate in the “vicious cycle” to promote tumor proliferation
in the late stage of bone metastasis (Weilbaecher et al., 2011;
Hirshberg et al., 2014).

Osteoclasts and Tumor Cells
Osteoclasts are an important promoting factor during bone
metastasis. At the early stage of bone metastasis, vascular
cell adhesion molecule-1 (VCAM1) and the integrin family
are important molecules mediating the relationship between
tumor cells and osteoclasts (Lu et al., 2011). High VCAM1
levels in tumor cells interact with osteoclast-expressed α4β1
integrin, which may recruit osteoclast precursor cells, initiate
the osteoclast process, and ultimately induce the osteolytic
clinical manifestations of bone metastasis (Lu et al., 2011).
The “vicious cycle” in the bone microenvironment starts with
the beginning of the osteoclast process. Current research has
demonstrated that osteoclasts are important in bone metastasis
and remodeling. As important effector cells, specific inhibition of
the tumor-osteoclast process greatly improves the quality of life of
patients with bone metastasis (Kelly et al., 2005). The biomarker
PTHrP(12–48) can stimulate the expression of cleaved caspase
3 in OCLs and their precursors, causing apoptosis (Kamalakar
et al., 2017). PCAT7 is a potential therapeutic target against bone
metastasis of PCa via the TGF-β signaling pathway (Lang et al.,
2020). Zoledronate enhances osteoclast differentiation through
the IL-6/RANKL signal pathway in osteocyte-like MLO-Y4 cells
(Kim et al., 2019).

Bone Marrow Stromal Cells and Tumor
Cells
After tumor cells infiltrate the bone marrow, bone marrow
stromal cells are important for tumor cell dormancy (Dormady
et al., 2000). A recent study indicated that bone marrow stromal
cells have an inhibitory effect on tumor cells. It is often necessary
to overcome these inhibitory processes to activate dormant tumor
cells (Kobayashi et al., 2011). This is also a key target for
researchers to design anti-tumor cell drugs to inhibit tumor
metastasis and growth.

Immune Cells and Tumor Cells
An important relationship has been observed between tumor cells
as special antigens in vivo and autoimmune cells. After tumor
cells reach the bone microenvironment, they promote the growth
of CD56+CD8+ T cells and memory CD4+ T cells in the bone
microenvironment (Feuerer et al., 2001). There is a significant
association between CD8+ T cells and the incubation period of
tumor metastasis as CD8+ T cells, as important cells for adaptive
immunity, directly kill tumor cells. However, studies have shown
that infiltrating dendritic plasma cells continuously release Th2
signals, inhibit CD8+ T cells, and promote the maturation of
regulatory T cells and dormant tumor growth (Feuerer et al.,
2001). A reduction in PDC slows down the activation process for
bone metastasis. Depletion of CD8+ and CD4+ T cells induces

tumors to come out of dormancy and apoptosis and induces an
increase in tumor cell Ki67, which increases their proliferation
and activation (Sawant et al., 2012). Immune cells also participate
in the activation of tumor cell dormancy by changing the process
of bone remodeling (Sawant et al., 2012). With the rise of tumor
immunotherapy, more attention is being paid to bone metastasis
and immune cells. However, most of the current bone metastasis
animal models are immunodeficient. Researchers should pay
attention to the relationship between immune cells and bone
metastasis (Kianercy and Pienta, 2016; Wu et al., 2016).

Vascular Endothelial Cells and Tumor
Cells
After tumor cells reach the bone microenvironment,
neovascularization becomes an important source of the nutrient
supply. Endothelial cells surrounding the neovascularization
secrete TGF-β1 and periostin to induce the further proliferation
of tumors (Mulcrone et al., 2017). VEGF-α is an important
angiogenesis factor that plays an essential role in promoting
the activation of tumor cell dormancy (Mulcrone et al., 2017).
Nutrient supply is an important resource for cell growth. The
study of nutrient supply channels is of great significance for not
only bone metastasis but also for tumor metastasis in general and
tumor growth in situ. In addition, it is essential to study vascular
endothelial cells during bone metastasis.

EXTRACELLULAR VESICLES AND BONE
METASTASIS

Recent studies have indicated that tumor-derived EVs play
important roles in the microenvironment of bone tumors
(Table 2 and Figure 3).

