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Abstract: The current wireless communication infrastructure has to face exponential development
in mobile traffic size, which demands high data rate, reliability, and low latency. MIMO systems
and their variants (i.e., Multi-User MIMO and Massive MIMO) are the most promising 5G wireless
communication systems technology due to their high system throughput and data rate. However,
the most significant challenges in MIMO communication are substantial problems in exploiting the
multiple-antenna and computational complexity. The recent success of RL and DL introduces novel
and powerful tools that mitigate issues in MIMO communication systems. This article focuses on
RL and DL techniques for MIMO systems by presenting a comprehensive review on the integration
between the two areas. We first briefly provide the necessary background to RL, DL, and MIMO.
Second, potential RL and DL applications for different MIMO issues, such as detection, classification,
and compression; channel estimation; positioning, sensing, and localization; CSI acquisition and
feedback, security, and robustness; mmWave communication and resource allocation, are presented.

Keywords: reinforcement learning; deep learning; MIMO systems; signal; channel estimation; detec-
tion communication; BS; positioning; localization; CSI; resource allocation; mmWave communication

1. Introduction

The main problem with the current wireless communication infrastructure is its depen-
dence on either increasing the spectrum or densifying the cells to obtain the targeted area
throughput. Unfortunately, such resources are scarce and are approaching their saturation
level in near future. Moreover, increasing the spectrum or densifying the cells increases the
hardware price and latency. The spectral efficiency, which can enhance the area throughput,
has remained essentially unchanged during the fast development in the wireless systems.
Therefore, a wireless access technology must improve the wireless area throughput without
increasing the spectrum or densifying the cell to fulfill the essentials requirements of the
wireless carriers.

MIMO is the most promising and fascinating wireless access technology that is able to
deliver the requirements of 5G and beyond networks. The performance of communication
systems has been enhanced thanks to the use of MIMO schemes. MIMO utilizes many
dimensions that account for multiple antennas, multiple users, and time and frequency
resources. Multi-User MIMO (MU-MIMO) is a MIMO system with one BS equipped
with many antennas and provides service to more than one downlink user in a one-time
slot. Massive MIMO (Ma-MIMO) further extends MIMO systems by using hundreds
and thousands of antennas at BS to enhance throughput and spectral efficiency. MIMO
technology is integrating bandwidth, radios, and antennas to achieve higher speed as well
as capacity for the incoming 5G [1]. The ability of Ma-MIMO, in particular, to improve
spectral efficiency and throughput has turned it a powerful technology for emerging
wireless standards [2,3].

Recent advances in AI and ML, specifically the success of RL [4] and DL, have brought
many significant applications and advancement in different research areas including
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robotics and autonomous control [5–8], communication and networking [9–12], natu-
ral language processing [13–16], games and self-organized systems [17–20], autonomous
IoT [21–26], scheduling management and configuration of resources [27–30], computer
vision [31–34], and healthcare [35–37]. Embedding AI technologies like DRL into the 5G
mobile, MIMO communication, and wireless communication systems is well justified [38].
More precisely, data produced by mobile environments are increasingly heterogeneous
due to their collection from many sources with different formats, and they have complex
correlations.

In the areas of MIMO systems, recently RL and DL have been applied as an emerging
solution to address many challenges efficiently. These technologies have introduced many
solutions to different aspects of MIMO communication such as signal detection, classifi-
cation, and compression; positioning, sensing, and localization; security and robustness;
mmWave communications; and resource allocation. AI-enabled MIMO communication is
an optimal tool that can give wireless systems the flexibility, intelligence, and efficiency
needed to handle the scarce radio resource efficiently and enable top quality of service
to the customers. In our work, we are making a research contribution by providing a
comprehensive overview of the potential applications of RL, DL, and the mixture of both
in different areas of MIMO communication.

The remaining of the paper is organized as follows. Section 2 presents a brief intro-
duction to RL, DL, and MIMO technology. Section 4 presents a comprehensive application
of RL and DL in different areas of MIMO communication. Next, we present statistics and
impacts in Section 5, followed by a discussion in Section 6. Section 3 overviews some recent
survey papers. This survey is concluded in Section 7.

2. Technical Background

This section provides a brief introduction to RL, DL, and MIMO systems.

2.1. Reinforcement Learning

RL is a sub-field of Machine Learning where an agent interacts with an environment to
achieve a goal, and learning takes place interaction-after-interaction. This section introduces
some basic mechanisms and terminology. A detailed presentation of RL can be found in [39].

In RL, an Agent is an entity (algorithm/robot/player, etc.) that interacts with a given
environment (problem/smart space/game, etc.) by performing actions, and receives a
feedback (penalty/reward) from the environment after any action selected as described in
Figure 1. The reward is the mechanism that enables the agent to understand whether the
action selected has produced a positive or a negative effect concerning the final goal.

A Policy is a strategy that indicates to the agent which action to select in every state of
the environment. The agent has to learn the optimal policy, that is, the one that maximizes
the cumulative reward over the long run.

A RL problem is defined as a MDP. A MDP is a tuple (S, A, Pa, Ra, γ), where S is a set
of states; A is a set of actions; Pa = Pr(st+1 = s′|st = s, at = a) is the transition probability
(i.e., the probability of achieving s′ at time t + 1, after having selected a in s at time t),
Ra(s, s′) is the expected reward or immediate reward obtained when transitioning from
state s to state s′ when action a was taken, respectively; and γ is a discount factor.

RL schemes are normally categorized into two major types: model-free and model-
based algorithms. Model-based RL algorithms need a precise description of the dynamics
of the environment in terms of the state-transition probability distribution. These methods
(e.g., DP) compute the optimal policy by solving systems of equations. Whereas, model-free
RL techniques are adopted when there is not a precise description of the model or its
solution would be too complicated. This class of algorithms interacts directly with the
environment (or with an emulator of it) using Trial&Error schemes to learn the optimal
policy. In inverse RL [40–42], we study an agent’s objectives, values, or rewards with the
help of employing insights of its behavior. Several methods are available (e.g., MMC, TD,
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etc.). An overview of such methods is reported in [43], whereas a guideline useful to help
to choose the algorithm depending on the kind of problem is defined in [35].

Figure 1. The reinforcement learning problem.

2.2. Deep Learning

DL has revolutionized many research areas with its ability to learn better models from
huge volumes of data [44]. Such technology relies on a new generation of Artificial Neural
Networks (ANNs) called Deep Neural Networks (DNNs). This subsection presents a brief
overview of DL techniques before approaching the next section.

The premises is that the performance of a DNN is generally superior to the one of a
classic ANN at the cost of greater training time that, however, can be reduced by using
advanced hardware (e.g., GPU) and/or special techniques (e.g., Transfer Learning) [45].
The design of a DNN is crucial for success. We start this subsection by discussing some of
the most used DL architectures.

• Convolutional Neural Networks
Convolutional Neural Networks (CNNs) are ANNs with a much higher number of
layers and nodes. They are typically adopted for images classification. An CNN needs
less preprocessing as compared to other classification schemes. Relevant filters are
used in CNNs to capture the temporal and spatial dependencies in the image [46,47].
The most common CNN architectures are ZFNet, ResNet, GoogleNet, VG-GNet,
AlexNet, and LeNet [48].

• Recurrent Neural Networks
RNN is another important architecture for DL. Differently from CNN, where the
layers are sequentially connected, in a RNN there are some nodes whose output is
reported back in the input of a previous node. In this way, the network is capable of
remembering some information time-related. Recurrent Neural Networks (RNNs),
indeed, are massively applied for time-series analysis and prediction in a configuration
called LSTM [49].

• Generative Adversarial Networks
A Generative Adversarial Network (GAN) consists of two sub-networks—the dis-
criminator and the generator, where the later produces the content and the former
validates it. GAN adopts feed-forward and relies typically on CNNs [50].

• Deep Belief Networks
Deep Belief Networks (DBNs) are generative neural networks with undirected con-
nections between some layers called Restricted Boltzmann Machines. These layers
can be trained using a very fast unsupervised learning algorithm called Contrastive
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Divergence. In DBNs, hidden patterns are learned globally, while in every layer of
other deep nets complex patterns are learned progressively [51].

• Autoencoders
Autoencoders are applied to reduce the dimension of data and to detect problems. The
first layer in an autoencoder is an encoding layer, whereas the transpose of it is used
as a decoder. Training is unsupervised and the Regression/Classification problems
may be addressed and optimized using Stochastic gradient descent. Input data are
translated to a latent space denoted by the encoder, as given below:

h = f (x) (1)

Input data are reconstructed from the latent space denoted by the decoder as described
below.

r = g(h) (2)

Autoencoders can be represented essentially by the below equation. r is the decoded
output and it will be identical to input x

g( f (x)) = r (3)

• Radial Basis Function Neural Networks
RBFNN is a type of ANN that utilizes radial basis functions (RBF) as activation
functions. The output of the RBFNN is a linear combination of RBF of the neuron
parameters and inputs. RBNN has only one hidden layer which is known as a feature
vector. Training in RBNN is faster than in MLP but classification in RBNN takes more
time than MLP.

2.3. MIMO Communication

MIMO is a wireless technology that employs multiple antennas at transmitters and
receivers sides to communicate more data simultaneously as can be seen in Figure 2. MIMO
are supported by all wireless devices compliant to 802.11n standard. This subsection briefly
reviews MIMO technology and its different schemes.

MIMO communication uses a multi-path, which is a natural radio-wave phenomenon.
Multi-path-transmitted signals may bounce off objects, like ceilings, walls, etc., and arrive
at the receiver multiple times at different times and angles. Before the inception of MIMO,
interference occur due to multi-path, which can slow down the communication. MIMO
technology with multi-path, however, uses smart transmitters and receivers with the
addition of spatial dimension that grants enhanced performance and range.

MIMO improves signal-capturing of the receiver by empowering antennas to combine
signals coming from multiple paths at different times. Smart antennas get the benefit of
spatial diversity technique that makes surplus antennas useful. The antennas can increase
the range by adding receiver diversity when outnumbered spatial streams.

• Single User MIMO
Single user MIMO, or multi-antenna MIMO, has more than one antenna both at the
transmitter side and receiver side. There are some special variants of MIMO such
as “Multiple-input single-output” (MISO) (only one antenna at the receiver side),
“Single-input multiple-output” (SIMO) (single antenna at the transmitter side), and
a special scenario when transmitter as well as receiver have one antenna is called
SISO [52].

