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PolySTest: Robust Statistical Testing of
Proteomics Data with Missing Values Improves
Detection of Biologically Relevant Features
Veit Schwämmle1,2,*, Christina E. Hagensen1,2, Adelina Rogowska-Wrzesinska1,2,
and Ole N. Jensen1,2

Statistical testing remains one of the main challenges for
high-confidence detection of differentially regulated pro-
teins or peptides in large-scale quantitative proteomics
experiments by mass spectrometry. Statistical tests need
to be sufficiently robust to deal with experiment intrinsic
data structures and variations and often also reduced
feature coverage across different biological samples due
to ubiquitous missing values. A robust statistical test pro-
vides accurate confidence scores of large-scale proteom-
ics results, regardless of instrument platform, experimen-
tal protocol and software tools. However, the multitude of
different combinations of experimental strategies, mass
spectrometry techniques and informatics methods com-
plicate the decision of choosing appropriate statistical
approaches. We address this challenge by introducing
PolySTest, a user-friendly web service for statistical test-
ing, data browsing and data visualization. We introduce
a new method, Miss test, that simultaneously tests for
missingness and feature abundance, thereby comple-
menting common statistical tests by rescuing otherwise
discarded data features. We demonstrate that PolySTest
with integrated Miss test achieves higher confidence and
higher sensitivity for artificial and experimental proteom-
ics data sets with known ground truth. Application of
PolySTest to mass spectrometry based large-scale pro-
teomics data obtained from differentiating muscle cells
resulted in the rescue of 10–20% additional proteins in the
identified molecular networks relevant to muscle differ-
entiation. We conclude that PolySTest is a valuable addition
to existing tools and instrument enhancements that im-
prove coverage and depth of large-scale proteomics exper-
iments. A fully functional demo version of PolySTest and
Miss test is available via http://computproteomics.bmb.
sdu.dk/Apps/PolySTest.

A typical mass spectrometry-based proteomics study iden-
tifies and quantifies thousands of proteins in large scale ex-
periments, including different perturbations, cell types or or-
ganisms, dose-responses or time courses. Experimental and

biological variance is captured by analyzing technical and
biological replicates to enhance reproducibility and repeat-
ability. However, the extensive resource requirements of ex-
perimental, large-scale proteomics experiments usually result
in low replicate numbers, i.e. n � 2 � 5. This limitation
requires careful application of appropriate statistical methods.
Given the measured values of thousands of peptides or pro-
teins, biological interpretation of the large data sets calls for
data processing and filtering for detection of the biologically
relevant features. This is usually achieved by the detection of
differentially regulated features (DRFs), such as, differentially
expressed proteins, peptides, or post-translationally modified
peptides. Statistical testing, also known as significance anal-
ysis, helps identifying biological changes in the experimental
setup. Statistical tests aim to recognize DRFs by providing
probabilities for a significant change of protein abundance.
Here, variance between biological samples, technical varia-
tion and “computational variance” coming from applying a
particular data processing workflow (1, 2) determines the
significance. Optimal application of suitable statistical tests
relies on estimating these variances to yield the correct false
discovery rate (FDR, defined by the number of false positives
divided by the number of DRFs) while maximizing the number
of correctly identified proteins (sensitivity).

Particularly “missing values” can compromise statistical
testing as they severely decrease the statistical power of the
data analysis. Missing values are values of a feature that are
absent in a given replicate by not having been detected and
reported by the measurement equipment. A missing value
originates because a signal is below the detection limit, due to
sample loss, and/or stochastic precursor selection in mass
spectrometry. The different origin of missing values in a data
set impedes accurate prediction of the correct values. Thus,
imputation methods that replace missing values with esti-
mated abundances can be considered inappropriate as they
add knowingly false measurements. Even when assuming
missing values to be due to absent proteins, applying impu-
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tation by 0-values would lead to an estimated variance of zero
and impede transforming the values to their logarithm. There-
fore, data imputation has been reported to lead to erroneous
results (3, 4). Currently, most computational approaches ap-
ply a prior filter to exclude proteins of low coverage that are
missing too many values and do not provide sufficient repli-
cation to estimate their variance by having only 1–2 values per
experimental condition.

However, proteins that are represented in datasets with
both “present values” and “missing values” still contain highly
valuable information. Missing values coming from proteins of
low or no abundance can contribute to a statistical test with
additional evidence. For instance, consider a case where a
protein is completely repressed and thus all replicate data are
missing in one condition, but are highly abundant in the other
condition. Including these otherwise discarded cases using a
statistically sound method would rescue more proteins for the
statistical testing and so is likely to increase the number of
differentially regulated features (DRFs). Current tests with ca-
pability to include missing values however are usually binary,
i.e. they oversimplify the analysis by dividing all data values
into absent and present, or by assuming all missing values to
be below the detection limit (5, 6).

