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Vascular pathology is recognized as a principle insult in type 2 diabetes mellitus (T2DM). Co-morbidities such as structural
brain abnormalities, cognitive, learning and memory deficits are also prevailing in T2DM patients. We previously suggested that
microvascular pathologies involving blood-brain barrier (BBB) breakdown results in leakage of serum-derived components into
the brain parenchyma, leading to neuronal dysfunction manifested as psychiatric illnesses. The current postulate focuses on the
molecular mechanisms controlling BBB permeability in T2DM, as key contributors to the pathogenesis of mental disorders
in patients. Revealing the mechanisms underlying BBB dysfunction and inflammatory response in T2DM and their role in
metabolic disturbances, abnormal neurovascular coupling and neuronal plasticity, would contribute to the understanding of the
mechanisms underlying psychopathologies in diabetic patients. Establishing this link would offer new targets for future therapeutic
interventions.

1. Introduction: The Vascular Hypothesis

Macro- and microvascular complications involving endothe-
lial dysfunction are central to the pathogenesis and clinical
manifestations of type 2 diabetes mellitus (T2DM) [1].
Structural brain abnormalities [2–7] and cognitive, learning
and memory deficits were demonstrated in T2DM patients
[8–10]. We recently published a hypothesis paper suggesting
that a primary vascular pathology involving inflammatory
cascade and Blood-Brain Barrier (BBB) breakdown, will
result in the leakage of serum-derived vascular components
into the brain tissue and may cause brain dysfunction which,
under some conditions (extent, duration, and/or location),
will result in disturbed thinking processes, mood, and behav-
ior, such as those characterizing psychiatric illnesses [11].
The current postulate focuses on inflammation and molec-
ular mechanisms controlling BBB permeability in T2DM as
key contributors to the pathogenesis of mental disorders in

diabetic patients and suggests novel targets for the prevention
and treatment of cognitive and psychiatric complications.

2. Type 2 Diabetes Mellitus and
Vascular Pathology

T2DM is a multifactorial metabolic disorder. The underlying
etiology, pathophysiology and complications of diabetes
are still being elucidated (for review see [12]). T2DM is
characterized by chronic abnormal high blood glucose levels
(hyperglycemia), insulin resistance, and a relative insulin
secretion defect [13]. Induction of insulin resistance is
linked to obesity and activation of neuroendocrine and
inflammatory responses [14–16]. Approximately 200 million
people worldwide have diabetes and it is estimated that
without proper measures to slow the epidemic advance of
the disease, by 2025 the number of patients will increase to
333 million [17]. T2DM is recognized as an independent risk
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factor for cardiovascular disease (CVD), presenting increased
risk of morbidity and mortality from coronary heart disease,
congestive heart failure, and stroke [18]. Accumulating
clinical data disclose the central role of vascular lesions and
inflammation in the pathogenesis of T2DM and associated
complications [19]. Diabetic macrovascular complications
involve vessel obstructions, such as coronary artery diseases,
atherosclerosis, and peripheral vascular diseases. Microvas-
cular pathologies include retinopathy, nephropathy, and
neuropathy [20]. Direct damage to small blood vessels,
particularly by hyperglycemia, is manifested by endothelial
dysfunction, diminished perfusion, abnormal endothelial
cell (EC) proliferation and increased vessels permeability
[21]. T2DM patients exhibit similar microvascular damage
within the central nervous system (CNS) which may result
in increased incidence of cognitive deterioration, vascular
dementia, lacunar infarcts, hemorrhages and Alzheimer’s
disease [22].