• Multi-user MIMO
Multi-User MIMO MU-MIMO has been considered in recent WiMAX and 3GPP
standards as a candidate technology by various companies such as Freescale, Nokia,
Philips, Huawei, TI, Ericsson, Qualcomm, Intel, and Samsung. MU-MIMO systems are
more suitable for low-complexity mobile phones with a few receiving antennas, while
single-user MIMO’s are more suitable for complex devices having many antennas due
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to their higher per-user throughput. Moreover, enhanced MU-MIMO uses advanced
precoding and decoding techniques.

• Cooperative MIMO (CO-MIMO)
Cooperative MIMO (CO-MIMO) employs multiple surrounding BS to jointly trans-
mit and receive signals to and from users. This prevents inter-cell interference in
neighboring BS as may be experienced with traditional MIMO systems.

• Macrodiversity MIMO
Macrodiversity MIMO is a type of space diversity approach that applies many trans-
mit/receive BS for coherent communication with single/multiple users. It is possible
that users are distributed in a coverage area that has the same resources of time and
frequency [53–55]. The transmitters, as well as the users in multi-user microdiver-
sity MIMO, are far apart as compared to that of conventional microdiversity MIMO
approaches (e.g., SU-MIMO). As a result, each constituent connection in the virtual
MIMO connection has a unique average link SNR. Macrodiversity MIMO techniques
face some theoretical and practical challenges. One of the most fundamental issues is to
get knowledge about how aggregated system capacity is affected by different average
link SNRs and the performance of users individually in fading environments [56].

• Massive MIMO
Massive MIMO Ma-MIMO is a scheme where the number of terminals is inferior to of
BS antennas [57]. The maximum benefits of the massive MIMO in a rich scattering
environment can be obtained by applying simple beamforming schemes such as zero-
forcing (ZF), maximum ratio combining (MRC) [58], or maximum ratio transmission
(MRT) [59]. However, it is difficult to achieve these advantages without the availability
of accurate CSI.

Figure 2. MIMO communication.

3. Related Survey Papers

This section will review some recent related surveys, their contribution, and limitations
as well as the contribution of our work.

The list of related survey papers is shown in Table 1. The work in [60] considers the
area of wireless networks and compares application of three DRL sub-techniques: DDPG,
NEC, and VBC for optimization. More precisely, the comparison of three DRL approaches
is carried out on experiments being performed on a real-world network operation dataset.
Although authors have performed extensive experiments, they limited their analysis to
three methods only and very little knowledge can be extracted on the application of DRL
in MIMO systems.
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Another survey paper [61] focused on the radio-resource allocation in multi-cell
networks via DL. Authors have also compared methods qualitatively, in terms of their
data training and techniques, inputs/outputs, and objectives. A supervised DL design is
presented as a solution to power allocation and sub-band problems in a multi-cell network.

The mmWave communication is discussed in [62,63] using channel estimation and
signal processing methods, respectively. The former work comprehensively reviews the
state-of-the-art channel estimation methods linked to different mmWave system frame-
works. Ma-MIMO mmWave was also considered, but without the use of RL and DL
methods. The Ma-MIMO wave aspect is also considered in [63], but it mainly reviews
challenges of signal processing in mmWave wireless systems with a particular concern for
higher carrier frequencies MIMO communication.

An encyclopedic overview of the application of DL in wireless and mobile networking
is presented in [64]. The authors have bridged the research gap between DL and wireless
and mobile networking by highlighting the crossovers between these two areas. However,
the area of the MIMO system (i.e., the focus of our current work) was not appropriately
discussed.

The work in [65] presents a comprehensive state-of-the-art on ML based link quality es-
timators generated from empirical data. The ML-based link quality estimation architectures
are analyzed and existing open-source datasets are also reviewed.

The Ma-MIMO systems are highlighted in [66] while presenting the enabling tech-
niques needed for 5G and 6G architecture. The fundamental challenges associated with
signal detection, energy efficiency, user scheduling, precoding, channel estimation, and
pilot contamination in a Ma-MIMO communication are discussed. The authors have also
outlined visible light communication, ultra Ma-MIMO, terahertz communication, as well
as ML and DL for Ma-MIMO systems, but they did not consider other areas of MIMO
communication.

A survey paper on DRL techniques that was proposed to solve emerging problems in
communications and networking is presented in [67]. The authors have addressed issues
such as connectivity preservation, network security, data offloading, data rate control, wire-
less caching, and dynamic network access. Moreover, DRL applications for data collection,
resource sharing, and traffic routing are discussed. However, MIMO communication was
partially discussed in few subsections. Similarly, the work in [68] presents an overview of
array signal processing techniques for Ma-MIMO communication.

An overview of the DL-based cybersecurity applications for mobile and wireless
networks is presented in [69]. The authors have addressed cybersecurity features like
privacy preservation, software attacks, attacks, and infrastructure threads.

Different cases of 5G wireless communication including cybersecurity, energy effi-
ciency, caching, Ma-MIMO, channel coding, and modulation classification based on AI
techniques are discussed in [70]. The authors were interested in more general AI-based
applications for 5G wireless communication.

Although there are few review papers related to applications of ML, RL, and DL
reported in Table 1, they do not discuss the applications of RL and DL for MIMO communi-
cations. There is a need for a review that particularly outline useful applications of RL and
DL for different aspects of MIMO communication.

In this paper, we have presented a comprehensive state-of-the-art on the application
of RL and DL in different aspects of MIMO communication such as detection, classification,
and compression; channel estimation; positioning, sensing, and localization; CSI acquisition
and feedback, security and robustness; mmWave communication; and resource allocation.
We have also listed the contribution of some survey papers, their limitations for MIMO
communication areas, and our contribution in Table 1.
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Table 1. List of related surveys.

Paper Technology Year Area Contribution Limitation

[60] DRL 2020 Wireless Network
Optimization

Only three DRL techniques: DDPG,
NEC, and VBC, are considered for

wireless network optimization.
Their performances are compared
in terms of rate and convergence

speed improvement.

Only three DRL
methods are taken into

account without
concerning about
MIMO aspects.

[62]
Channel

Estimation
Techniques

2020 mmWave
communication

Review of the channel estimation
methods associated with the
different mmWave system

architectures

Only one area of MIMO
communication (i.e.,

mmWave) is discussed,
as well as DL and RL

techniques are not
considered.

[63] Signal
Processing 2016 mmWave Ma-MIMO

communication

Survey of signal processing
challenges in mmWave systems,

especially focusing on issues due to
utilizing MIMO communication at

higher carrier frequencies.

Only mmWave
communication with

signal processing
techniques are

discussed, as well as DL
and RL techniques are

not considered.

[61] DL 2019 Multi-cell networks
Review the application of DL for
the radio resource allocation in

multi-cell networks.

Focused only on
resource allocation.

[64] DL 2019 Mobile and Wireless
Networking

Application of DL in mobile and
wireless networking

MIMO systems are not
considered.

[65] ML 2021 Link Quality
Estimation

Review ML-based link quality
estimation models. It addresses

quality requirements and standard
design steps perspectives using

performance data.

General ML techniques
are concerned.

[66] — 2020 Ma-MIMO

Presents fundamental challenges
related to signal detection, energy

efficiency, user scheduling,
precoding, channel estimation and
pilot contamination in a Ma-MIMO

system, and solutions to these
challenges.

General aspects of
Ma-MIMO are

considered without
application of DL

and RL.

[67] DRL 2019 Communications
and Networking

Connectivity preservation, network
security, data offloading, data rate

control, wireless caching, and
dynamic network access issues

are addressed.

MIMO systems are not
discussed in detail.

[69] DL 2021 Cybersecurity in
Mobile Networks

Cybersecurity aspects: privacy
preservation, software attacks,

attacks and infrastructure threads
are discussed.

No MIMO application.
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Table 1. Cont.

Paper Technology Year Area Contribution Limitation

[70] AI 2020 5G Wireless Systems

An in-depth review of AI for 5G
wireless communication systems
including cyber-security, network
management, and radio resource

allocation

Only Ma-MIMO were
discussed in one

subsection using general
AI approaches.

[68]
Array Signal
Processing
Techniques

2019 Enhanced Massive
MIMO

A review of array signal processing
in Ma-MIMO communications.

Only Ma-MIMO systems
are considered with

array signal processing
techniques. No

application of DL in
MIMO.

Our
work RL and DL 2022 MIMO

communication

Comprehensive overview of the
application of RL and DL in
different aspects of MIMO

communication.

The tutorial aspect of
our survey only presents

a brief introduction to
RL and DL.

4. RL and DL Application in MIMO

This section presents a comprehensive review of the applications of DL and RL in
different areas of MIMO.

4.1. Detection, Classification, and Compression

A growing interest has been developed in recent years to apply DRL techniques
to optimize operations of wireless network [60]. Incorporating RL and DL into MIMO
detection has evolved as a promising method for future wireless communications [71].

An RL-based cognitive BF scheme for co-located MIMO radars is proposed in [72].
The RL-empowered optimization algorithm enables the MIMO radar to iteratively sense
the radar scene involving an unknown number of targets where the angular positions of
targets are unknown. Therefore, the protocol synthesizes a set of transmitted waveforms
whose relevant beam pattern is tailored to the learning. A BF algorithm based on online
model-free RL approach SARSA is introduced in [73] to study the case of multi-target
detection for a Ma-MIMO cognitive radar when the disturbance is unknown. The study
has shown that RL enabled method able to detect the targets in a dynamic environment
with very low SNR. The work may be improved further by refining the DoA estimate of
the detected targets having a disturbance with unknown distribution.

A DNN architecture is presented in [74] in the context of MIMO detection. The authors
have considered both cases, i.e., constant MIMO channel and multiple varying channels.
A DNN model is also used for MIMO detection in [75]. Two architectures have been
proposed, i.e., “a standard fully connected multi-layer network and a Detection Network
(DetNet)”. The model of DetNet is designed by unfolding the iterations of a projected
gradient descent approach into a network. The authors of [76] propose a model-driven DL
model for MIMO detection. The model is particularly designed by unfolding the iterative
algorithm. Deep unfolding is employed in [77] for MIMO detection for QPSK and BPSK
constellation cases. A new DL-based detector using BP algorithm belief propagation is
discussed in [78], which combines the belief propagation method with the DL techniques.
The MIMO factor graph is used for the detection of signals from the transmitter by pressing
likelihood ratios messages.

A quasi-static flat channel with many antennas is considered for detection of multilevel
modulation symbols using DNN in [79] and partial learning using NN detection method for
Ma-MIMO is given in [80]. A CSI sensing and recovery framework is proposed in [81]. The
method learns to use channel structure effectively from training samples and authors have
shown through experimental results that their method can recover CSI with reasonably
better reconstruction quality. This work was further extended in [82] by developing a
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real-time CSI feedback framework known as “CsiNet-LSTM”. CsiNet-LSTM significantly
improves recovery quality and enhances the trade-off between complexity and compression
ratio by learning directly spatial structures that are combined with time correlation from
training samples of Ma-MIMO with time-varying channels.