The fraction of missing values often increases drastically on
the peptide level. Peptide-centric approaches where the sta-
tistical test includes peptide quantifications instead of sum-
marized protein amounts are very promising. They extrapolate
protein variance from peptide variance and some tools are
already available, including MSStats (7) and MSqRob (4).
However, in most cases rather low numbers of quantified
peptides per protein complicate the performance of such
approaches. In addition, different mass spectrometry data
acquisition methods (e.g. label-free versus stable isotope
labeling protocols) require specialized methods for protein
summarization. Therefore, we here consider summarization
as a separate task.

Several methods can process summarized data with few
missing values and produce satisfactory results. The LIMMA
method (8), originally developed for micro-array data, is
widely used in proteomics research. LIMMA was shown to
perform well for proteomics experiments with as little as three
replicates per condition (9). However, depending on the data
set and its structure, other statistical tests such as rank prod-
ucts (10) were found to improve performance in a comple-
mentary manner. Distinct data properties originating from
different numbers of differentially regulated features and dif-
ferent variations within them lead to either rank products or
LIMMA becoming the best-performing method in ground truth
data (9). Another approach that holds potential to deal with
differently structured data is based on comparing the ob-
served values to randomizations of the data. Such permuta-
tion tests have been implemented e.g. in the Perseus suite
(11).

Given the current state of available methods, there is a need
to carry out significance analysis that a) considers missing
values, b) uses robust and complementary tests to include
different intrinsic data properties and c) provides simple us-
age through a user-friendly program interface.

We here introduce a novel statistical test (Miss test) for
datasets with missing values. The Miss test is included in our
new PolySTest web service that provides a set of comple-
mentary statistical tests for quantitative data and versatile
data browsing and visualization. Validation of the methods by
extensive tests with artificial and real data sets shows the
power of our approach. We demonstrate the performance of
PolySTest using a proteomics data set to achieve improved
coverage of biologically significant features in muscle cell
differentiation.

MATERIALS AND METHODS

Missing Value Statistics (Miss test)—The probability pNA to find a
missing value is given by the fraction of missing values in the data set.

A binomial distribution describes the case of having multiple miss-
ing measurements. The probability to find i missing values in r repli-
cates is given by

bi� � r
i � p NA

i �1� pNA�
r�i. (1)

We derive the probability to observe a difference of the number of
missing values in two groups of values. Then the probability for
finding a difference of k missing values between sample groups yields

Pk� 2�
j�0

r�k

bj�k bj (2)

For an example for calculating the probabilities, see the Result
section. The probabilities Pk only account for presence/absence of
protein quantifications but not for their abundance-dependence, i.e.
whether they are more likely to occur when measuring low abundant
proteins. Therefore, the algorithm applies the following additional
steps. The distribution of all quantitative values is divided into 100
quantiles. Then, for each quantile, (a) values below the quantile were
set to be missing; (b) probabilities described by Eq. 1 are calculated
on basis of the new pNA; (c) the difference in number of missing values
between conditions for each feature is calculated; and (d) the prob-
abilities for the differences using Eq. 2 are stored. This method gives,
for each feature and each comparison between conditions, a vector
of 100 Pk values. The smallest Pk of each vector is multiplied by r �
1 and represents the p value of the Miss test. p values larger than one
are set to one.

Data Sources

Artificial Data Sets—Real data with ground truth was simulated by
superposing a fraction of the normally distributed (mean 0, stand-
ard deviation 1) features with an offset. Out of N features per
replicate (R) and one of the two conditions, NR features were
displaced by � to each side with random assignment of up- and
down-regulations.

Then, for the simulation of abundance-dependent missingness, we
randomly removed m% of the values by elimination with weights [1 �
r(i)/N]� where r(i) is the rank of the feature i in a sample after sorting for
their abundance. Table I shows a summary of the parameter ranges
used for creating the artificial data sets.
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Experimental Data Sets—
3-Species Mixture—The original experiment (12) comprises two

hybrid proteome samples with a ”ground truth” mix of human, yeast
and Escherichia coli proteins (ratios 1:1, 2:1, and 1:4, respectively),
referred to as HYE124. The samples were analyzed in technical
triplicates on a TripleTOF 6600 instrument using a 64 variable window
of 10 min for SWATH-MS acquisition. The protein quantification sum-
mary from data analysis with SWATH 2.0 was chosen. The file
PViewBuiltinProteins_TTOF6600_64w_shift_iRT_extractionWindow
10min_30ppm_proteins.csv was downloaded from PRIDE reposi-
tory (PXD002952) and the protein quantification values were
log-transformed.

2-Species Mixture—We retrieved data from a study where Esche-
richia coli digest was spiked into a HeLa digest in four different
concentrations: 3%, 7.5%, 10 and 15% (13). The data was acquired
via label-free MS on a Q Exactive Plus instrument. Protein abun-
dances were given as supplementary data file. These were log-trans-
formed and normalized using the normalizeCyclicLoess function
(LIMMA R package (14)).