3. Structure and Function of the Blood-Brain
Barrier and Quantification of Its Disruption

First evidences for a barrier preventing the passage of water-
soluble dyes from the circulation to the brain tissue and the
spinal cord were presented consecutively by Ehrlich, Gold-
mann and Lewandowsky in the beginning of the 20th century
[23]. At the interfaces between the blood and the neural
tissue or its fluid spaces exist three barrier layers: (1) the BBB
present in the capillaries throughout the brain, formed by
highly specialized EC partitioning between the blood and
brain interstitial fluid, (2) the choroid plexus epithelium
between blood and ventricular cerebrospinal fluid (CSF),
and (3) the arachnoid epithelium between the blood and
subarachnoid CSF [24]. The BBB components include the
EC with their basement membrane, lining the lumen of brain
capillaries. EC adjoined by specific protein tight junctions
(e.g., claudins, occludins, ZO-1, ZO-2, ZO-3 and cingulin)
and display specific transport mechanisms and pinocytic
vesicles (for review see [25]). The endothelium is enclosed
by brain pericytes and astroglial foot processes which form a
third continuous layer that separates these blood vessels from
the brain tissue. Jointly, these components form a barrier
that hinders the entry of most molecules into the brain,
and enable active transportation of penetrated molecules
out of the brain. Common brain imaging methods, such as
magnetic resonance imaging (MRI), computerized tomog-
raphy (CT), and single photon emission CT (SPECT)
are employed for qualitative evaluation of BBB disruption
in patients. Extravascular accumulation of a peripherally
administrated nonpermeable contrast agents, indicate BBB
breakdown [11]. Several methods for quantification of BBB
permeability using dynamic contrast enhanced imaging were
developed, although a routine clinical examination is not
yet available [26–28]. In the clinical setting, quantitative
evaluation of BBB disruption can be held by CSF analysis for
serum proteins (e.g., albumin) or plasma analysis of brain
constituents (e.g., S100B-brain-specific astrocytic calcium-
binding protein) [29].

4. Mechanisms of BBB Breakdown

BBB integrity is altered in diverse pathological conditions.
Changes are manifested by disruption of junctional com-
ponents which result in transbarrier leakage, and BBB
activation, which relates to the expression and secretion of
immune factors by its cellular components. The underlying
molecular changes leading to BBB dysfunction are not com-
pletely clear, but may involve amplification of endothelial
caveolae leading to transcytosis of plasma proteins [30,
31], decreased expression of junctional adhesion as well as
tight junction proteins [32, 33], and increased expression
of matrix metalloproteases [34]. Reactive cellular activity
in the neurovascular junction has also been observed,
including increase in migratory activity of pericytes [35]
and the proliferation of blood vessels due to upregulation
of vascular endothelial growth factor (VEGF) [36]. BBB
opening itself leads to the exposure of the brain tissue to
serum-derived (normally nonpermeable) molecules, which
serve as signaling mediators for brain repair mechanisms
but may also facilitate BBB breakdown. Agents released
during inflammation aggravate the penetrability of the brain
endothelium. EC bradykinin B2 receptors activation lead
to an increase in intracellular Ca2+ concentrations [37]
and subsequently to activation of endothelial nitric oxide
synthase (eNOS) which promotes transient tight junctions
opening and increased permeability [38]. Furthermore,
bradykinin can activate NF-κB pathway in astrocytes, leading
to the release of interleukin-6 (IL-6), which can amplify
the effect by acting back on the endothelium [39]. Tumor
necrosis factor-α (TNFα) increases BBB permeability by
direct action on the endothelium [40] and indirectly via
endothelin-1 production and IL-1β release from astrocytes
[41]. Mediators released from central and peripheral cellular
components and connective tissue following injury, can
also affect BBB permeability. For example, histamine and
TNFα and interferon-γ released in inflammatory pain can
alter brain endothelial permeability [42]. IL-1β release may
lead to a decreased concentration or altered localization
of the tight junction protein occludin, and thus increases
BBB permeability. Metalloproteases causing BBB breakdown
are upregulated and released during spreading neuronal
depolarization after massive neuronal activation [43].

5. Blood-Brain Barrier Breakdown in
Diabetes Mellitus

5.1. Anatomical Changes. Altered BBB structure in diabetic
patients is a matter of debate. Several studies have indicated
that the BBB integrity is sustained in DM, while others
revealed association between DM and increased BBB perme-
ability. Intravital microscopy examination of BBB integrity
in diabetic rats using fluorescent-labeled albumin displayed
intact BBB [44]. These findings should be interpreted with
caution since intravital microscopy for quantification of
ligands extravasations through the BBB is often compli-
cated and not specific [45]. Postmortem examination of
prefrontal and temporal cortex of diabetic patients together
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with immunohistochemical stainings against serum proteins
concluded that the BBB is well maintained [46]. In contrast,
growing body of evidence propose an opposing notion.
Animal models of ischemic injury in diabetic rats demon-
strated that hyperglycemia significantly aggravated BBB per-
meability, edema formation, and neurological manifestations
[47, 48]. BBB breakdown after ischemia/reperfusion injury
result in extravasation of inflammatory cells and fluid into
the brain tissue, and thus suggest that BBB disruption
has important role in the pathogenesis of brain damage
associated with systemic hyperglycemia. MRI brain imaging
following intravenous gadolinium administration identified
increased BBB permeability in diabetic patients compared
to controls [49]. Antibodies against serum S100B and NSE
(CNS proteins) were found to be significantly increased
in both type 1 and type 2 diabetic subjects compared to
controls, implying that diabetes in humans may be associated
with alterations in the integrity of the BBB [50].