The authors of [83] have studied the feasibility of using DL techniques for auto-
matic classification of modulation types of received signals. For example, an end-to-end
CNN-based automatic modulation classification is proposed in [84] that extracts features
automatically from the long symbol-rate observation sequence along with the estimated
SNR. A “deep complex-valued convolutional network” that does not rely explicitly on
the Fourier transform is designed in [85] to recover bits from time-domain orthogonal
frequency-division multiplexing signals. A novel feedback network CRNet is presented
in [86] using advanced training techniques to get superior performance by extracting CSI
features on multiple resolutions.

A likelihood function learning technique for MIMO systems having a one-bit analog-to-
digital converter is proposed in [87] using an RL method. The main idea of the work is to use
input–output samples that are obtained by detecting the data and conduct compensation
in the likelihood function for any mismatch. In another work [88], a robust MLD technique
is considered for an uplink Ma-MIMO communication system with low precision ADCs
under non-perfect CSI at a receiver. The same problem is addressed in [89] for a wideband
SIMO system with one-bit ADCs.

A letter in [90] considers the case of uplink Ma-MIMO network with 1-bit ADCs to
develop a DL-based channel estimation mechanism where the prior channel estimation
record and DNN are able to learn the non-trivial mapping from quantized received mea-
surements to channels. A DL framework for channel estimation and detection has been
investigated in [91], and the results suggested that the proposed DL schemes lead to better
performance in the large SNR regime. However, the architecture provides good results only
for relatively small MIMO dimensions. Another detection method for MIMO optimized by
back-propagation NN is given in [92] to uplink the Ma-MIMO systems.

Two DNN based detectors, i.e., damped belief propagation (BP) and max-sum by
unfolding damped BP [93] and max-sum BP [94] methods, respectively, are designed
in [95]. However, the framework may be further improved for optimization of the DNN
architecture and efficient training schemes. Joint signal detection and channel estimation of
a MIMO system using model-driven DL architecture are performed in [96]. The network for
signal detection is designed by unfolding the Orthogonal AMP detection method. Due to
the requirement of a few adjustable parameters for optimization, the proposed framework
can be easily and efficiently trained.

A MPD using DNN is introduced in [97] by modifying the message passing detector
technique to adjust the approximation error. The modification was done to achieve good
performance and accelerate the convergence. The proposed architecture is then designed
by unfolding the modified MPD, and the DL method is used for the optimization of the
modification factors. The scaling of DNN-enabled MIMO detectors [98] in terms of system-
atic complexity was performed in [99]. The framework applies a part of the DNN inputs by
scaling their values via weights that follow monotonically non-increasing functions. The
architecture is further improved by employing a sparsity-inducing regularization constraint
along with trainable weight-scaling functions. This improvement enables the model to keep
a balance between detection accuracy and complexity and at the same time, robustness to
variation in the activation patterns increases.

The performance of a large-scale MIMO receiver is investigated in [100]. The de-
ployment of the MIMO receiver is done using DNN and a low-density parity check code
to detect and decode disturbed signals. The model experimented with different large
scale MIMO configurations to get a trade-off between the performance and complexity.
An RL-based detection method for time-varying MIMO systems having one-bit ADCs is
developed in [101]. Input–output samples that are being received from data detection are
exploited to perform tracking of the temporal variations of likelihood functions. An MDP
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is modeled to handle the uncertainty of the information due to a data detection error and it
enhances the accuracy of the likelihood function. In the end, an RL algorithm is used to
solve the modeled MDP with less computational complexity.

Implementation methodologies for conventional MIMO transmitters of DL-based
signal detection are presented in [102]. The authors have used a DNN architecture of a
one-tap MIMO channel for signal detection while CNN and RNN models are applied with
a multipath fading channel. A DL framework for the detection of MIMO signal for high-
speed railway case is given in [103]. The proposed architecture is divided into two steps:
offline training process and online detection. Another detection scheme for large-scale
overloaded MIMO systems by employing DL is given in [104], where the optimization of
trainable internal parameters can be performed by using standard DL schemes, i.e., SGD
and back-propagation methods.

Two scenarios of channel information at the receiver using the DL model are consid-
ered in [105] for uplink pilot-assisted MU-MIMO systems. In the first case, the channel
matrix is available at BS and the DNN is used as a detector and the channel matrix in
the second case is not known at BS. Signal detection for Ma-MIMO systems is performed
in [106] using a DL-based trainable AMP scheme. The trainable AMP model includes a
preprocessing layer and a few detection layers. Moreover, the network adds trainable
parameters to control prior mean-variance of MMSE denoiser. Another method for MIMO
detection known as MMNet is designed in [107]. MMNet’s architecture is based on the
idea of iterative soft-thresholding methods and applies a new training scheme that takes
advantage of spectral and temporal correlation in real channels to speed up the training.

The BP-MMSE-based algorithm is proposed in [108] that initiates from the MMSE
solution and updates the prior in every iteration with the loopy BP belief. The graph NNs
are used to prevent the complexity of computing MMSE, we use Graph Neural Networks
(GNNs). The graph NN model learns a message-passing scheme to solve the inference
problem on the same graph. A simplification with three improvements is introduced in [109]
to simplify the detection network. The first improvement is the reduction of the number
of inputs, and the second is changing the network from full to sparse connectivity and
decreasing the number of network layers by 50% to simplify network connection structure.
While the final improvement is to optimize the loss function to prevent irreversible issues
with the matrix. With these improvements, the network complexity may be reduced from
O(64n2) to O(3n).

A DL empowered detector is designed in [110] that after an off-line training able to
detect signals communicated in a channel with impulsive noise. The proposed detector has
less complexity than the average sphere decoder complexity and shows better performance.
A Multisegment mapping model based on DNN for Ma-MIMO detection is proposed
in [111]. The proposed network is developed by optimizing the prior detection networks
(ScNet and DetNet) and minimizes network complexity. The authors have also introduced
an activation function to enhance the performance of Ma-MIMO detection for high-order
modulation cases. Tabu search detection in Ma-MIMO systems is considered in [112]. First,
A DNN model for symbol detection is proposed by optimizing the DetNet and ScNet
networks. Then, a tabu search algorithm based on DL is presented, where the starting
solution is approximated by the first DNN model.

A likelihood ascent search detection approach based on CNN is given in [113] by using
a graphical detection type for uplink multiuser Ma-MIMO systems. The proposed method
needs lower average received SNRs to achieve better BER performance. Signal detection in
MIMO-OFDM system has been addressed in [114] by applying extreme learning machine
and autoencoder network. This combined architecture does not require the channel matrix
for the signal detection process. A novel NN architecture, radial basis function networks
are proposed in [115]. The model is optimized by a quantum genetic algorithm and is used
to solve signal detection issues in MIMO-OFDM.
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4.2. Channel Estimation

RL techniques, in particular, the DL method, have proven important tools to improve
the accuracy of channel estimation to enhance the performance of Ma-MIMO [116] utilized
in different applications such as Virtual reality, 5G systems, Internet of Things, and au-
tonomous driving [117]. These applications demand the design of wireless systems [118] to
provide ultra-low latency, large numbers of connections, and ultra-high data rates [119].
MIMO systems especially large-scale MIMO are one of the potential candidates to meet
these requirements. This subsection will present the application of RL and DL for MIMO
channel estimation.

Direction-of-arrival and channel estimation using RL techniques for Ma-MIMO sys-
tems are discussed in [120]. Authors have employed a DNN to realize end-to-end per-
formance and conduct an online–offline learning mechanism. This is an efficient way of
learning wireless channel statistics and the spatial structures in the angle domain, while
only direction-of-arrival estimation using DL was considered in [121]. A DL method is
used in [122] for channel estimation in ultra Ma-MIMO systems. The methodology can
address the issues of high processing complexities and computation time with estimation
efficiency and accuracy.

Channel estimation for double directional channels with limited feedback for mmWave
Ma-MIMO is done in [123]. The BS estimates the downlink channel by recovering a low-
rank matrix, using samples of the compressed channel matrix and feedback from the
mobiles. This results in the prevention of doing resource-consuming tasks for users. The
letter in [124] applied DL for estimation of the uplink channels for mixed ADCs Ma-
MIMO systems. Authors have considered some antennas equipped with high-resolution
ADCs and some use low-resolution ADCs at the BS. First, a direct-input DNN is used to
estimate channels by employing the received signals of all antennas. Then, a selective-input
prediction DNN is applied for elimination of the adverse impact of the coarsely quantized
signals. Similar work was also done in [125] where low-resolution, ADC-quantized received
pilot signals are used with one of three different methods: (1) “High-resolution quantized
pilot + All low-resolution quantized pilot (High + All)”, (2) “High-resolution quantized
pilot + Argument of low-resolution quantized pilot (High + Arg)”, and (3) “High-resolution
quantized pilot + Modulus of low-resolution quantized pilot (High + Mod)”.

Channel estimation with few-bit ADCs in MIMO systems is the focus of the work
in [126]. A DNN is considered first and then trained as a nonlinear MMSE channel estimator.
Next, the authors used a DNN for concurrent optimization of the MMSE channel estimator
and the training signal. The work in [127] also considers MIMO systems with low-resolution
ADCs and proposes DL based channel estimation method. Several deep multimodal
learning-enabled frameworks in Ma-MIMO systems for channel prediction are developed
in [128] by taking advantage of fusion levels and modality combinations. This work on
channel prediction in massive MIMO provides a significant example that may be followed
in designing different deep multimodal learning-based communication approaches.

A new concept of channel mapping in space and frequency is introduced in [129]. The
mapping has been done between (1). Channels at one group of antennas and one frequency
band and (2) channels at another group of antennas and frequency band. Authors have first
proved the existence of such channel-to-channel mapping under certain conditions and
then use DNN for learning this non-trivial channel mapping function efficiently. The joint
impact of nonlinear hardware impairments at UEs and the BS on the uplink performance
of single-cell Ma-MIMO in practical Rician fading channel is considered in [130] using DL
approach. The quality of estimation is improved as compared to distortion-aware and
distortion-unaware Bayesian linear MMSE.