Muscle Differentiation—Immortalized human satellite cells
(KM155C25) were differentiated into myoblasts following procedures
established before (15, 16, 17). Biological triplicate protein extracts
were prepared at 6 time points: proliferating activated myoblasts (Day
�1) and 5 days following the initiation of differentiation into mature
myocytes (Day 0, 1, 2, 3 and 4). Protein extraction and sample
preparation was performed following previously published protocols
(18, 19) with minor modifications. Cells were lysed using (50 mM

TEAB, 1% SDC, 10 mM TCEP, 40 mM chloroacetamide buffer in the
presence of protease inhibitors (cOmplete, EDTA-free Protease Inhib-
itor Mixture, Roche) and phosphatase inhibitors (PhosSTOP, Roche,
Switzerland). Lysates were heated to 80°C for 10 min and vortexed 1
min, followed by sonication for 3 � 15 s with 30 s breaks on ice
between at 40% output intensity utilizing a Q125 sonicator (Qsonica,
CT). Protein concentration was determined by ProStainTM (Active
Motif) and 100 �g of protein was taken through digestion. Each
sample was analyzed by mass spectrometry in technical triplicates
and in randomized order. The desalted peptides were captured on a
�-precolumn (5 �m, 5 mm � 300 �m, 100 Å pore size, Acclaim
PepMap 100 C18, Thermo Fisher Scientific) before being separated
using a home-packed fused silica column (50 cm � 100 �m, 120 Å
pore size) of 2 �m InertSil ODS-3 beads (GLSciences, Japan). Pep-
tides were separated using a 120 mins gradient of 8 to 35% buffer B
(99.99% ACN, 0.01% FA), at 200 nl/min flow with a Dionex UltiMate
3000 nanoLC system (Thermo Fisher Scientific) and analyzed by
MS/MS using an Orbitrap Fusion Lumos Tribrid mass spectrometer
(Thermo Fisher Scientific). For each cycle a full MS scan across the
mass range 350 –1800 m/z was performed within the orbitrap with a
resolution of 120,000 and an AGC target of 5 � 105 ions, with a
maximum injection time (IT) of 60ms, a dynamic exclusion window of
40 s was used. This was followed by fragmentation of ions with
charge states of�2– 6 by HCD within the ion trap. MS/MS scans were

performed at a rapid ion trap scan rate, with a collision energy of 35%,
a maximum IT of 35ms and an AGC target of 1 � 104. An isolation
window of 0.7 m/z was used, with an isolation offset of 0.2 m/z. Data
were acquired using Xcalibur (Thermo Fisher Scientific). Generated
data was analyzed using MaxQuant (v 1.5.5.1) (20) and the in-built
Andromeda search engine (21). The human UniProt Reference Pro-
teome database, containing Swiss-Prot proteins including isoforms
(downloaded 26 April 2017, containing 20,198 entries) was used for
identification. Data was searched with the following parameters: tryp-
sin digestion with a maximum of 2 missed cleavages, a fixed modi-
fication of Carbamidomethylation (C), variable modifications of Oxi-
dation (M), Acetylation (Protein N-term) and Deamidation (NQ). Label-
Free Quantitation was performed with “match between runs” and
disabled ”second peptide search.” The false discovery rate (FDR) for
both PSM and protein identification was set at 0.01%. All other
parameters remained as default including a mass tolerance for pre-
cursor ions of 20 ppm and a mass tolerance for fragment ions of 10
ppm. Raw data and search results are available via ProteomXchange
identifier PXD018588. Protein quantifications were taken from Max-
Quant and contaminants and decoy hits were removed. Quantifica-
tions from technical replicates were summed, log2-transformed and
normalized by median. Furthermore, a minimum of 2 unique pep-
tides per protein and 6 non-missing values over all 18 samples was
required to reduce the effect of wrong identifications.

Statistical Tests

t test—Paired or unpaired t tests were carried out using the default
t test in R.

LIMMA—Paired or unpaired moderated tests were calculated ap-
plying the default procedure for using the LIMMA package (14) in-
cluding linear model estimation and empirical Bayes moderation of
standard errors.

Rank Products—The p values for the paired tests were calculated
according to ref (22). Unpaired samples were simulated by obtaining
the p values from 100 randomly picked pairings and taking their
means.

Permutation Test—This method requires a minimum of 7 replicates
per condition (unpaired) or 7 ratios between pairings. For lower replicate
numbers, the method adds samples with values randomly drawn from
the pool containing all values of the considered samples. Then, for each
feature, upaired or uunpaired were obtained for 1,000 randomizations of the
feature values. Similar to calculating the t-values in a t test, the mean of
all paired ratios was divided by their standard deviation. For feature i,
this gives upaired

(i) � �mean(rk
�i�)/std(rk

�i�)��n�i� where rk
�i� is the abundance of

feature i in replicate k and n�i� is the number of non-missing values.
Unpaired comparison of values of feature i between conditions t and
c was calculated by

uunpaired
�i� �

�mean�rk
�i��t���mean�rk

�i��c���

�var�rk
�i��t��� var�rk

�i��c��
n�i� (3)

where lower replicate numbers are punished by multiplying by the
number of non-missing values.

We then calculated the p value of each feature by comparing u�i� of
the feature to 1000 instances of u�r� that were calculated for the
randomizations r explained above. The resulting p value is given by

pi� ��
r�1

1000

� �u�i�� u�r��� 1�/1000 (4)

where � �x� is the Heaviside function which is 1 for x 	 0 and 0
otherwise.