Extracellular Vesicles and Prostatic
Cancer Metastasis to Bone
Prostatic cancer is the most common malignant tumor and
an important cause of death, with gradually higher incidences
and poor efficacies (Archer et al., 2020). Current therapies for
prostatic cancer bone metastases continue to focus on reducing
symptoms and improving quality of life in these patients. Bone
metastases can result in many complications, such as refractory
bone pain, hypercalcemia, pathologic fractures, and spinal cord
compression, and can even cause more serious complications,
such as permanent paralysis (Boucher et al., 2020; Xue et al.,
2020). Therefore, an effective treatment strategy to reduce the rate
of bone metastases and the associated complications is urgently
needed in clinical practice to improve patient survival rates and
quality of life.

In recent years, EVs have been reported to be essential for
the metastasis of prostatic cancer to bones. Inder et al. (2014)
showed that PC3-EVs could induce osteoblast proliferation and
osteoclast differentiation. These effects have been shown to be
reduced by cavin-1 expression in PC3 cells, which is an important
discovery since cavin-1 has also been demonstrated to be a tumor
suppressor in caveolin-1-positive prostate cancer. However, a
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TABLE 2 | Studies reporting the roles of tumor-derived extracellular vesicles in the development and progression of bone metastases.

Tumor type References Origin of Evs Isolation of Evs Characterization of
Evs

Exosomal RNAs How to find Validation of RNAs Target cells Underlying functions

Prostate cancer Inder et al., 2014 Prostate cancer
PC3 cells

Ultracentrifugation / Cavin-1/PTRF / Western blot Osteoblast and
osteoclast

Induce osteoblast
proliferation, and

osteoclast
differentiation

Ye et al., 2017 MDA PCa 2b
cells

Ultracentrifugation TEM, NAT, western
blot (CD63, GM130)

miR-141-3p / RT-qPCR Osteoblasts Promote osteoblastic
metastasis

Li et al., 2019 LNCap cells Ultracentrifugation TEM, NTA, western
blot (CD9, HSP70,

Alix)

miR-375 Small RNA
sequencing

RT-qPCR Osteoblasts
(hFOB1.19)

Promote osteoblasts
differentiation

Borel et al., 2020 C4-2B cells Ultracentrifugation NTA, TEM, western
blot (Alix, CD9,

CLN3)

PLD2 / / Osteoblasts Enhance osteoblast
activity

Breast cancer Kang, 2016 Breast cancer
cells

/ / VCAM1 Gene expression
profiling

/ Osteoclasts Mediate the
recruitment of

pre-osteoclasts and
promote their

differentiation to mature
osteoclasts

Hashimoto et al., 2018 MDA-MB-231
cell

Ultracentrifugation NTA, TEM, western
blot (CD9, TSG101)

miR-940 Microarray
analysis

RT-qPCR / Induces extensive
osteoblastic lesions

Guo et al., 2019 MDA-MB-231
cell

Ultracentrifugation TEM, western blot
(CD63, TSG101)

miR-20a-5p/SRCIN1 / RT-qPCR Osteoclasts Enhances the
proliferation and
differentiation of

osteoclasts

Lung cancer Taverna et al., 2017 CRL-2868 cells Ultracentrifugation TEM, western blot
(Alix, TSG101, CD63)

AREG / / Osteoclasts Enhance the
proliferation and
differentiation of

osteoclasts

Xu et al., 2018 A549 cells Exosomes isolation kit TEM, western blot
(CD63, TSG101)

miR-21/PDCD4 / RT-qPCR Preosteoclasts Facilitate
osteoclastogenesis

Multiple myeloma Raimondi et al., 2015 Multiple
myeloma cells

Ultracentrifugation,
sucrose purification

DLS, western blot
(Alix, CD63)

/ / / Preosteoclast Modulate
pre-osteoclast
migration and

pro-differentiative role

Garimella et al., 2014 143B cells Differential
ultracentrifugation

NTA, TEM cAMP / / Osteoclasts Contain
pro-osteoclastic cargo

Acute myelocytic
leukemia

Kumar et al., 2018 AML cells Ultracentrifugation NTA, western blot
(TSG101, CD63)

Rab27a / / Mesenchymal Block osteogenesis
and bone formation

Melanoma Mannavola et al., 2019 Melanoma cells Ultracentrifugation NTA, TEM, western
blot (CD81, TSG101,

CANX), flow
cytometry

CXCR4/CXCR7 / RT-qPCR / Reprogram the innate
osteotropism of

melanoma

Peinado et al., 2012 Peripheral blood
of melanoma

subjects

Ultracentrifugation,
sucrose purification

TEM, western blot
(TYRP2, VLA-4,
HSP70, HSP90

HSC70)