A new channel estimation framework is proposed in [131] with the assistance of DL
technology to improve the channel estimation that is received by the least-squares method.
Authors have used a MIMO system with a multi-path channel case for simulations in
5G-and-beyond networks for the scenario of mobility expressed by the Doppler effects.
Although, the architecture is developed for an arbitrary number of transmitter and receiver
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antennas, but it can be generalized. In another work [132], the potential application of NN
to optimize a particular physical layer block in a communication system by considering
some salient characteristics of the emerging radio methods based on 5G standards such as
beamforming, MIMO, and mmWave are investigated.

A DL-enabled method for channel estimation to improve the performance of the
Ma-MIMO system is given in [133]. The used approach improves the recovery quality and
enhances the trade-off between the complexity and compression ratio of the Ma-MIMO
system. The method based upon using the CSI network combined with the gated recurrent
unit and dropout technique scheme was used to minimize overfitting during the learning
process. However, the use of the gated recurrent unit layers can increase the complexity
due to the subsequent expected increase in the run time. The authors of [134] propose two
channel estimation schemes using DL in TDD Ma-MIMO systems under the presence of
pilot contamination and claim to have better performance than the least-squares and the
covariance estimation methods in terms of the channel normalized mean square error for
imperfect timing synchronization and perfect one.

The theoretical analysis on the use of DL in MIMO system channel estimation is dis-
cussed in [135]. Authors have first interpreted DL-based channel estimation by considering
multiple antennas system under linear, nonlinear, and inaccurate channel statistics and
have shown that DL estimator equipped with a rectified linear unit DNN is equal to that of
a piecewise linear function mathematically. The Bayesian learning method is used for the
estimation of channel parameters only of the interesting links in the desired cell only for the
interference connections from adjacent cells [136]. The authors have claimed the possibility
of obtaining an accurate estimation of the channel parameters with the exploitation of the
propagation properties of Ma-MIMO systems.

Channel estimation when both low-resolution ADCs and hybrid analog–digital pro-
cessing in Ma-MIMO systems are utilized is considered in [137]. The authors have formu-
lated the quantized sparse channel estimation into a sparse Bayesian learning architecture
and provide the solution with variational Bayesian technique. A Bayesian channel estima-
tion method based on the AMP algorithm in Ma-MIMO systems is introduced in [138], and
this framework requires statistical CSI. The derivation of the covariance is done for CSI
acquisition by analyzing the channel model in the beam domain.

A DL-enabled architecture for channel estimation and joint pilot design of MU-MIMO
channels is given in [139]. The pilot is designed using two-layer NNs and the channel
estimator is modeled using DNNs and they reduce MSE of channel estimation after join
training. Authors have also applied successive interference cancellations to minimize
the interference that may be present among the multiple users. The pilot design for the
MU-MIMO system using DL technology is also considered in [140] to reduce the sum of
MSE of channel estimation where the pilot signal of every user and the power assigned
to every pilot sequence is represented as a weighted superposition of orthonormal pilot
sequence basis and corresponding weight respectively. Moreover, DNN is used for the
optimization of power allocation to every pilot pattern to reduce the sum MSE where the
input is channel large-scale fading coefficients and the pilot power allocation vector is
the output.

A decision-directed method for channel estimation using DNN is developed in [141]
for the MIMO system. The work was done for STBC MIMO systems by considering the
highly dynamic vehicular scenario. DNN was used for k-step channel prediction for STBC
while the DL empowered decision-directed channel estimator removes the requirement
for Doppler rate estimation where channels are time-varying quasi-stationary. Hybrid
precoding and channel estimation for multi-user mmWave MIMO system are considered
in [142] using DL compressed sensing method. The prediction of beamspace channel
amplitude is performed by training offline the channel estimation NN using simulated
environments and the reconstruction of the channel is done using the acquired indices
of entries of the dominant beamspace channel. Then, after the channel estimation, the
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quantized phase hybrid precoder is developed using DL and its training is performed
offline with approximate phase quantization.

Channel estimation with received SNR feedback is investigated in [143] to estimate the
MIMO channel coefficients using the received SNR feedback from a receiver at a transmitter
based to reduce the MSE. Authors have considered time-varying fading and quasi-static
block fading cases for their experiments. In another study [144], fast and flexible denoising
CNN has been used for channel estimation. The framework is suitable for a wide variety
of SNR levels with a variable noise level map in the shape of input. Channel estimation
for Terahertz Ultra-Ma-MIMO Systems with array-of-subarrays is considered in [145]
using a fifteen-layer deep CNN spherical-wave scheme. The training labels are phase
shift matrix, the amplitude of the channel gain, and spherical-wave channel parameters
including elevation and azimuth angles. In the end, supervised learning is employed with
a self-defined loss function using the labeled data and the training of the deep CNN is
performed offline and implemented online to conduct channel estimation.

Channel estimation using DL for MIMO systems for the case of multi-cell and
interference-limited is taken into account in [146]. The MIMO system considered in this
study is equipped with BSs and each BS serves many single antenna UE with a large
number of antennas. DNN is used on the deep image prior system to denoise the received
signal first and conventional least-squares estimation is done. A blind wireless channel
and bandwidth-efficient estimator for the uncoded space-time labeling diversity system is
designed in [147]. An NN-ML channel estimator with transmitting power-sharing is used
to perform blind channel estimation for the given system and to reduce the bandwidth
utilization. A wideband low-complexity DOA estimation scheme for Ma-MIMO systems is
given in [148] using principal component analysis NN. The framework prevents complex
angle pre-estimation by designing a focusing matrix and minimizes the complexity of
the eigenvalue decomposition by using the signal subspace estimation method. Another
DL-based channel estimator is designed in [149] by considering the impact of hardware
impairments in a multiple-antenna BS and UEs on the uplink performance.

Effective interference cancellation and reliable channel estimation are necessary for
improving the performance of MIMO UAC systems. A single carrier MIMO UAC has been
considered in [150] to study a robust receiver framework using Bayesian learning for itera-
tive channel estimation that is embedded in Turbo equalization. The proposed architecture
updates the joint estimates of a channel covariance matrix, residual noise, and channel
impulse response. Authors have also designed a “low complexity space-time soft decision
feedback equalizer” using Bayesian learning with successive soft interference cancellations.
Bayesian learning is also used in [151] as sparse learning via iterative minimization for the
MIMO UAC system. The authors have also implemented a linear MMSE enabled symbol
detection method by using conjugate gradient scheme and diagonalization characteristics
of circulant matrices.

A MIMO receiver with inadequate pilots in a fast fading channel is considered in [152]
as well as a DL-empowered Turbo-MIMO receiver that contains channel decoding, signal
detection, and modules. A short pilot sequence is used to generate an estimate of the
channel matrix by applying the linear MMSE method. Then, a re-estimate is done with
the support of symbols that are reliably estimated. Data symbols are re-detected using the
channel decoder’s soft statistics. Signal detection is performed at the receiver by applying
the expectation propagation technique as multi-layer deep feed-forward networks. A blind
channel estimation scheme based on DL technology is designed in [153] for OFDM-based
large-scale MIMO systems. A denoising CNN has been deployed to mitigate the remaining
channel and noise effect. This will help to detect the transmitted data symbols accurately at
the channel sounding step. The CSI of all used was then detected as virtual pilots at each
BS antennas.

A task-oriented quantization model with scalar ADCs based on DL for MIMO channel
estimation is designed in [154]. The proposed quantization system does not require explicit
recovery of the system model and proper quantization rule. Two receiver designs—pilot-
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assisted and model-drive—using DL for uplink MIMO systems are proposed in [155]. The
formal receiver is developed using a data-driven full connected NNs and the transmitted
signal can be recovered directly in this scheme in an end-to-end manner without the need
for channel estimation. The later receiver combines communication knowledge with DL
and divides the MIMO receiver into signal detection subnet and channel estimation subnet.
Moreover, the application of CNN estimators has been studied in [156] for MIMO-OFDM
channel estimation. The channel values of the reference signal are interpolated to estimate
the channel of the full OFDM resource element matrix. Authors have developed a 2D CNN
model using U-net, and a 3D CNN structure to tackle spatial correlation.

A joint design of channel estimator and pilot signal based on data-driven DL method-
ology for wideband Ma-MIMO systems are designed in [157]. High-dimensional channels
are reconstructed using DL from underdetermined measurements by exploiting the MIMO
channel’s angular-domain compressibility. The DNN architecture is employed for downlink
multiuser precoding, feedback, quantization, and distributed channel estimation for a FDD
Ma-MIMO system in [158], where a BS serves many mobile users. However, the feedback
from the users to the BS is rate-limited. A feedback and channel estimation mechanism
is developed in [159] using DL. The framework can estimate, compress and reconstruct
downlink channels for FDD Ma-MIMO systems.

4.3. Positioning, Sensing, and Localization

MIMO systems are meeting the growing need for reliable and faster communications
in wireless systems having a large number of terminals. MIMO systems can also be used to
estimate the position of a terminal utilizing multipath propagation in multiple antennas.
CSI-based user positioning systems using DL technology achieving a high accuracy without
any overhead have shown great potential in the MIMO system. These systems are capable of
positioning indoor users in both LoS and non-LoS environments with reasonable accuracy.
Moreover, with the availability of smart devices and recent development in AI-based
wireless systems [160], localization is enabling many location-based applications [161,162].
Demand for localization has increased because of more application of high accuracy, high
bandwidth, and location-based services [163]. These applications need precise localization
of users to enhance BF and resource management [164]. In this subsection, we will review
DL-based architectures for exploiting MIMO-based CSI to improve indoor localization and
positioning.

Fingerprinting has been an emerging research area for indoor positioning due to its
location-related characteristics and ubiquity [165]. A novel DL method for Ma-MIMO
fingerprint-based positioning has been investigated in [166]. They have used CNNs with a
feedforward structure and measured channel snapshots. CNNs can compactly summarize
and generalize relevant positioning information for channels with large data sets, e.g.,
in highly clustered propagation cases with Line of Sight (LOS) or without LoS. Similarly,
an “angle-delay channel amplitude matrix” method for extraction of fingerprint and a
deep convolutional NN-based localization scheme for Ma-MIMO-OFDM systems are
proposed in [167,168]. The latter method can overcome the error of modeling for fingerprint
similarity calculation.

A deterministic “uplink-to-downlink mapping function” is revealed in [169] and a
sparse complex-valued neural network is proposed for the approximation of this function,
where the position-to-channel mapping is bijective. The authors have demonstrated that the
proposed architecture performs well as compared to the other network in terms of predic-
tion accuracy with remarkable robustness. Later on, some of these authors have formulated
the downlink channel prediction as a deep transfer learning problem and introduced the
direct transfer method [170] using the fully-connected NN framework, when the network
is trained in the form of classical DL and fine-tuned for new environments afterward.