Miss Test—For details on this statistical test, see above.

TABLE I
Parameter values of artificial data including their range

Parameter Symbol Range

Feature number N 500–10,000
Replicates per condition R 3–10
Percentage regulated features NR 0–50%
Difference regulated features � 1–5
Percentage missing values m 0–50%
Abundance-dependence of

missing values
� 0–100
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Corrections for Multiple Testing—The p values from the statistical
tests need to be corrected for multiple testing to estimate the false
discovery rates. The p values of each test are corrected by either the
Benjamini-Hochberg procedure (Miss test, rank products and permu-
tation test) or the numerical qvalue method (23) (t test and LIMMA),
where the latter requires sufficient p values for a good estimation of
the background distribution. The Benjamini-Hochberg method was
used for the statistical tests that discard a fraction of the features by
setting the p values to p � 1 and thus might not provide the required
number of p values to apply the qvalue method.

Unified PolySTest FDR—Combining the resulting FDRs to a unified
PolySTest FDR requires an additional step of correction for multiple
testing. For the calculation of the PolySTest FDR, the FDRs from
LIMMA, Miss test, rank products and permutation test were corrected
for multiple testing by the method of Hommel (24) which allows for
positive dependence. Then, the PolySTest value is given by the
smallest of the resulting corrected FDR values.

Pathway enrichment analysis was carried out using the Cluster-
Profiler R package (25) (version 3.10.1) using default parameters.

Web Interface—All methods are freely available through our web
service at http://computproteomics.bmb.sdu.dk/Apps/PolySTest or
can be downloaded to be run on a local computer. The software was
written as Shiny app which is highly interactive and allows extensive
data browsing and visualization including upset plots (26), circlize
plots (27) and an interactive heatmap (28). The full source code is
available through https://bitbucket.org/veitveit/polystest.

RESULTS

We introduce a new statistical method, Miss test, to com-
bine the occurrence of missing values with protein abundance
for improved detection of DRFs in data with high amounts of
missing values. To assess its performance, robustness to
different data structures and complementarity to other statis-
tical tests, we assessed five different statistical tests applied
on hundreds of artificial data sets, experimental data sets with
ground truth and a data set with well-defined biological
content.

The tests are implemented and combined in the PolySTest
web service to analyze and visualize the statistically tested
data prior to down-stream biological interpretation (Fig 1A).

Miss test A Novel Statistical Test for Data with
Missing Values

Miss test integrates missingness with measured protein
abundance by reapplying a binary statistics method over a
range of different data representations.

To describe the impact of the missing values, we derived
the probabilities for each combination of missing values being
distributed over the replicates of the experimental conditions.

FIG. 1. A, Overview of the PolySTest web service and the used statistical tests. The FDRs from the four statistical tests are combined into
a unified PolySTest FDR. B, Combinations of missing values (zeroes) and present values (ones) in the case of three replicates and two
conditions A and B. Given a probability of pNA � 1/2 for a missing value, each combination is found with probability 1/64. The numbers on the
right count the absolute of the difference in missing values. This leads to p values of 5/16, 15/32, 3/16 and 1/32 for finding a difference of
missing values of 0,1,2 and 3, respectively. C, Scheme of Miss test on an example of two conditions with three replicates where two of the
values of condition A are absent. The distribution of all quantifications in the dataset defines the quantiles used as thresholds for iteratively
removing values from the dataset. The differences in the number of missing values are then calculated for each threshold. Note that a different
threshold also implies changing pNA. The figure also shows exemplary p values for the different quantiles. Here, Miss test would report the p
value marked in bold.
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We illustrate the calculation by a simple scenario with 50% of
missing values and 3 replicates per each of 2 experimental
conditions A and B. The probability for observing a missing
value is assumed to be pNA � 0.5. The null hypothesis as-
sumes that the missing values are missing at random, i.e. they
are randomly distributed over the entire data set. This leads to
a probability of pNA

6 � 1/64 for each combination of missing/
non-missing values across the four values (Fig. 1B). We then
count the number of cases where the number of missing
values in both conditions differs by 0, 1, 2 and 3. A difference
of 3 missing values corresponds to only missing values in
condition 1 or only in condition 2, thus giving a probability of
2 � 1/64 � 1/32. A difference of 0, 1 or 2 missing values
between the conditions occurs in 20, 30 and 12 different
cases. Hence, the probability to find a difference of 0, 1, 2 and
3 missing values is given by the probabilities 5/16, 15/32, 3/16
and 1/32, respectively. Finding only missing values in one
condition would then correspond to a p value of 2pNA

6 �

0.03125.
This calculation only accounts for the presence of missing

values. Therefore, the algorithm looks for the most suitable
scenario that describes an experiment with a limit of detection
where the difference in missing values is most significant.
Such a scenario then yields the lowest p value calculated from
a large difference of missing values between the conditions
and a pNA determined by the artificially set detection limit.
Thus, the missing values in such a scenario consist of the
actual missing values and the ones removed due to their low
abundance. These removed values can be strictly “missing by
being low abundant.” We then test whether there is sufficient
evidence to reject the null hypothesis of missing at random.
One can roughly compare this approach to rank-based tests
in which missing values often are added to the lower bound
and thus assumed to be missing due to lowest abundance.
However, the power of the Miss test consists in not making
any assumption on the actual missing values.