MET receptor / / / Induce vascular
leakage at

pre-metastatic lesions

CAF, cancer-associated fibroblast; PAF, paracancer-associated fibroblast; AML, acute myeloid leukemia; TEM, transmission electron microscope; NTA, NanoSight NS300 particle size analyzer; DLS, dynamic
light scattering.
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FIGURE 3 | The roles of tumor-derived extracellular vesicles in bone metastases and potential molecular mechanisms. EVs, secreted by PCa (cavin-1, miR-142-3p,
miR-375, PLD2), BCa (VCAM1, miR-940, miR-20a-5p), LCa (AREG, miR-21), MM (cAMP), and AML tumors could carry different and abundant content and play a
key role in osteoclastic and osteoblastic cycling, leading to various metastatic lesions. PCa, prostate cancer; BCa, breast cancer; LCa, lung cancer; MM, multiple
myeloma; AML, acute myelocytic leukemia; TGFB2, transforming growth factor beta 2; AXL, AXL receptor tyrosine kinase; PLD2, phospholipase D2; VCAM1,
vascular cell adhesion molecule 1; AREG, amphiregulin.

critical question remains, which concerns how cavin-1 expression
selectively reduces EV levels in some molecules, including cargo,
structural, and functional proteins, and miRNAs. Moreover, Ye
et al. (2017) conducted a series of in vivo and in vitro studies and
found that the MDA prostatic carcinoma (PCa) 2b cell-derived
exosomal miR-141-3p could transfer from EVs to osteoblasts and
promote osteoblastic metastasis by regulating exosomal miR-141-
3p levels. These studies indicated that miRNAs could mediate
cancer cell-to-osteoblast communication, which is important for
the formation of bone metastases and osteogenic damage in PCa.
Li et al. (2019) confirmed that high miR-375 expression was
observed in LNCap-derived EVs that could preferentially reach
osteoblasts and enhance osteoblast miR-375 levels. In addition,
exosomal miR-375 might be associated with significantly higher
osteoblast activity. Further investigations should be performed
concerning the mechanisms underlying bone metastasis in PCa
patients, and the molecular mechanisms underlying exosomal
miR-375 involvement in the activation and differentiation of
osteoblasts. Dai et al. (2019) confirmed that primary PCa cells
could educate bone marrow to create a pre-metastatic niche via
primary PCa EV-mediated transfer of PKM2 into bone marrow
stem cells (BMSCs) with the subsequent upregulation of CXCL12.
Furthermore, Borel et al. (2020) showed that phospholipase D2
(PLD2) stimulated EV secretion and enhanced osteoblast activity
in PCa cell models. Therefore, PLD2 could be considered a
potential player in establishing PCa bone metastases by acting

through tumor cell-derived-EVs. EVs, released from prostate
tumor cells, decreased DC-STAMP, TRAP, cathepsin K, and
MMP-9 expression and thus decreased established markers for
osteoclast fusion and differentiation. These findings suggest that
tumor cell-derived microvesicles play an important role in cancer
progression and disease aggressiveness (Terese et al., 2016).

Extracellular Vesicles and Breast Cancer
Metastasis to Bone
Breast cancer is currently one of the most common malignant
tumors in women worldwide, and the incidence of this
disease has been rising in recent years. Breast cancer patients
develop tumor metastasis during the advanced stages of
disease. Bone tissue is one of the most common sites for
metastases in patients with advanced breast cancer, and the
metastatic ratio is much higher than that of the liver, lung,
and kidney (Park et al., 2020; Zhang D. et al., 2020).
Breast cancer metastasis to bones not only affects patient
quality of life but also results in anemia, fractures, paraplegia,
hypercalcemia, pain, cachexia, and increased mortality (Fico and
Santamaria-Martinez, 2020). When breast tumors metastasize
to bone, the balance between osteoblasts and osteoclasts is
damaged. Osteoclasts are continuously activated, as manifested
by higher osteoclast activity, resulting in osteolytic diseases
with osteolysis and structural bone damage (Zhao Z. et al.,
2020). Multiple bone growth factors are activated and released
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during bone resorption and remodeling, which provide an
appropriate microenvironment for tumor cell growth, invasion,
and metastasis (Zhao Z. et al., 2020). Once breast cancer cells
have migrated to bone, the unique bone microenvironment could
help to exchange biological information from the tumor cells
to osteoblasts and osteoclasts, breaking the balance between
osteolysis or osteogenesis during bone remodeling, which further
results in fractures and pain and finally leads to death (Zhang
D. et al., 2020; Pang et al., 2021). Although the tumors can be
excised in clinical settings, tumor cells have often already spread
and metastasized to bone, resulting in osteolytic lesions.