The achievable rate of the mmWave Ma-MIMO system can be improved by minimiz-
ing training pilots using the DL model for sensing joint channel and hybrid precoding
framework [171]. According to this study, the channel encoder first considers the NN to
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improve the channel sensation vectors to strengthen the sensing ability on its successful
attempts, and then the precoder predicts the hybrid framework RF BF/combining vectors
directly from the received sensing vector. Similar work on joint channel sensing and hybrid
BF for mmWave Ma-MIMO systems using DL techniques is considered in [172]. The en-
coder learns to optimize the channel sensing vectors to concentrate the sensing power on
the potential directions, while the precoder learns to predict the RF BF/combining vectors
of the hybrid framework from the obtained sensing vector directly.

A channel sounder framework that can measure multi-subcarrier and multiantenna
CSI different propagation, antenna geometries, and frequency bands are introduced in [173].
The architecture can acquire a superior accuracy of more than 75 cm for LoS and is com-
parable to the conventional positioning schemes and achieve the same precision for the
challenging scenario of non-LoS. The feasibility of an indoor positioning framework based
on NNs and CSI of a large-scale MIMO system is investigated in [174]. The proposed tai-
lored NN architecture has a feature extractor in the shape of an additional phase branch that
minimized the number of trainable parameters, resulting in a reduction in the amount of
target training data. The measurements were performed for indoor environments covering
a big area of 80 m2 with up to 64 antennas.

MIMO user positioning using DL techniques that are based on only the OFDM complex
channel coefficients is examined in [175]. The proposed architecture is employed on the top
of available OFDM-MIMO system and does not need any extra piloting overhead. Training
of the model is done in two phases: in the first step, training on simulated LoS data, and then
in the second phase, fine-tuning on measured NLoS positions. This results in minimization
of the necessary measured training locations and consequently decreases the attempt for
data acquisition. CNN, multilayer perceptron NN and K-nearest neighbors techniques
are used in [176] for localization of a MIMO transmitter in indoor–outdoor scenarios. The
proposed work has won the first position among eight teams worldwide in the indoor
positioning competition organized by “IEEE’s Communication Theory Workshop” by
achieving an MSE of 2.3 cm2.

Accuracy of localization using CSI is improved by combing multi-layer perceptron NN
and K-nearest neighbors techniques in [177]. Both schemes then tested for generalization
aspect in different scenarios by dividing the training and validation data in a sense that
the intersection is minimized as compared to the uniform random splitting. In another
work of [178], deep NN was used in the development of a robust and accurate localization
scheme for a distributed massive MIMO system. CSI-based positioning is discussed in [179]
using CNNs a black box and experimented on the opening of the black box using. The
authors have also discussed the advantages and disadvantages of the use of an open dataset
collected in a real scenario 64-antenna Ma-MIMO system. The position of a user using
the CSI is inferred through CNN and then evaluated on a dataset that consists of indoor
Ma-MIMO CSI measurements of three different antenna configurations, i.e., covering a
(2.5 m × 2.5 m) indoor area [180]. The CNN model can be trained for the estimation of the
user position inside (2.5 m × 2.5 m) with an average error of less than half a wavelength.

Indoor localization based on DL and CSI for 28 MIMO antenna is considered in [181].
The input to the multi-layer perceptron NN is the change in the magnitude component of
the CSI and the learning process is improved using data augmentation. To enhance the esti-
mation of the position, an ensemble NN scheme is applied to process the predictions of the
MLPs. An improvement in indoor positioning is done in [182] by exploiting the MIMO-CSI
using the proposed CNN architecture. The performance of the proposed three CNN vari-
ants is then compared with five state-of-the-art NN schemes in terms of accurate estimation
of position. User positioning in OFDM Ma-MIMO systems based on 3D CNN is considered
in [183,184] when the BS has a uniform planar array and traditional fingerprint type is
replaced with the “angle-delay channel power matrix”. This methodology is beneficial to
positioning as it embeds angles, with power in the horizontal and vertical directions.

Dynamic localization using predictive RNN for Ma-MIMO systems is investigated
in [185]. The authors have designed dynamic localization structures in time-varying en-
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vironments to perform localization and demonstrated the performance of the proposed
architecture in indoor and outdoor scenarios with reasonable localization accuracy. Accu-
rate mmWave positioning is important, and recently few works have been done in this
area using DL techniques [186]. Positioning in mmWave Ma-MIMO using DL is consid-
ered in [187], and different NN models are applied over beamformed fingerprints such
as CNN, Deep Convolution GP, LSTM, and GP LSTM to reduce the location error in the
outdoor environment near to 1 m. An actor–critic RL scheme is proposed in [188] using
NN approximator affine MIMO nonlinear discrete-time type systems, where disturbances
and functions are not known. One NN is used as an action network to produce the best
control signal while the second NN is used as a critic network cost function approximation.

4.4. CSI Acquisition and Feedback, Security, and Robustness

MIMO communication systems are a major enabler of the excessive throughput re-
quirements NGN, e.g., 5G due to its ability to serve many users at a time with high energy
and spectral efficiency. However, the MIMO system requires timely and accurate CSI,
which is obtained by a training process including the transmission of a pilot, estimation of
CSI, and feedback [189]. The training process experiences a training overhead, that scales
with variation in the number of subcarriers, users, and antennas. Therefore, minimizing
the training overhead in MIMO systems has been an important area of research over the
last few years. Recently, DL-enabled methods have been used to reduce the overhead
in feedback and CSI acquisition and have shown significant improvement compared to
traditional schemes [190,191]. Here, we will present state-of-the-art DL frameworks used
for CSI acquisition and feedback. This subsection will also review literature work on MIMO
security and robustness aspects.

A DL approach for secure MIMO communications has been employed in [192] by
exploiting the advantage of CNN learning network to generate more accurate CSI and to
reduce the BER of the receiver. Both the ideal CSI and imperfect CSI are included in the
training set that then may be used in different scenarios. An RNN-based DL approach is
proposed in [193] to learn temporal correlation. The architecture uses depthwise separable
convolution to shrink the network. Results have shown a reasonable performance in terms
of recovery accuracy and quality and obtain considerable robustness at low CR.

Time-varying features have been exploited in [194] using two modules: recurrent
compression/uncompression to provide an approach to minimize the parameter size. The
work is extended to MU-MIMO by separately assigning a decoder network for every user
at the BS. A DL-based scheme for channel calibration in Ma-MIMO systems in nonlinear
settings is proposed in [195]. The framework is able to exhibit robustness in generic
nonlinear scenarios even with the limited number of training sequences.

A CSI feedback mechanism based on bi-directional reciprocal channel properties and
limited feedback is introduced in [196]. The Ma-MIMO BS uses the uplink CSI to recover
the unknown downlink CSI from low-rate UE feedback. The DL enables architecture to
minimize the CSI feedback payload significantly based on the multipath reciprocity. A DL-
based denoise network is designed in [197] to enhance the channel feedback performance,
and it has shown good performance at low SNR.

A CS and DL empowered CSI feedback framework for FDD Ma-MIMO communication
system is propose in [198] where the CSI is compressed first at the UE using on CS scheme
and then at BS CSI is reconstructed using a DL enabled signal recovery solver. Deep
autoencoder is used in [199] to study CSI feedback in the FDD-MIMO system by considering
the feedback delay and errors. The autoencoder is constructed by using the CSI feedback
process, which contains feedback transmission delays and errors. The proposed architecture
claims to minimize the effect of the feedback delay and errors.

The work in [200] presents a multiple-rate CS-NN model for compression and quanti-
zation of the CSI. The authors have adopted two network design principles and develop a
novel quantization mechanism and training scheme. The proposed model improves the
network feasibility by reducing the storage space at UE and enhancing the reconstruction
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accuracy. Similarly, a quantization method and training framework for CSI feedback using
DL are given in [201]. The model uses the current CSI feedback in a real communication
network and but reduces the introduced quantization distortion to enhance the quality of
reconstruction.

A Bayesian CS-based feedback scheme for MIMO systems is considered in [202]. The
wireless channel used in the study is time-varying temporally and spatially correlated
vector autoregression. The relationship between downlink capacity and the feedback rate
is obtained in closed form in statistics to perform rate-adaptive feedback. A CNN-enabled
analog feedback method that maps the downlink CSI to uplink channel input directly
is given in [203,204]. The DL channel estimate is reconstructed by another CNN-based
corresponding noisy channel output. The framework gives a low-latency solution for
rapidly changing MIMO channels because the model does not need explicit modulation,
coding, and quantization.

A compression technique for channel state matrix using DL that is consists of convolu-
tional layers and quantization and entropy coding blocks come after is proposed in [205].
The model enhances the quality of CSI reconstruction even at significantly low feedback
rates. The distributed version of this work for an MU-MIMO environment is proposed
in [206], where each user compresses its CSI matrices in a distributed form and recon-
struction is done jointly at the BS. The Distributed version not only uses the inherent CSI
pattern of a single MIMO user, but also supports the channel correlations among neighbor
MIMO users.

CSI reporting which is important for MIMO system transceivers to acquire energy
efficiency and high capacity in FDD form is considered in [207] using DL technology.
The proposed DL-based compression architecture jointly handles recovery, codeword
quantization, and CSI compression under the bandwidth constraint to enhance the encoding
performance of CSI feedback. The correlation between nearby UE has been exploited
in [208] by designing a DL-based CSI feedback and cooperative recovery mechanism
to minimize the overhead of the feedback. Authors have also proposed a baseline NN
framework with LSTM for a UE equipped with multiple antennas to extract the correlation
of surrounding antennas and two magnitude-dependent phase feedback schemes that
present instant CSI and statistical magnitude information.

Spatial correlation-based CSI compression feedback for FDD Ma-MIMO systems is
considered in [209] and a DL-based CSI compression feedback scheme is used in single-
user as well as multi-user environments. The framework takes into account the spatial
correlation of Ma-MIMO system uniform linear antenna arrays and takes advantage of full
of the channel information during the training. Single-cell and multi-cell scenarios are also
discussed in [210] in terms of CSI feedback for BF to optimize the BF performance gain
instead of the feedback accuracy. The encoder at the user in a single-cell does compression
of the CSI and the BF vector is generated at the decoder, while in the multicell system, two
kinds of CSI feedback has to be sent, i.e., the targeted and the interfering CSI. A binarization
assisted feedback NN is proposed in [211] to improve the performance under customized
training and inference approaches.