Miss test takes quantitative values into account by repeat-
ing the above-described procedure while artificially increasing
the fraction of missing values, pNA. Therefore, it can also be
applied to complete data with full feature coverage over rep-
licates and conditions. Our method iteratively reduces the
quantitative data by removing low abundant values for a set of
100 abundance thresholds which are calculated from the
distribution of the full dataset. The newly introduced missing
values of the reduced dataset are therefore abundant de-
pendent. This approach enforces more significance to pro-
teins with high abundance in the condition where less values
are missing and where the other condition consists of missing
and low abundant protein values. Fig. 1C shows an example
where all values of condition B are higher than the one value
of condition A. This leads to a maximum difference of three
missing values. If the one value of condition A had higher
abundance than the lowest value of condition B, then the
iterative process would only find a maximum difference of 2

missing values, and thus report a higher p value, i.e. lower
significance. The overall performance of Miss test will be
thoroughly tested in the next section.

Performance of Miss test—Here we assess whether Miss
test follows the distributions of a common statistical test and
whether it can rescue features with many missing values that
otherwise would be discarded.

“Empty” Data—Purely random data corresponds to a global
null hypothesis and should result in a uniform p value refer-
ence distribution. This is crucial to directly compare Miss test
to other tests and to ensure that common methods for cor-
rection for multiple testing can be used. As the p values of
interest can be very small, we plotted the empirical cumulative
distribution of the p values for normally distributed artificial
data sets simulating a variety of scenarios with missing val-
ues. Different types of missingness were achieved by setting
different weights regarding protein abundance for the random
removal of values in the full artificial data set. This abundance-
dependence was varied between purely random removal (��
0) and strong preference for low abundant values (� � 100).

Supplemental Fig. S1 shows that the p value distribution
stays approximately uniform for different replicate numbers.
We confirmed this for cases where we varied the fraction of
missing values and their abundance-dependence. Supple-
mental Fig. S2 shows that the p values still are uniformly
distributed when decreasing the number of proteins. We also
counted the number of proteins with FDR 
0.1. For all tests
comprising different replicates, 1000 or 10,000 features, max-
imally 1 false positive was found, with an overall frequency of
less than 5% of all 192 tested data sets which is well below
the expected 10%. This confirms absence of false positives in
purely random data.

Data with Ground Truth—Next, we investigated how well
Miss test recognizes regulated features in artificial data with
ground truth. We took data identical to the “empty” random
data and added an offset to a fraction of the features to
simulate their differential regulation. Thus we divided the data
into positives (displaced features) and negatives (random fea-
tures) which allows validating the results of the statistical
tests.

Fig. 2A shows a typical case of noisy data consisting of
1000 features including 50 features that were different by
having only slightly shifted values to either side (� � 1.5)
compared with the simulated variance within replicates. Miss
tests detects 24 DRFs (FDR 
0.05). To check how this num-
ber is influenced by missing values, 20% of all values were
removed assuming a light abundance-dependence on the
values via weighted removal (Fig. 2B). Miss test still found 14
of the 50 features to be differentially regulated between both
simulated conditions, including cases with few missing values
per feature. Reduction to half of the data decreased the
number of DRFs to 8 (50% missing values, Fig. 2C). Most of
these features would not have been tested by a common
statistical test as only 0 –1 values were available in one con-
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dition. The performance of Miss test improved with more
statistical power (10 replicates per condition, Fig. 2D) or hav-
ing a stronger relation between missing values and their orig-
inal abundance (abundance-dependence � � 10, Fig. 2E). In
all cases, the number of false positives was kept within the
desired range of 5%. Miss test correctly identifies DRFs and
becomes powerful for data with many missing values by
rescuing otherwise untested differentially regulated proteins.

Performance and Complementarity Compared with Other
Statistical Tests—In order to find out whether Miss test is
sufficiently powerful as stand-alone test and how it comple-
ments standard statistical tests by rescuing otherwise lost
proteins, we compared the performance of the Miss test with
the performance of the four commonly used statistical tests
LIMMA, rank products, permutation test and t test. To de-
scribe and employ their complementary power, a PolySTest
FDR was calculated combining the FDRs of all used statistical

tests except of the t test: each FDR from LIMMA, Miss test,
rank products and permutation test was corrected for multiple
testing by the method of Hommel (24) and then the smallest
value was taken. By unifying the output from statistical tests
which are based on different assumptions about the data and
its structure, we aim to achieve higher robustness over differ-
ent data types. The t test was excluded from the unified ouput
as it is known to underestimate the false discovery rate for
less than 5 replicates (22).