Previous studies have shown that EVs play key roles in
breast cancer metastasis to bone. Lim et al. (2011) showed
that the transfer of miRNAs from bone marrow stroma to
breast cancer cells could involve the dormancy of bone marrow
metastases. The results indicated that MDA-MB-231 and T47D
breast cancer cells were arrested in the G0 phase of the cell
cycle during co-culture with bone marrow stromal cells, and
several miRNAs involved in cell proliferation were identified by
analyzing miRNA expression profiles. These miRNAs included
miR-127, miR-197, miR-222, and miR-223, that target CXCL12.
Meanwhile, CXCL12-specific miRNAs were transported from
bone marrow stroma to breast cancer cells via gap junctions,
resulting in lower CXCL12 levels and reduced cell proliferation.
Stroma-derived EVs containing miRNAs also contributed to
breast cancer cell quiescence to a lesser degree than miRNAs
transmitted via gap junctions. Kang (2016) showed that higher
vascular cell adhesion molecule 1 (VCAM1) expression in
disseminated breast tumor cells mediated the recruitment of pre-
osteoclasts and promoted the differentiation of these cells to
mature osteoclasts during bone metastasis formation. Bendinelli
et al. (2017) clarified the control of the hepatocyte growth
factor/mesenchymal-epithelial transition factor gene (HGF/Met)
axis using DNA methylation and found that this axis was
significantly involved in the supportive cell-metastatic cell nexus
and metastatic outgrowths. This translational research focused
on the effects of the microenvironment on breast cancer cell
phenotypes and the formation of a pre-metastatic niche, and
the colonization of these cells in bone. The results suggested
the importance of targeting tumor microenvironments by
blocking epigenetic mechanisms that control critical colonization
events, such as the HGF/Met axis and the WW domain-
containing oxidoreductase (Wwox) gene, and therapies targeting
bone metastases. Hashimoto and his colleagues suggested that
miRNAs secreted by cancer cells in the bone microenvironment
induced bone metastasis phenotypes (Hashimoto et al., 2018).
Interestingly, the implantation of miR-940-overexpressing MDA-
MB-231 cells induced extensive osteoblastic lesions in the
resultant tumors by facilitating osteogenic differentiation of
host mesenchymal cells, even though MDA-MB-231 breast
cancer cells have commonly been considered an osteolytic-
inducing cancer cell line. Tiedemann et al. (2019) identified that
extracellular L-plastin and peroxiredoxin 4 (PRDX4) played a
specific role in stimulating osteoclastogenesis, thus promoting
osteolysis during tumor metastasis to bone, which suggested
that information regarding the expression of these proteins
might be especially useful in the treatment of cancers that

frequently metastasize to bone. Another study demonstrated
that miR-20a-5p, transferred from breast cancer cell-derived
EVs, enhanced the proliferation and differentiation of osteoclasts
by targeting SRCIN1, thereby laying scientific foundations for
the development of EV- or miR-20a-5p-targeted therapeutic
interventions in patients with breast cancer progression (Guo
et al., 2019). Breast cancer cell-derived EVs, associated with
the formation of a pre-metastatic niche via the transfer of
miR-21 and the regulation of PDCD4 protein levels, play an
important role in promoting breast cancer bone metastasis (Yuan
et al., 2021). Moreover, breast cancer cell (MDA-MB-231) EVs
inhibited osteoblast differentiation and reduced cell numbers
and activities by increasing osteoclast formation in a RANKL-
independent manner. In osteoblasts, breast cancer cell EVs were
shown to enhance transcription and increase angiogenesis and
osteoclastogenesis (Loftus et al., 2020).