Implicit feedback framework based on DL is applied in [212] to inherit the low-
overhead features. The given architecture uses NNs to interchange the precoding matrix
indicator encoding and decoding components. Moreover, a correlation between sub-bands
is also employed for more improvement in feedback efficiency. A compressive sampled CSI
feedback scheme for Ma-MIMO system using DL is proposed in [213], where the channel
matrix is sampled in frequency/time dimension uniformly before feeding into NNs. This
will minimize the computational time/resource at UE and improve the accuracy of the
CSI recovery at the BS. A CSI feedback network using DL for the FDD-MIMO system is
studied in [214], but its application to the mobile terminal is not effective due to the large
numbers of parameters. Thus using the developed network, authors have designed a new
lightweight CSI feedback framework. Similar work on the development of lightweight
NN for MIMO CSI feedback was also done in [215]. An FDD Ma-MIMO communication
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system that prevents signaling overhead by applying a DL-enabled channel extrapolation
is demonstrated in [216].

A scheme to protect the DL-based CSI feedback process from white-box adversarial is
presented in [217]. The authors have also shown that jamming attacks may be crafted with
some precautions.

A CNN-based network known as aggregated channel reconstruction model is con-
structed in [218] to enhance feedback performance with parametric ReLU activation and
network aggregation. In particular, the elastic feedback method is introduced to flexibly
adjust the network to address various resource limitations. Moreover, the network bi-
narization scheme is integrated with the feature quantization for practical deployment.
Long-range dependencies are captured efficiently in [219] by using DL-based CSI feedback
method and taking benefits of non-local blocks. Additionally, the feature of the refine-
ment part is strengthened by adopting dense connectivity. AnciNet, a DNN empowered
framework is designed in [220] to manage CSI feedback with limited bandwidth. The
proposed architecture extracts noise-free patterns from the noisy samples of CSI to obtain
CSI compression for the feedback effectively.

An uplink-assisted downlink channel acquisition architecture using DL is presented
in [221] to minimize feedback and high training overheads. The proposed framework takes
into account the full downlink CSI acquisition process such as channel estimation, downlink
pilot design, and feedback. A CNN model is developed on the Markovian model in [222]
to encode forward CSI differentially in time to enhance reconstruction accuracy effectively.
Authors have also explored convolutional layers for the compression of feedback and
spherical normalization of input data. A fully convolutional NN is presented in [223]
for the compressing and decompressing the downlink CSI. The proposed model enhance
the reconstruction accuracy of downlink CSI and minimize the training parameters and
computational parameters.

Superimposed coding and DL techniques are combined in [224] for CSI feedback. The
proposed methodology first spread downlink CSI and then superimposed it on uplink user
data patterns toward the BS. A NN framework is then designed for BS for the recovery
of downlink CSI and uplink user data sequences. A deep transfer learning scheme is
developed in [225] to addressed the high training cost of the NN used for 5G MIMO
downlink CSI feedback. The proposed architecture uses a comparatively less number of
samples for fine-tuning of a pre-trained model and provides the possibility to achieve a
new model with reduced training cost.

A DL-based scheme for the prediction of downlink CSI in Ma-MIMO FDD systems
is presented in [226]. The given architecture utilizes a complex-valued NN in a complex
domain to tackle complex CSI matrices and adjusts 3D convolution operations for the ex-
traction of features. Similarly, a model-driven DL-enabled downlink channel reconstruction
design is proposed in [227] for FDD massive MIMO systems.

4.5. mmWave Communications

Deep learning techniques have been utilized recently for interesting and important ap-
plications in mmWave and Ma-MIMO systems. DL provides solutions to hard optimization
problems due to its powerful capabilities of learning unknown models.

A DL-based compressed sensing channel estimation and quantized phase hybrid
precoder design scheme is proposed in [142] for the MU mmWave Ma-MIMO communica-
tion systems. The proposed work claims to have better performance in terms of spectral
efficiency as compared to other techniques having low phase shifter resolution. A novel
DL-based method is developed in [228] to estimate the channel for beamspace mmWave
Ma-MIMO communication systems. This framework uses a learned denoising-based
approximate message passing network by taking advantage of iterative signal recovery
methods and DL techniques. A DL-based analog and digital beamforming method for
mmWave point-to-point Ma-MIMO system are given in [229,230] for reduction of system
bit error rate and improvement in the spectral efficiency.
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An integration of ML and coordinated BF scheme is employed in [231] to enable
highly mobile applications for large antenna array mmWave MIMO systems. Authors
have taken the benefit of DL that learns the mapping between beam training results and
Omni-received uplink pilots. Similarly, another RL-based solution for mmWave Ma-MIMO
system is proposed in [232] for effective hybrid precoding, where every choice of the
precoders for achieving the optimal decoder is considered as a mapping mechanism in
DNN. In particular, the hybrid precoder is chosen via DNN-based training to optimize the
process of precoding process in mmWave Ma-MIMO.

A generic dataset for mmWave/Ma-MIMO channels known as the DeepMIMO dataset
was introduced in [233] with two important features: (1) The construction of the DeepMIMO
channels is based on accurately obtained ray-tracing data from the “Remcom Wireless
InSite”. That means it captures the dependence on the locations of transmitter/receiver and
environment geometry/materials and this is essential for many ML applications. (2) The
DeepMIMO dataset is parameterized/generic so that one can adjust a set of channel and
system parameters to tailor the generated DeepMIMO dataset for the target ML application.
A ray-tracing [234] and vehicle traffic simulator are combined in [235] to produce channel
realizations that represent 5G situations with mobility of both objects and transceivers.
Authors have used a particular dataset to investigate beam selection method on vehicle-to-
infrastructure using mmWave MIMO.

A hybrid processing model for the mmWave Ma-MIMO system is normally employed
to minimize cost and complexity. However, channel estimation may be very challenging
through this method. The work in [236] presents a deep CNN that can exploit both the
frequency and spatial correlation, while the input into the CNN has corrupted channel
matrices at adjacent subcarriers simultaneously. The same research group used Deep CNN
to carry out estimation for the wideband channel of mmWave Ma-MIMO systems in [237].
The proposed scheme exploits the frequency correlation in addition to the exploitation of
spatial correlation and here the input into CNN are channel matrices estimated tentatively
at multiple adjacent subcarriers.

Beamforming gains are achievable and high path loss is preventable in mmWave
systems by deploying a large number of antennas. However, with a large number of
antennas, implementation of digital precoders is difficult due to hardware constraints and,
at the same time, analog precoders have performance limitations. Hybrid precoding is an
important task in mmWave MIMO systems to reduce the cost and complexity as well as to
obtain a sufficient sum rate. Greedy methods or optimization techniques have been used
in literature for hybrid precoding. However, these schemes depend on the channel data
quality and achieve sub-optimum performance, and also give higher complexity. Therefore,
in the next few paragraphs, we will discuss few proposals on the use of DL-based hybrid
precoding. Some alternating algorithms for hybrid precoding for mmWave may be seen
in [238].

Two schemes, i.e., CNN-based and equivalent channel precoding, are designed in [239]
for mmWave Ma-MIMO systems. The complexity is decreased significantly with equivalent
channel precoding but the performance is a little less than full digital precoding while
the CNN precoding method shows much better robustness to imperfect CSI. In another
related work [240], authors have considered the case of multi-user and proposed a DNN
based hybrid BF system. They have simultaneously inferred users and sub-optimal beam
codewords of the BS by applying the received signals only on the target RF beamformers
and hence reducing the complexity of beam training.

A DL empowered hybrid precoding architecture is proposed in [241] that uses large-
scale information for the prediction of decoder and hybrid precoders parameters. The
statistics of the channel covariance matrix are applied to design the hybrid precoders and
decoders. The architecture is able to optimize the hybrid precoder and decoder in terms
of maximum spectral efficiency after training. Moreover, a CNN architecture for the joint
design of precoder and combiners is designed in [242] that takes the input of the channel
matrix and returns the output of analog and baseband beamformers. The underlying CNN
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scheme does not need knowledge of steering vectors of array responses and it achieves
higher capacity performance.

Hybrid precoding for MU-MIMO system is done in [243] using CNN. The framework
accepts an imperfect channel matrix as input and at the output gives the combiner and
analog precoder. An exhaustive search algorithm is developed first, to chose combiners
and the analog precoder from a predefined codebook. In the second step, combiners and
precoder are employed as output labels during the training network.

Fully convolutional denoising (FCD) AMP scheme is introduced in [244] by combining
FCD networks with learned AMP networks in mmWave Ma-MIMO system by considering
NN framework able to learn channel patterns and extract noise features. A beamspace
channel estimation method using prior-aided Gaussian mixture DNN empowered learned
AMP is given in [245]. A prior-aided GA beamspace channel estimation method using
prior-aided Gaussian mixture learned AMP network is designed by replacing the original
shrinkage function with that of the derived Gaussian mixture for accurate estimation of the
beamspace channel.

A DL-CS channel estimation method consisting of channel reconstruction and beamspace
channel amplitude estimation is given in [246]. The NN is trained offline based on simu-
lated environments using the mmWave channel model and the correlation between the
measurement matrix, and the received signal vectors are applied as input to the trained NN
which is used for the prediction of the beamspace channel amplitude. Then, reconstruction
of the channel is done using the acquired indices of entries of the dominant beamspace
channel. A mmWave OFDM-MIMO receiver is considered in [247] with a generalized
hybrid structure where RF chains and low-resolution ADCs are deployed simultaneously.
The authors have developed a computationally efficient Bayesian data detection scheme
that gives an MMSE estimate on data symbols. The authors have also designed a low-
complexity realization where only matrix-vector multiplications and fast Fourier transform
are needed.

Beamforming for mmWave MIMO systems is considered in [248] using the multi-
agent distributed double deep Q-learning approach, where many BSs can dynamically
and automatically adaptable their beams to serve many highly mobile UEs. Authors have
assumed the largest received power mapping criterion for UEs with a realistic channel
model. A frequency-selective wideband mmWave network is considered in [249] with two
DL compressive sensing assisted schemes. The proposed methodology learns important
a priori information from training data to give the most accurate channel estimates with
reduced training overhead. Estimation of a channel for mmWave MIMO system is dis-
cussed in [250]. A modified convolutional blind denoising model is developed to boost
the robustness in the noisy channel by adjusting asymmetric joint loss functions, on-blind
denoising subnetwork, and noise level estimation subnetwork for the blind channel estima-
tion. Moreover, the proposed network can minimize the noise interactively by adopting
the estimated noise level map in the channel matrix.