For an overall comparison, we used ROC curves to assess
the performance of the different tests applied to hundreds of
artificial data sets (see supplemental Figs. S3–S6 for example
datasets corresponding to the datasets shown in Fig. 2). ROC
curves and AUCs (area under curve), despite of being a widely
used method to compare test performance, were not able to
accurately describe test performance in many cases due
to the rather jumpy nature of true and false positive rates, to

FIG. 2. Performance of Miss test for different artificial data sets with missing values. A–E, Most significantly changing features
according to Miss test for differently parametrized artificial data sets. True and false positives are indicated by green and red sidebar values,
respectively.
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sometimes low numbers of DRFs, and more importantly to the
regions of interest being in the very low range of false positive
rates.

Hence, test performance was additionally investigated by
means of the following validation criteria at a fixed FDR
threshold: (1) sensitivity (or yield) describing the number of
detected DRFs, i.e. features that were found to be differen-
tially regulated, (2) confidence of the found DRFs given by the
true FDR which was calculated from the number for true
positives (TP) and false positives (FP), tFDR � FP/�FP � TP�,
and (iii) comparison of the given FDR threshold to the true FDR
to validate how well the test predicts the fraction of false posi-
tives. Given these criteria, an optimally performing test would
yield a high number of DRFs, keep the true FDR below the FDR
threshold but does not underestimate the false discovery rate
too drastically.

At an FDR threshold of 0.01, LIMMA was most sensitive at
low replicate numbers and low or absent abundance-depend-
ence of the missing values while controlling the false positives

at an acceptable level (Fig. 3A). Remarkably, PolySTest main-
tained a similar number of differentially regulated features but
reduced the number of false positives. Miss test performance
improved when increasing the number of replicates or having
many missing values. For five replicates (Fig. 3B), most DRFs
were detected by LIMMA but PolySTest showed greater sen-
sitivity and confidence through the rescue of additional pro-
teins by Miss test. Higher abundance-dependence of miss-
ingness and sparser data sets prevented common statistical
tests from calculating p values because no variance estimate
can be calculated from 0 –1 values alone. In this case (Fig.
3C), Miss test greatly outperformed the other tests. In all
cases, PolySTest ensured that the true FDR was below 0.01,
thus correcting cases where one or more of the tests overes-
timated the fraction of false positives.

By thorough comparison of the statistical tests over all
artificial data sets, we assessed overall sensitivity (mean of all
true positive rates, here denoted mean of TPR) of each test
and the distributions of the measured true FDRs (Fig. 3D). This
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confirmed LIMMA to produce high yields of differentially reg-
ulated features at acceptable amounts of false positives. The
rank product test showed very high confidence results but
suffered from low DRF numbers. Permutation test and t test
showed a low number of DRFs with often too high numbers of
false positives. In comparison, Miss test depicted the second
highest mean true positive rate and high confidence. As
main result, the PolySTest was most accurate in estimating
the false discovery rate and produced the largest yield of
differentially regulated features. Hence, the combined use
of complementary statistical tests leads to increased statis-
tical power. We confirmed these general insights for differ-
ent total numbers of features 500 and 5000 (supplemental
Figs. S7 and S8).

PolySTest Boosts Detection of Differentially Regulated Fea-
tures in Experimental Data—We evaluated the performance of
the different statistical tests on two published experimental
data sets, here denoted 3-species and 2-species, with ground
truth created by mixing the protein extracts of different spe-
cies with pre-determined ratios.

The 3-species data set (12) contains protein measurements
of E. coli, yeast and human samples where the former two
were mixed at different concentrations while keeping the con-
centration of human proteins constant. By using a mixture of
three, one can avoid strong bias toward one side, which can
introduce large numbers of false positives as common nor-
malization techniques start to fail. Protein concentrations
were measured using SWATH technology (29).

The 2-species data set (13) contains an E. coli protein ex-
tract mixed with a HeLa protein extract at four different ratios.
Protein abundance was measured using label-free quantifica-
tion on a quadrupole orbitrap mass spectrometer, which is a
conceptually different strategy than SWATH. The label-free
quantification approach also results in a higher abundance-
dependence of missing data. Supplemental Table S1 summa-
rizes the number of true and false positives at a FDR threshold
of 0.01 for both ground truth data sets. LIMMA and PolySTest

produced the highest sensitivity. Like our observation for the
artificial data, PolySTest reduced the number of false posi-
tives by up to 50%.

When comparing the different tests applied to the 3-spe-
cies data on a ROC curve (Fig. 4A), rank products seems to
outperform both LIMMA and PolySTest. However, rank
products becomes far more conservative than the other
tests and produces only very few DRFs for commonly used
FDR thresholds (for example FDR 0.01 in Fig. 4B). We
additionally inspected sensitivity and confidence and com-
pared the true FDR to the given threshold (Fig. 4C). PolyS-
Test provided accurate confidence thresholds at slightly
lower sensitivity. Most tests overestimate the false positives
and we will address to explain this observation in the fol-
lowing section.