Extracellular Vesicles and Lung Cancer
Metastasis to Bone
Lung cancer has currently one of the highest incidences of
malignancy worldwide. Bone is a distant metastatic site for
lung cancer, and the most common sites for lung cancer bone
metastases include the spine, chest, and pelvis (Tam et al., 2020).
The main routes of bone metastases occur through blood and
direct local infiltration with rich blood supplies in the marrow
cavity and higher adhesion molecule expression in malignant
tumor cells, and a large number of growth factors in bone (Xu
S. et al., 2020). After metastatic bone disease, patients develop
a series of bone-related events, including pain, hypercalcemia,
dyskinesia, spinal cord compression, and pathologic fractures, all
of which severely affect patient quality of life (Huang et al., 2020).
Taverna et al. (2017) observed that non-small-cell lung cancer
(NSCLC) EVs that activated the amphiregulin (AREG)-induced
epidermal growth factor (EGFR) pathway in pre-osteoclasts, in
turn, caused higher RANKL expression in osteocytes. RANKL
could also induce the expression of proteolytic enzymes involved
in osteoclastogenesis and thereby trigger a vicious cycle in the
process of osteolytic bone metastasis (Taverna et al., 2017). Xu
et al. (2018) showed that lung adenocarcinoma-derived exosomal
miR-21 showed promise as a facilitator of osteoclastogenesis
and thus as a potential therapeutic target of bone metastasis.
Understanding new advances in the diagnosis and treatment
of lung cancer metastasis to bone holds great significance for
prolonging survival and improving therapeutic effects in patients
with lung cancer with metastasis to bone.

Extracellular Vesicles and Multiple
Myeloma
Multiple myeloma (MM) is characterized as a proliferation of
malignant clonal plasma cells that can infiltrate bone marrow
and replace marrow cells. This malignancy also causes the mass
production of abnormal immunoglobulins and destruction of
bone, producing a series of clinical symptoms and signs that
seriously threaten the quality of life and lifespan of middle-
aged and elderly adults (Garces et al., 2020; Jeon et al.,
2020). At present, the primary therapies include combined
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chemotherapies and stem cell transplants (Coffey et al., 2019).
Since the proliferation ratio of tumor cells and formation of
multiple resistant strains is low in MM, the therapeutic efficacy of
clinical treatments remains less than ideal. Thus, finding a novel
therapeutic target is urgently needed.

There are many factors that cause MM bone disease, high
osteoclastic activity is the main reason, although many other
factors are involved (Abdi et al., 2013; Rossi et al., 2013;
Hameed et al., 2014). The proliferation of MM is markedly
related to the increase in the number and activity of osteoclasts.
This relationship maintains a balance between the abnormal
cycle of bone destruction and tumor cell survival. A report
by Raimondi et al. (2015) stated that EVs derived from MM
were also able to regulate the migration and differentiation of
osteoclasts. Additionally, MM-derived EVs have been shown to
have two primary functions. One, it can promote the appearance
of osteoclasts, and two, it can help improve bone resorption of
mature osteoclast-like cells. Moreover, Garimella et al. (2014)
reported that highly invasive and metastatic osteosarcoma 143B
cells could produce EVs by using ionomycin and forskolin
to actively mobilize intracellular calcium or increase cyclic
adenosine monophosphate (cAMP) levels. Raimondo et al.
(2019) reported that AREG was specifically enriched in EVs
from MM cells and that EV-derived AREG participated in MM-
induced osteoclastogenesis by activating EGFR ligands in pre-
osteoclasts. The above studies have proven that EVs are the
main factors of communication between MM cells and the
bone marrow microenvironment. More importantly, the above
conclusions support the role of tumor cell-derived microvesicles
in disease aggressiveness and cancer progression.

Extracellular Vesicles and Acute
Myelocytic Leukemia
Acute myelocytic leukemia (AML) is a heterogeneous clonal
hematopoietic stem cell disease mainly characterized by the
severe blockage of myeloid cell differentiation, rapid clonal cell
proliferation, and the infiltration of other organs by immature
myeloid bone marrow cells (Lu et al., 2017; Zhou et al.,
2020). The incidence of AML increases with age. AML is
considered the most common acute leukemia in adults, with
a low incidence in children, only accounting for 15%∼20% of
childhood leukemias (Zhou et al., 2020). Recently, Kumar et al.
(2018) analyzed a new AML mouse model and demonstrated the
niche transformation model. The study results indicated that the
hematopoietic microenvironment could be altered with the help
of EV transfer (through the Dickkopf WNT signaling pathway
inhibitor 1 (DKK1) gene). It was also found that normal niches
could be turned into malignant niches. In addition, mesenchymal
progenitor cells increased, and osteogenesis and bone formation
were blocked after injecting AML-derived EVs into mice. The
proliferation rate of AML cells was also shown to be accelerated
by the AML-derived EVs. However, AML-derived EVs could
be destroyed by Rab27a targeting, which provided inhibitory
effects that could significantly delay the appearance of leukemia
(Kumar et al., 2018). In addition, DKK1 was found to belong
to a normal hematopoietic and osteogenic inhibitory factor.