Uplink mmWave Ma-MIMO systems are considered in [251] using Bayesian learning.
In this work, an angle domain off-grid channel estimation method is developed by using the
spatial sparse pattern in mmWave channels. Similarly, sparse Bayesian learning is also used
in [252] in hybrid mmWave systems for channel estimation. The proposed model exploits
spatial sparsity in the wireless channels that exist due to a highly directional pattern of
propagation. The large intelligent surface-assisted mmWave Ma-MIMO systems are the
focus of work in [253] and DL architecture is proposed for channel estimation. A twin
CNN framework is developed for estimating both the direct and the cascaded channels by
feeding CNN with the received pilot signals. Hybrid precoding and channel estimation
mmWave MIMO systems using DL has been studied in [254]. Authors have used the
hierarchical codebook based method for channel estimation. An adaptable DNN based
low-rank channel recovery methodology is presented in [255] for a hybrid array based
massive MIMO system. The proposed framework includes a common feature extraction
element and the adaptable recovery module.
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4.6. Resource Management and Scheduling

Radio Resource management [256] and user scheduling [257,258] in MU-MIMO and
Ma-MIMO is very crucial for achieving good performance and often solve using techniques
from optimization theory. The heterogeneity and increased complexity of MIMO systems
like Ma-MIMO demands a paradigm shift from conventional resource management mecha-
nisms. RL and DL are powerful techniques wherein DL a multi-layer NN may be trained
to model a resource allocation algorithm using available data. Therefore, there is no need
for intensive online computations for resource management decisions which would be
required otherwise for the solution of resource allocation problems. This subsection focuses
on the applications of RL and DL on solving the problem of radio resource allocation for
different types of MIMO systems.

Deep learning has been used in [259] for the prediction of the power allocation profiles
for a new group of users’ positions. A DNN was used that learns the mapping between
optimal power allocation policies and the positions of UE after training. A Q-learning
method is proposed in [260] to maximize the overall capacity of the network when BS is
densely and randomly distributed with reasonable improvement in stability and conver-
gence speed. The authors of [261] have introduced a DL technique for “heterogeneous
fifth-generation new radio networks” to improve the performance of the downlink coordi-
nated multipoint. The proposed methodology is based on the construction of a surrogate
coordinated multipoint trigger function where the cooperating set is a single-tier of sub-6
GHz heterogeneous BS operating in the FDD mode.

A universal DRL-based framework is given in [262] for access control and resource
management. The framework adopts both CNN and RNN for automatically modeling the
sequential features and potential spatial features from the raw wireless signal. An RL-based
power control method is presented in [263] for the downlink NOMA transmission without
the knowledge of radio channel parameters and jamming. They formulated the power
allocation of a multiple antennas BS in a NOMA system contending with a smart jammer
as a zero-sum game where the first BS selects the transmit power on multiple antennas and
then the jammer chooses the jamming power to cause an interruption in the transmission
of users.

A DQN-based technique is used in [264] for resource allocation in Ma-MIMO-NOMA
systems. The RL method is employed for the development of an iterative optimization
structure for beamforming, power allocation, and user clustering. In particular, a DQN is
modeled to group the users in accordance with the reward that has been calculated after
beamforming and power allocation. Moreover, as a part of the study, the use of DL for
the optimization of power control in Ma-MIMO systems has been investigated in [265].
The article [266] considers deep spatial learning methods for scheduling that have the
possibility to bypass the channel estimation step. The authors have applied a DNN to
produce a near-optimal schedule only based on the geographic locations of the receiver
and transmitters in the system.

The optimization of sum spectral efficiency for multi-cell Ma-MIMO communication
systems is considered in [267] for a different number of active users. The proposed method-
ology employs the information of large-scale fading for the prediction of both data power
and the pilot. Authors have used the problem structure to model a single NN able to handle
a different number of active users that are varying dynamically. A similar optimization
algorithm is presented in [268], inspired by the weighted MMSE method, to get a stationary
point in polynomial time. Authors then use DL to train a CNN for performing the pilot
power control and joint data in sub-millisecond runtime.

The optimization of downlink beamforming via DL techniques is for the MISO system
is done in [269,270]. The method is based on CNN and exploitation of the downlink-uplink
duality and the known pattern of optimal solutions. A novel DRL-based capacity and
coverage optimization method is proposed in [271]. The architecture also contained a DRL-
enabled user scheduling method and a novel intercell interference coordination technique
to address capacity and coverage in Ma-MIMO networks. Similarly, the work in [272]
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discusses the use of the DL approach for load balancing and user association for sum rate
optimization.

A pilot assignment technique using DL for a Ma-MIMO system equipped with a large
number of antennas is given in [273] to improve the performance of cellular networks with
severe pilot contamination by learning the mapping between users’ location pattern and
pilot assignment. The proposed architecture was implemented through a commercially
available deep multilayer perceptron model. A combination of RL and radio service maps
is used in [274] to switches off BSs effectively and evaluated by utilizing a 3D ray-tracing
model on computer simulations. An inter-cell interference management method for MIMO
systems is presented in [275]. The framework contains interference cancellation on the
receiver and NNs power control on the transmitter end. The authors have evaluated
networks of MIMO systems with the power optimization using a few intercell interference
coordination techniques: the belief propagation, the greedy search, and NN, combined
with IC on the receiver side. Another work in [276] considers the suppression of intercell
interference for OFDM-MIMO systems. The authors have employed a complex-valued NN
architecture using the traditional interference rejection combining.

An intelligent algorithm to optimize the performance of the Ma-MIMO beamforming
is introduced in [277]. The proposed framework combines three NNs to implement the deep
adversarial RL workflow cooperatively. One NN is trained to produce realistic patterns of
user mobility, being used by the second NN to generate a corresponding antenna diagram.
The third NN does the estimation of the efficiency of the generated antenna diagram and
returns respective reward to two networks.

4.7. Miscellaneous Applications

The results of some recent works indicate that deep learning models can learn a form of
decoding algorithm, instead of only a classifier. These studies provide that DL architectures
can be applied for improving a standard belief propagation decoder, although having large
example space [278]. Moreover, identical improvements are achieved for the min-sum
algorithm.

Metric normalized validation error is introduced in [279] to investigate the applications
and limitations of DL-based decoding for different performance metrics, e.g., complexity.
The authors of [280] present an iterative belief propagation CNN model for channel decod-
ing under correlated noise. The framework concatenates a trained CNN with a standard
belief propagation decoder. A recurrent neural decoder model using the technique of
successive relaxation is introduced in [281]. The authors have observed better performance
over standard belief propagation are on sparser Tanner graph representations of the codes.

A practical issue of imperfect successive interference cancellation decoding for real-
world NOMA system is considered in [282]. A novel DL-based scheme is proposed by
authors for the downlink of the MIMO-NOMA system where both successive interference
cancellation decoding and precoding are jointly optimized. Another problem of dynamic
multichannel access is discussed in [283] in which multiple correlated channels observe an
unknown joint Markov model and UEs choose the channel for the transmission of data.
The goal of the study is to find a policy that optimizes the aggregated future successful
transmissions. The scenario is formulated as a POMDP without known system dynamics.

A novel physical layer DL scheme for MIMO system using an autoencoder is devel-
oped in [284] by using a transmitter and receiver which is an extension to the work on joint
optimization of physical layer representation as well as encoding-decoding processes from
to the multi-antenna case. An unsupervised DL-based autoencoder is also used in [285]
for single-user MIMO communications to introduce a novel physical layer approach. The
research contribution is an extension of joint optimization [286] of physical layer represen-
tation as well as the encoding-decoding processes as a single end-to-end task. The work is
extended for multi-antenna cases by expanding transmitter and receivers.

A DL-based channel prediction scheme is developed in [287] to enable FDD large-scale
MIMO for deployment. Authors have removed large signaling overhead using DL based
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channel prediction method and used a NN at the BS to infer the DL CSI that is centered
around a frequency fDL by only observing uplink CSI on a different but nearby frequency
region around fUL. Then, there is no requirement of reporting/pilot overhead with a
genuine TDD-based system. A DL-based autonomous channel measurement framework
that can accurately predict channel information consisting of a few multi-path effects is de-
veloped in [288]. The architecture attains channel magnitude measurements autonomously
using eight antennas through a mobile robot containing a transmitter that receives wireless
commands from a central computer.

Channel characteristics are predicted in [289] using the ML method and CNN for 3D
mmWave Ma-MIMO system indoor channels. Elevation angle of arrival, azimuth angle
of arrival, the elevation angle of departure, azimuth angle of departure, amplitude, and
delay are produced by ray-tracing software. While channel statistical characteristics can be
obtained after data preprocessing to train the CNN. A DNN-enabled decoding framework
for screen-camera communications and a unity 3D-based evaluation scheme is introduced
in [290] to boost the obtainable throughput and to synthetically learn the DNN structure for
being robust against multiple different screen-camera scenarios respectively. Jointly sparse
support and jointly sparse signal recoveries have been investigated in [291] in multiple
measurement vector schemes for complex signals that may appear in various applications
in signal processing and communications.

An RL actor–critic enabled fault-tolerant control problem is discussed in [292] for
MIMO nonlinear discrete-time communication systems. The authors have considered
both abrupt faults and incipient faults. An action NN is designed to produce the optimal
control signal while the cost function is approximated with the critic network. MIMO
uncertain nonlinear dynamic networks having unknown varying control direction matrix
and external disturbance are considered in [293] and a continuous tracking control law
is introduced. The proposed framework includes a robust term, an online approximator
(represented by a two-layer NN), Nussbaum gain matrix selector, and high-gain feedback.

A robust adaptive NN control is discussed in [294] for a general type of uncertain
MIMO nonlinear systems having input nonlinearities and control coefficient matrices are
not known. The proposed framework combines Lyapunov synthesis and backstepping
with variable structure control for nonsymmetric input nonlinearities of deadzone and
saturation. In another work on MIMO uncertain nonlinear systems with actuator satura-
tion and extern disturbances [295], an adaptive controller by taking into account a priori
actuator saturation effects is presented and gives the guarantee of performance tracking.
Authors have used adaptive radial basis function NNs for the approximation of unknown
nonlinearities. Moreover, an auxiliary system is designed for the compensation of actuator
saturation effects.

ANC for uncertain MIMO nonlinear systems is introduced in [296] when input satura-
tion and external disturbances are present. The uncertainties of the system are handled by
NN approximation and unknown disturbances are tackled by the Nussbaum disturbance
observer. A dynamic adaptive output feedback NN controller for MIMO affine in the control
uncertain nonlinear systems is developed in [297]. The controller can guarantee prescribed
performance limits on the system’s output and the boundedness of closed-loop signals.