The 2-species data extends the comparison to four condi-
tions with increasing concentrations of the added E. coli ex-
tract. Here, the analysis suffers from differential bias as all
E. coli proteins have higher concentrations when compared
with the first condition used as reference. This bias has strong
impact on the normalization and we therefore did re-normalize
the quantitative data using the cyclic loess method from the
LIMMA package.

Given that the data was acquired with the label-free ap-
proach, missing values were likely to come from low abundant
proteins for which the peptide peaks did not pass the detec-
tion limit. This higher abundance-dependence leads to a
higher sensitivity of PolySTest visible by a considerable in-
crease of the ROC curve of the PolySTest score when com-
paring it to the other statistical tests (Fig. 5A). This increase in
performance results benefits from proteins that were com-
pletely absent in the first condition and therefore were only
considered by the Miss test.

Consistent with the previous results, PolySTest decreased
the number of false positives when compared with LIMMA
(Fig. 5B). However, the test still overestimated the FDR and
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this effect increased with the concentration of the E. coli
extract.

In summary, combining the different statistical tests to a
unified PolySTest score resulted in higher confidence and

more accurate estimation of the true FDR. Increased confi-
dence usually comes at the cost of sensitivity. However,
sensitivity was either only slightly lower or even increased
when using the PolySTest score. One reason for maintaining

C2 vs C1
ratio: 5/2 

 C3 vs C1
ratio: 10/3 

 C4 vs C1
ratio: 5/1

FIG. 5. PolySTest outperforms indi-
vidual tests for the 2-species data set
as Miss test adds significant proteins.
A, ROC curves show that combined
tests, mostly supplied by the Miss test,
considerably increase the true positive
rate. Filled circles correspond to an FDR
of 0.01. B, Comparison of test perform-
ance on basis of sensitivity and confi-
dence (FDR: 0.01). C, Higher concentra-
tions of E. coli proteins in mixture leads
to more false positives which however
follow the trend of the mixture as con-
firmed by high correlations to the given
ratios. The dashed line corresponds to
the averaged log-ratios of all E. coli pro-
teins. Red lines are proteins with corre-
lation 	 0.99.
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similar sensitivity is the Miss test that rescued significant
proteins with many missing values.

High Number of False Positives Explained by Incorrect Pep-
tide Identifications—In contrast to the results for the artificial
data, most statistical tests suffered from too many false pos-
itives. We investigated whether the false positives could result
from artifacts in the upstream data analysis pipeline, for ex-
ample due to incorrect peptides identifications that assign a
peptide from the wrong species.

To get a rough estimation of incorrect peptide identifica-
tions within the false positives in the 3-species data set, we
counted the number of unique peptides per identified protein.
Supplemental Fig. S9 shows that most false positive proteins
is based on 1–2 peptides which is different from the full
dataset where higher numbers of unique peptides per protein
are much more frequent. Hence, we can assume a higher
number of false identifications within them and therefore
these human proteins might be derived from actual differen-
tially regulated proteins from either E. coli or yeast. More
accurate true FDRs can be achieved by removing proteins
that were identified by only one peptide.

In the 2-species data, we took advantage of the multi-
dimensional setup comparing 4 different ratios between E.
Coli and human samples. This allowed to look for proteins
with potentially wrong identifications by comparing their ex-
pression profile to all five E. coli concentrations (Fig. 5C).
Then, the protein expression profiles of false positives will
correlate highly with the overall profile of the E. coli extracts
shown as dashed line, suggesting that these “human” pro-
teins contain E. coli peptides wrongly identified as human
peptides. For that, we calculated Pearson’s correlation be-
tween the false positives and the mean of the ratios of the true
positives. The resulting ratios were lower but still many pro-
teins correlated strongly (	0.99) with the true positives.
Based on this strong correlation, we can assume that a frac-
tion of the peptides in these human proteins were incorrectly
assigned E. coli peptides.

Our analysis shows that too tolerant thresholds for the
peptide identification can have major impact on the down-
stream statistical analysis by assigning an incorrect protein to
a DRF. On the other hand, we suspect that the number of
wrong identifications leading to false positives is lower in real
biological samples where biological variation should suppress
these false hits more efficiently.

Higher Coverage of Biologically Relevant Proteins—After
comparing the performance of the different tests on ground
truth data, we applied PolySTest on biological data from
experiments where cells undergo drastic changes. Immortal-
ized human satellite cells (KM155C25) (16) were differentiated
into muscle cells and samples were taken over 6 time points
in biological triplicates: proliferating activated myoblasts (Day
�1) and 5 days following the initiation of differentiation into
mature myocytes (Day 0, 1, 2, 3 and 4). The data was acquired
using an Orbitrap Tribrid Fusion Lumos Mass Spectrometer

and analyzed in MaxQuant using chromatography alignment
feature (match between runs) and label free quantitation (LFQ)
of proteins. This biological system enables us to evaluate the
proteomics results and statistical analysis based on known
biological networks and processes in the context of muscle
cell development and differentiation.