5.2. Metabolic Changes. Normal metabolic activity of neural
tissue relies on constant glucose delivery. Due to the high
metabolic demands, glucose transport from the blood across
the BBB into the cells of the brain is mediated by rapid
facilitated transport. Glucose transporter proteins (GLUT),
particularly GLUT1 and GLUT3 ensure glucose supply.
GLUT1 protein is highly expressed at the BBB and GLUT3 is
primarily found in neurons. GLUT1 expression is controlled
by blood glucose levels, to maintain sufficient distribution
for optimal neuronal function [51]. In diabetes, imbalance of
glucose metabolism, lead to alterations of glucose transport
into the brain. Pardrdige et al. (1990) [52] showed a
decrease in GLUT1 expression and activity in diabetic rats
thus leading to reduced glucose transport in uncontrolled
diabetes. Studies focused on chronic hyperglycemia and
increased vascular damage showed that abnormal glucose
metabolism results in generation of reactive oxygen species
(ROS) followed by oxidative stress, mitochondrial dysfunc-
tion and inflammatory response [53, 54]. Hyperglycemia is
presumed to play a role in the generation of acute phase
proteins and inflammatory response [55]. It correlates with
data about reduction of the levels of acute-phase serum
proteins by treatments that increase insulin sensitivity and
lower blood glucose [56].

5.3. Inflammatory Mechanism: From Diabetic Retinopathy to

Brain Pathology

5.3.1. Inflammatory Mechanisms. Inflammatory mecha-
nisms underlying vascular pathology in DM are possibly
common to the vasculature in the periphery and CNS. For-
mation of advanced glycation end products (AGEs) via gly-
cation of blood proteins is a consequence of hyperglycemia,
and it results in decreased kidney function and small vessels
pathology. AGEs accumulation may induce vascular inflam-
mation by the interactions between AGEs and AGE-specific
receptors (RAGE) [57]. AGEs activation of endothelial RAGE
promotes upregulation of endothelial adhesion molecules
including vascular cell adhesion molecule 1 (VCAM-1) and

activates transcription factor nuclear factor-κB (NFκB). The
former increases monocyte adhesiveness and vascular per-
meability while the latter regulates multiple proinflamma-
tory and proatherosclerotic target genes in endothelial and
vascular smooth muscle cells as well as in macrophages [58].

5.3.2. Diabetic Retinopathy. Well-established data about reti-
nal vessels pathology in DM is available. Due to the structural
similarities between the BBB and the blood-retinal barrier
(BRB) and the fact that disruption of the BRB in diabetes
is associated with retinopathy, it is logical to assume that
altered BBB function in DM patients may also result in
brain pathology. Chronic hyperglycemia, hyperlipidemia,
and hypertension contribute to the pathogenesis of Diabetic
Retinopathy (DR) [59–61]. Diabetic macular edema (DME)
found in 29% of patients who had diabetes for≥20 years [62]
and is caused by increased level of mediators responsible for
retinal vascular permeability as IL-6 and VEGF. These factors
promote leakage of intravascular fluid from retinal capillaries
into retinal spaces [63]. Further damage arises from retinal
EC exposure to AGEs leading to abnormal eNOS expression
[64] and induction of VEGF expression [65]. Diabetes may
also involve altered retinal blood flow as an outcome of
the damage to pericytes enclosing the BRB [66, 67] and
correlates with microaneurysm formation. Capillary nonper-
fusion, EC damage, and vessel occlusions contribute to the
retinal microcirculation damage [68]. Capillary occlusion
by leukostasis, adherence to the vascular endothelium and
cellular degeneration lead to retinal ischemia that stimu-
lates pathologic neovascularization mediated by angiogenic
factors (e.g., VEGF) which enhance BRB permeability and
result in proliferative diabetic retinopathy (PDR) [69, 70].
During the last years, anti-VEGF drugs, such as ranibizumab
(Lucentis) and bevacizumab (Avastin) are injected into the
vitreous for the treatment of diabetic macular edema.