An adaptive backstepping control approach is proposed in [298] uncertain MIMO
incommensurate fractional-order nonlinear systems. Approximation of unknown nonlinear
uncertainties is done by the radial basis function NN in every step of the backstepping
process. An ANC scheme for MIMO nonlinear systems with different constraints is devel-
oped in this [299]. The ANC architecture is combined with disturbance observer, barrier
Lyapunov function, radial basis function NN, backstepping method to tackle the con-
strained states, and nonsymmetric input nonlinearity. Similar works on ANC for uncertain
MIMO nonlinear systems using NN are done in [300,301]. An adaptive DL empowered
unmanned aerial vehicle receiver is designed in [302] for coded MIMO systems. Authors
have employed the linear convolutional code at the transmitter. The proposed iterative
unmanned aerial vehicle receiver consists of three parts such as ZF or MMSE detector, the
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deep CNN that can suppress the noise by capturing the correlation characteristics among
noise, and the Viterbi decoding decoder.

5. Statistics and Impact

This section presents statistics about the surveyed papers and an analysis of their
impact.

First, we have grouped the literature in four different periods as can be seen in Table 2.
It is possible to quantify the remarkable improvement in the adoption of DL and RL over
the last five years in MIMO systems. Details about the number of papers published by
years, from 2010 up to 2021, are reported in Figure 3.

Table 2. Number of papers from 2010 to 2021.

Period Number of Papers

2010 to 2012 4
2013 to 2015 7
2016 to 2018 51

2019 to August 2021 148

Figure 3. Number of papers from 2010 to 2021.

Next, we have considered different categories. Therefore, Figure 4 reports the total
number of papers concerning different issues of MIMO communication and exploiting RL
and/or DL technologies.

Figure 4. Number of papers surveyed by category.
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Figure 5 shows how the surveyed papers are distributed with respect to the analyzed
categories. Note that such papers are more or less equally distributed. From Figures 4 and 5,
it is possible to deduce that most of the article concerns three categories (Sections 4.1, 4.2
and 4.4). In these three categories, we have considered more topics and there are more
papers related to them. Similarly, the number of papers related to the other three categories
(Sections 4.3, 4.5 and 4.6) is almost the same, but definitively lower. Moreover, there is also
a significant amount of work presented in Section 4.7 that we have not listed among the
previous six categories. Most of the works presented in this section are related to channel
encoding–decoding and adaptive control in uncertain MIMO nonlinear systems.

Figure 5. Distribution of the surveyed papers with respect to the different categories.

Figures 6 and 7 show the distribution of surveyed papers according to DL and RL
architectures respectively. Figure 6 concerns DL architectures. Most of the applications
rely on DNN architectures. While a significant amount of papers also take advantage of
the CNN framework. We can also see the contribution of other DL architectures such as
RNN, RBFNN and Autoencoder. Similarly, Figure 7 presents the exploitation of different
RL schemes. Data indicates that most of the works rely on Bayesian and Q-learning.

Figure 6. Percentage of papers surveyed by DL architecture.
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Figure 7. Percentage of papers surveyed by RL algorithm.

Finally, as a further detail of data reported in Figure 8, we have also listed the top five
most cited papers for each category in Table 3. This can provide information about the
papers with a higher impact on the research community.

Table 3. Top most cited papers from each category (left to right in descending order).

Category Paper-1 Paper-2 Paper-3 Paper-4 Paper-5

Detection, Classification, and Compression [81] [103] [75] [82] [76]

Channel Estimation [120] [285] [144] [129] [124]

mmWave Communication [228] [232] [231] [233] [236]

Positioning, Sensing, and Localization [188] [166] [169] [172] [173]

Resource allocation [266] [262] [268] [273] [277]

CSI acquisition, Security and Robustness [200] [194] [196] [199] [193]

Miscellaneous [294] [279] [281] [136] [283]

Figure 8. Number of citations by category.
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6. Discussion

This section discusses the surveyed papers by highlighting the strengths and limita-
tions, along with future directions.

It is noted from results of channel estimation that DL frameworks show better results
in the large SNR environments, but are outperformed by standard iterative message passing
methods. Moreover, adopted DL schemes are suitable for high MIMO dimensions, but
converged for comparatively small MIMO dimensions for decoding [91]. Therefore, there
is the need for efficient DL architectures to handle the convergence issues that appear in
time-varying channels and 1-bit quantization.

Many problems are associated with 5G Ma-MIMO technology, which can be mitigated
through the use of DL. For example, it is difficult to estimate the accuracy of the channel
by employing conventional estimation schemes and with a suitable number of pilots. The
performance of the low complexity least-squares estimator is not satisfactory. On the other
hand, MMSE channel estimation is relatively complex [70]. Therefore, DL can be applied to
bypass these issues as done in [81,117,124,228,303–305].

In addition, within linear systems, the DL estimator is near to the linear MMSE
estimator, but it outperforms this last one significantly when there is a nonlinear signal
model. However, it is sensitive to the training data quality and estimation performance
may degrade appreciably when the data in real regimes distribute wider than that of the
training data [135]. Both the advantages and cost of the DL estimator should be considered
when applying it in real wireless communication systems for channel estimation. There is a
need to keep a balance between state-of-the-art channel estimation and DL-empowered
channel estimation.

The computing capabilities and limited memory of wireless devices may not suite
for complex DL algorithms. A considerable amount of time is required for collecting
a sufficient number of samples and for training DL models. This can become a critical
impediment to implement such algorithms on wireless devices with limited storage and
power. Moreover, some MIMO applications need on-fly sampling as well as real-time
processing, which makes training difficult. Obtaining more samples and long-time model
training results in slow feedback. Therefore, DL models should be designed to acquire
optimal accuracy with fewer samples and shorter periods.

User privacy is the most important concern of service providers. While deploying DL
in wireless systems, one challenge is how the training is enabled on a dataset associated with
users without sharing the input data and exposing personal data to risks. It is important to
have a security scheme to speed up the integration of DL in MIMO communications.

Security of DL networks is another challenge, as NNs are prone to adversarial attacks.
These attackers may affect the process of training by inserting fake training data, which can
reduce the accuracy of the DL models. This may lead to a wrong design, which can affect
the overall performance of the network. Research in the security of RL and DL techniques
remains shallow.

Multiple antennas are required to mitigate high path loss and to achieve BF gains in
mmWave systems. However, it is difficult to employ digital precoders in presence of many
antennas due to hardware constraints. Similarly, the performance of analog precoders
is limited [241]. Therefore, hybrid precoding using DL architecture is a feasible solution
as the DL-based precoder takes advantage of the large-scale information for parameters
prediction of hybrid precoders, as well as of decoders.

Despite the remarkable progress of DL in communication, still, research efforts are
required in many directions to ease the integration of RL and RL. The acceleration of DNN
alongside distributed RL systems, cloud computing, faster algorithm, and advanced parallel
computing provides an opportunity for 5G to develop the intelligence in its communication
systems to provide ultra-low latency and high throughput. Recently, some efforts have
been done in DNN acceleration [306]. The acceleration of DNN can be at architecture,
computation, and implementation levels.
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Techniques such as knowledge distillation [307], projection [308], pruning [309] and
layer decomposition [310] can be used at architecture level. Many characteristics may be
investigated for the implementation level, including FPGA designs [311] and advanced
GPU [312]. With the use of DL acceleration schemes, we can lower the complexity of DL
with reduced loss in the accuracy of this architecture. A combination of these approaches
may decrease the amount of parameters by more than 50%.

Furthermore, more exploration of the acceleration of these models may have a signifi-
cant impact on the adoption of DL to develop intelligence in MIMO systems. Integration
of DL and RL in MIMO communication systems can speed up by data collection and
subsequent cleansing. With the availability of datasets, researchers can build and test their
architectures. Therefore, efforts are required to build systems that can produce datasets.

7. Conclusions

We presented a comprehensive review of the applications of RL and DL to different
issues of MIMO communication systems. First, we presented an introduction of both
classes of AI methods (i.e., RL and DL) and MIMO systems. Afterward, we have presented
various applications of such AI technologies in MIMO systems. Then, we have analyzed
the impact of research papers in the field. Finally, we have outlined open issues, some
limitations, and future research directions.
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List of Acronyms

RL Reinforcement Learning
DRL Deep Reinforcement Learning
AI Artificial Intelligence
MDP Markov Decision Process
MC Monte Carlo
TD Temporal Difference
DP Dynamic Programming
VIA Value Iteration Algorithm
PIA Value Iteration Algorithm
AC Actor–Critic
A2C Advantage Actor–Critic
A3C Asynchronous Advantage Actor–Critic
DQN Deep Q-Network
NN Neural Network
TS Thompson Sampling
CNN Convolutional Neural Network
FC Fully Conntected
UCB Upper Confidence Bound
RMSE Root Mean Square Error
SARSA State-Action-Reward-State-Action
ANN Artificial Neural Network
DBN Deep Belief Network
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NEC Neural Episodic Network
DRL Deep Reinforcement Learning
IRL Inverse Reinforcement Learning
DNN Deep Neural Network
MIMO Multiple-Input and Multiple-Output
RNN Recurrent Neural Network
VBC Variance-Based Control
ML Machine Learning
BS Base Station
TD Temporal Difference
UE User Equipment
LTE Long-Term Evolution
DS Delivery System
DL Deep Learning
RMS Real-time multimedia streaming
ITS Intelligent transportation systems
MC Monte Carlo
DP Dynamic Programming
FDD Frequency Division Duplex
MU-MIMO Multi-User MIMO
NOMA Non-Orthogonal Multiple Access

POMDP
Partially Observable Markov Decision
Process

ADC Analogue-to-Digital Converter
MLD Maximum-Likelihood Detection
CSI Channel State Information
SISO Single-Input Multiple- Output
BF Beamforming
LSTM Long Short-Term Memory
MMSE Minimum Mean Square Error
mmWave millimeter wave
BER Bit Error Rate
SNR Signal-to-Noise Ratio
TDD Time Division Duplex
CR Compression Ratio
NGN Next-Generation Network
MSE Mean Square Error
STBC Space Time Block Coded
AMP Approximate Message Passing
MPD Message Passing Detector
DoA Direction of Arrival
UAC Underwater Acoustic Communication
CS Compressive Sensing
SGD Stochastic Gradient Descent

OFDM
Orthogonal Frequency Division
Multiplexing

MLP Multi-Layer Perceptron
3D Three Dimensional
GP Gaussian Process
5G Fifth Generation
3GPP 3rd Generation Partnership Project
DDPG Deep Deterministic Policy Gradient
NEC Neural Episodic Control
Ma-MIMO Massive MIMO
ReLU Rectified Linear Unit
ANC Adaptive Neural Control
RBFNN Radial Basis Function Neural network
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