At an FDR threshold of 0.05, LIMMA detected the highest
number of DRFs (2,620 proteins, day 4 versus day �1) fol-
lowed by PolySTest (2, 294) (see supplemental Fig. S10 for
details). We investigated how well this larger number of DRFs
described the biological content by assessing the relevant
biological pathways expected to be altered during muscle
differentiation. We first focused on the Striated Muscle Con-
traction Pathway (wikipathways ID WP383) where we quanti-
fied 27 out of 38 proteins (Fig. 6A). When comparing the latest
differentiation state to the satellite cells, PolySTest detected
26 proteins in this muscle-specific pathway whereas only 19
significant proteins were detected by LIMMA (Fig. 6B, “C6
versus C1”). This improvement by PolySTest resulted mostly
from Miss test detected proteins that exhibited numerous
missing values at day �1 (Fig. 6C). PolySTest increased the
number of DRF proteins in pathways known to be altered
during muscle differentiation: Arrhythmogenic Right Ventricu-
lar Cardiomyopathy (24 versus 20 proteins), G1 to S cell cycle
control (19 versus 15 proteins) and Cell Cycle (29 versus 26).

Proteins detected by PolySTest alone but not LIMMA were
submitted to pathway enrichment analysis and could be as-
signed to muscle-related Reactome and Wikipathways path-
ways in most cases (supplemental Fig. S11). For instance, the
retinoblastoma gene is known to play a crucial role in muscle
differentiation (30). This confirms that Miss test and PolySTest
contribute with relevant biological information. Proteins iden-
tified by LIMMA and but not PolySTest showed enrichment of
more general pathways such as translational control and
mRNA processing. High coverage of the pathway does not
come from a combination of Miss test and LIMMA alone. Fig.
6B shows several cases where only rank products or only the
permutation test was significant and therefore resulted in a
significant PolySTest FDR value.

We tested robustness of the enriched Striated muscle con-
traction pathway with respect to changes of the FDR thresh-
old (Fig. 6D). When measuring the fraction of DRFs in the
pathway compared with their total number, we observed a
decrease when increasing the FDR threshold, which is con-
sistent with additional, less specific pathways entering the
picture. PolySTest outperformed LIMMA over the entire FDR
range as well as for the different differentiation states.

We now extended the analysis to the most significant path-
ways and pathways associated with muscle cells and cell
cycle. Visual separation of the figures into pathways with a
similar decrease for the enrichment for an increasing FDR
threshold showed that this behavior was explicitly found for
pathways strongly associated with muscle differentiation and
cell cycle (supplemental Fig. S12). Interestingly, PolySTest
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outperformed LIMMA in all these cases but not the ones of
less or not affected pathways.

DISCUSSION

Detection of a maximal number of differentially regulated
features with correctly assigned false discovery rate is a chal-
lenge. We developed PolySTest to address the demand for a
better integration of missing values, robustness of the statis-
tical tests and a friendly and interactive user interface (sup-
plemental Figs. S13 and S14). We have developed a software
tool for in-depth statistical testing of quantitative omics data
which we evaluated extensively on data from proteomics
experiments. The interactive web interface runs the five sta-
tistical tests moderated t test (LIMMA package), rank prod-

ucts, permutation test, t test and Miss test where the latter
was newly implemented. Complementarity of the different
tests was considered by the PolySTest FDR which unifies the
FDRs from all tests but the t test to a high-confidence score as
will be shown below. The test results can be visually com-
pared and further assessed via an interactive table and down-
stream visualization in terms of p value histograms, volcano
plots, heatmaps, expression profiles, upset plots and a circu-
lar graphics to compare the different statistical tests.

PolySTest detected differentially regulated features with
higher confidence and similar or higher sensitivity when com-
pared with single tests such as moderated t test (LIMMA). The
new Miss test was designed to not rely on a strong hypothesis
for the missingness of the values. Compared with prior ap-
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proaches including missing features, it also values feature
abundance levels. We found that Miss test provides important
complementary information to increase sensitivity of statisti-
cal tests in data with missing values. In addition, this test
allows to disregard commonly used value imputation which is
likely to seriously perturb the statistical testing by adding
incorrect information.

The complementary performance of Miss test, LIMMA, rank
products and a permutation test were thoroughly validated on
artificial data, experimental data with ground truth and an
experimental data set with known regulated biological path-
ways. The combination of multiple tests was found to be more
robust to different data structures and data acquisition meth-
ods like DIA and DDA and resulted in a stricter control of the
false discovery rate. Hence, this approach achieved higher
confidence while at least keeping similar sensitivity.

However, we also found that the differential analysis of MS
data suffers from incorrect peptide assignments. The com-
monly used 1% FDR for peptide and protein identification
influences the statistical tests by assigning wrong peptide
sequences to actually regulated proteins. This can be avoided
by lowering the threshold for the identification when aiming for
high-confidence results e.g. in clinical applications. This
counts especially for the application of statistical tests to data
consisting of (modified) peptides. With PolySTest providing
improved FDR estimates and reducing the number of false
positives, we also recommend its usage on the peptide level.

The user-friendly and accessible implementation of Poly-
STest facilitates robust statistical testing of proteomics data
and other quantitative omics data while improving the sensi-
tivity and accuracy.
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