5.3.3. BRB Examination as a Window for BBB Condition.
As previously described, the vascular hypothesis speculates
that BBB disintegration may be involved in the pathogenesis
of brain diseases. Diabetes-induced microangiopathy of the
kidney and retina are well described in the literature. The
detailed pathogenesis of microvascular damage within the
CNS is less known, since altered functions of cerebral vessels
is concealed and less predictable, while in other tissues
vascular impairments are detectable and obvious [71]. The
analogy between the BBB and the BRB is the platform
for conceptualization that retinal vessels examination can
provide a tool for estimation of cerebral vessels status. In the
clinical setting, investigation and documentation of the BRB
integrity are held routinely in T2DM patients. Ophthalmic
fluorescein angiography (FA) includes intravenously admin-
istration of fluorescein producing angiographic display that
is used to visualize retinal blood flow dynamics while record-
ing the integrity of the BRB. Correlation between FA results
and BBB permeability measures utilizing dynamic contrast
enhanced imaging (e.g., [26, 72]) is thus essential, in order
to point out the mutual relation between the two systems.
An important feature should be the ability to quantify BRB
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leakage in T2DM patients, and novel imaging methods
can be implemented [73]. Future perspectives should focus
on developing novel applicable tool for prediction of BBB
breakdown via BRB image analysis. A similar conclusion
was published recently, following the results of a prospective
study using MRI examination and retinal imaging [74]. It
has been shown that retinal microvascular abnormalities
are associated with emergence of subclinical brain infarcts
and white matter lesions, and proposed that retinal vascular
imaging may offer a noninvasive tool to investigate cerebral
small-vessel disease.

6. Blood-Brain Barrier Breakdown in
Psychiatric Diseases

There are evidences linking psychiatric illness with BBB alter-
ations. Quantitative evaluation of BBB disruption utilizes
CSF analysis for presence of serum proteins leaked through
a permeable barrier, or plasma analysis for molecules found
exclusively in the brain (as S100B). Similarly, increase
in plasma levels of S100B may reflect increased BBB
permeability [29]. CSF/serum albumin ratio was elevated
in patients suffering from dementias, in comparison to
nondemented individuals [75] and in elderly depressed
women compared to women without depression [76]. BBB
dysfunction was also shown in schizophrenic patients by
measuring increased albumin and IgG CSF levels, with
additional correlation between the negative symptomatology
to CSF/serum albumin ratio [77, 78]. Bell and Zlokovic
(2009) recently reviewed the knowledge about the relation
between cerebrovascular dysfunction as BBB disruption and
neurovascular uncoupling, to cognitive decline and neu-
rodegenerative changes of Alzheimer’s disease [79]. Clinical
studies demonstrated increased S100B levels in the serum
of patients suffering from acute or chronic schizophrenia
[80]. Same serum S100B elevation was observed in patients
with major depression, with decrease in serum S100B levels
during clinical improvement after antidepressant treatment
[81].

7. Comorbidity between Diabetes Mellitus and
Psychiatric Disorders

Among DM patients there is a significant and consistent
association with presence of elevated depressive symptoms
and the prevalence of major depression, compared with
the general population [82–85]. Recently published data
shows that higher A1C levels are associated with lower
cognitive function in individuals with diabetes [86]. Accu-
mulating evidence [9, 10] indicates that in diabetic patients,
hyperglycemia and diabetes durations contribute to brain
atrophy and increases the risk of cognitive impairment.
Increased expression of RAGE in Alzheimer’s disease brain,
indicates its relevancy in the pathogenesis of neuronal
dysfunction and death [87]. Postmortem studies of indi-
viduals with Alzheimer’s disease attributes to this opinion
by demonstrating AGEs within the senile plaques [88, 89].
Indeed, studies suggest that T2DM is associated with an

increased risk of Alzheimer disease, vascular dementia and
risk for development of cognitive impairment in comparison
with the general population [90–92]. Anxiety disorders
were also found in high prevalence in diabetic population
[93, 94].