Therefore, related reports stated that bone cell loss was due to the
stimulating effects of AML-derived EVs on DKK1 (Kumar et al.,
2018). Thus, targeting EVs could represent a new strategy for
cancer treatments. The effective suppression of the hematopoietic
microenvironment might be a crucial new direction for the
control of malignant blood cell proliferation.

Extracellular Vesicles and Melanoma
Metastasis to Bone
Malignant melanoma (Mm) is a highly malignant melanocyte
tumor that accounts for 90% of skin malignancies causing
death (Broggini et al., 2020; Mannavola et al., 2020). Mm
is formed from the malignant transformation of melanocytes
located at the epidermal basement membrane. This tumor is
more common on the face and heels and primarily progresses
from the malignant transformation of nevi or pigmented
spots (Wilson et al., 2020). Mm is highly malignant and
vulnerable to lymphatic and blood tract metastases in the
early stages. Mm often metastasizes to the liver, lung, kidney,
and brain, and a few reports have demonstrated metastasis to
the gastrointestinal tract and ovaries. However, metastases to
bone marrow have only rarely been reported (Wilson et al.,
2020). Mannavola et al. (2019) demonstrated that tumor-derived
EVs reprogrammed the innate osteotropism of melanoma cells
in vitro by upregulating membrane CXCR7. These results
provide the possible identification of targets for future drug
development to skeletal metastases of malignant melanoma
(Mannavola et al., 2019). Peinado et al. (2012) indicated that
EVs from highly metastatic melanoma increased the metastatic
behaviors of primary tumors by permanently “educating”
bone marrow progenitors via the MET receptor. Melanoma-
derived EVs also induced vascular leakage in pre-metastatic
lesions and reprogrammed bone marrow progenitors toward
a c-Kit+Tie2+MET+ pro-vasculogenic phenotype (Peinado
et al., 2012). Lower MET expression in EVs weakened the pro-
metastatic behaviors of bone marrow cells (Peinado et al., 2012).
All of these studies implied that melanoma-derived EVs could
facilitate bone metastases using some factors, such as MET.

CONCLUSION AND OUTLOOK

Bone metastasis, as the major complication in patients with
advanced tumors, characterized by osteolytic lesion, often
occurring in chest bones. Since metastasized cancer cells can
damage bone marrow hematopoiesis and bone structure, bone
metastasis becomes the major symptom in advanced diseases,
as well as the leading cause of death (Coleman et al., 2020).
The destruction of the hemopoietic system by tumor cells
mainly results in anemia and an increased infection tendency.
Excessive bone growth causes local pain, fracture, and spinal
cord compression; even paraplegia can be seen with severe bone
damage and not only accelerates the death of patients but also
seriously reduces quality of life (Mukaida et al., 2020). The
discovery of novel biomarkers and targets to control metastatic
bone disease is urgently needed. EVs have been reported to be
biomarkers for cancer diagnoses and targets for novel therapies.
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EVs, as carriers of protein, RNAs, and other bioactive molecules,
serve as a tool for cell-to-cell communications and could be
effective in regulating the signaling pathways or biological
behaviors of recipient cells. This review summarizes the roles
of tumor-derived EVs in bone metastasis and concludes that
proteins and RNAs in EVs derived from tumor cells could
enhance tumor invasion and metastasis and might be useful as
targets for cancer therapy and the inhibition of bone metastases.

Although research has proven a vital role for EVs in tumor
metastasis to bones, many problems still need to be investigated
in future studies. These include the roles of tumor-derived
EV compositions (including RNA and DNA) in determining
bone-specific metastases, whether tumor metastasis could be
prevented by inhibiting the secretion of tumor-derived EVs,
especially in bone metastases and other organs that damage
bodily functions, and if clinical transformations could be carried
out using targeted therapies for tumor metastasis to bone based
on discovered molecular mechanisms. Solving these issues will
help highlight the underlying mechanisms of bone metastases.
Future therapeutic strategies could involve a combination of
several drugs that might block multiple targets or pathways
simultaneously to improve quality of life, prolong survival,
and provide greater therapeutic benefits for patients with
bone metastases.
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