8. Inflammation and Psychopathology

Inflammatory processes are central to the pathogenesis of
T2DM and contribute to BBB dysfunction. Apart from the
pathogenic role of the immune responses, accumulating
data indicates that immunologic responses also play a role
in depression, neurodegeneration, and deficits in cognitive
function. Evidence of an inflammatory response in major
depression is present over the last two decades [95]. Recent
meta-analysis of 24 studies reinforced the notion about
cytokine involvement in depression through activation of
the inflammatory response [96]. A thorough review by Maes
et al. (2009) [97] elaborates the involvement of inflamma-
tory pathways in depression. Increase in proinflammatory
cytokines, such as IL-1β, IL-6, interferon-γ and TNFα, with
a relative shortage in the anti-inflammatory cytokine IL-10
was documented in depression. Cytokines produced in the
periphery and by neurons and glial cells within the CNS
are presumed to be involved in the complex autonomic,
neuroendocrine, metabolic and behavioral responses to
brain injuries as inflammation, ischemia and stroke [98–
100]. As mentioned previously, in T2DM, inflammation of
adipose tissue contributes to insulin resistance. Activated
macrophages in the adipose tissue are the primary cellular
source of proinflammatory cytokines as IL-1β, TNF-α and
IL-6. These mediators provide additional links between
the participation of immune reaction in T2DM and the
brain response. In brain regions lacking intact BBB (i.e.,
circumventricular organs), cytokines leakage from the blood
into the brain parenchyma may lead to activation of
macrophages and induction of a proinflammatory cascade.
Additionally, without crossing the BBB, cytokines are able
to interact with perivascular macrophages (reviewed by
[101]). Clinical data from patients with major depression
demonstrate increase of inflammatory features among them
[102]. Studies pointing out the existence of positive cor-
relations between plasma concentrations of inflammatory
mediators and the severity of depressive symptoms are
also available [103, 104]. Proinflammatory response induces
decreased neurogenesis in depression, which is characterized
by decreased brain-derived neurotrophic factor (BDNF),
neural cell adhesion molecule (NCAM) and fibroblast
growth factor (FGF) [105–107]. Inflammation stimulates
release or production of corticotropin releasing hormone
(CRF), adrenocorticotropic hormone (ACTH) and cortisol
via activation of the hypothalamic-pituitary-adrenal axis
(HPA) and cortisol in turn may participate in neural atrophy
[108, 109]. Furthermore, inflammatory cytokines as IL-
1β, IFNγ, and TNFα cause induction of indoleamine-2,3-
dioxygenase (IDO), an enzyme catabolizing tryptophan into
neurotoxic metabolites known as TRYCATs. IDO activation
is significantly related to inflammatory signs and to the
severity of depressive symptoms [110, 111]. Serotonin levels
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are affected by inflammation since tryptophan is the pre-
cursor of 5-HT. IDO metabolize tryptophan in the kynure-
nine pathway and therefore less tryptophan is available
to synthesize 5-HT. Activation of the brain’s microglia by
Th1 cytokines, either secreted from activated astrocytes or
from the periphery, induces IDO and may thus reduce 5-
HT levels and result in depression. Astrocytic activation in
the brain, facilitated by BBB disruption in inflammatory
condition of T2DM may also alter network properties and
neuronal excitability by changing glutamate levels and affect-
ing synaptic plasticity. Cytokines may generate, through the
kynurenine pathway, the formation of quinolinic acid—an
NMDA receptor (NMDAR) agonist. Microglia are the only
cells in the CNS that express the complete enzymatic pathway
required for the synthesis of quinolinic acid [112]. Hence,
inflammatory mediators acting on microglia will increase the
levels of quinolinic acid and will activate NMDA receptors.
These findings match with new evidence suggesting that
heightened glutamate receptor activity in major depression,
can underlie inflammation-associated depressive disorders
[113]. In addition, quinolinic acid directly causes release
of glutamate [114]. Thus, inflammatory mediators can
lead to an environment of excess glutamate. Glutamate
receptor activation enhances the effect of BBB breakdown
by induction of astrocytic transformation. A vicious cycle
of cytokine secretion, microglial activation, and further
enhancement of glutamate receptors activation is created (see
below). Activated microglial cells are also key contributors
to the inflammatory response which occur during chronic
neurodegeneration in diseases such as Alzheimer’s disease,
prion disease and Parkinson’s disease [115]. These activated
microglia release proinflammatory cytokines which affect
injured neurons and may exacerbate lesion size and neuronal
loss. Postmortem examination of brain tissue from patients
suffered from Alzheimer’s disease revealed large numbers
of activated microglia associated with the amyloid deposits
and in regions of the brain where there is neuronal loss
[116]. Metabolic syndrome, T2DM, and decline in cogni-
tive function share common inflammatory markers [117].
Elevated levels of insulin may lead to cognitive decline via
the effect of hyperinsulinemia on neuronal metabolism and
reduced clearance of β amyloid, a frequent pathologic feature
of obesity, metabolic syndrome, DM, and Alzheimer’s disease
[118]. A Recent study showed decrease in executive and pro-
cessing function among metabolic syndrome patients [119].
Moreover, patients with impaired insulin function were
found to have lower levels of the neurotrophic protein BDNF.
Decreases in hippocampal BDNF levels showed association
with stress-induced depressive behaviors and conversely,
antidepressant treatment enhanced the expression of BDNF
[120].

9. BBB Breakdown and Psychopathology

Neuropsychiatric disorders such as depression, mood and
anxiety disorders, are associated with cerebrovascular
impairments [121]. BBB breakdown will result in induction
of signaling pathways leading to transformation and activa-

tion of the surroundingcells. We mentioned previously how
local inflammatory brain responses following BBB changes
influence endothelial and glial cells towards elevation of
cytokine expression. It is possible to assume that glial cell
activation will also participate in the functional changes
occurring in the vascular environment and the adjacent
neuropil. Indeed, compromised BBB results in a rapid
transformation of the resting astrocytes into their active form
in ischemic, inflammatory and traumatic brain injuries.
Astrocytic endfeet are considered an integral part of the
BBB and surround capillaries in the CNS to regulate the
vascular tone [122] and tight junction expression [123].
Experimental evidence suggests that upon BBB breakdown,
infiltration of albumin, the most abundant serum protein,
into the neuropil may account for the astrocytic transfor-
mation via the transforming growth factor beta (TGFβ)
signaling pathway. Transformed astrocytes undergoes mod-
ification in gene expression that includes the upregulation of
GFAP and S100B, downregulation of glutamate transporters,
glutamine synthase and the inward rectifying potassium
channel (KIR4.1), AQP4 and gap junctions’ proteins [124,
125]. The subsequent gene expression affects the extra-
cellular environment through increased concentrations of
potassium and glutamate causing amplification of neuronal
excitability [126]. The participation of calcium metabolism
in neurovascular coupling provides a hint for a possible
pathologic molecular mechanism that may arise from astro-
cytic activation. Neuron-to-astrocyte signaling is considered
being a key mechanism in functional hyperemia. The resul-
tant increase in extracellular glutamate following astrocytic
transformation can activate glutamate receptors (mGluRs)
located on astrocytes. It has been shown that the dilation
of arterioles triggered by neuronal activity is dependent on
glutamate-mediated cytosolic calcium ([Ca2+]i) oscillations
in astrocytes [127]. Activation of mGluRs and the subse-
quent elevation in [Ca2+]i in astrocytes ultimately creates
[Ca2+]i increase in the endfeet [128]. Zonta et al. [127]
demonstrated that inhibition of astrocytic Ca2+responses
resulted in the impairment of activity-dependent vasodi-
lation, whereas selective activation of single astrocytes in
close proximity to arterioles triggered vessel relaxation [127].
They further observed that in vivo blockade of glutamate-
mediated [Ca2+]i elevations in astrocytes reduced hyperemic
reaction in the somatosensory cortex during contralateral
forepaw stimulation. Excess of extracellular glutamate that
leads to activation of mGluRs and the increase of [Ca2+]i
in the endfeet, initiate the activation of Ca2+-sensitive K+

channels (BK) and the efflux of K+. BK channels were
proposed to play a role in the K+ modulation of cerebral
blood flow [129]. Extracellular excess of potassium has the
potential to generate changes in the vascular tone through
activation of inward rectifying K+ channels (KIR) located in
smooth muscle (SMC) layer of vessel [130]. BK channels,
expressed abundantly in astrocytic endfeets, exhibit sensi-
tivity to membrane depolarization and intracellular calcium
levels. Neuronal stimulation of brain slices produced BK
channel-mediated K+ release in astrocytic endfeets, altered
the extracellular K+([K+]o) level in the perivascular space
and generated a signal that produces vasodilatory response
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by KIR channels in parenchymal arteriole SMC. The eleva-
tion of [K+]o from 3 mmol/L to 8 mmol/L hyperpolarizes
parenchymal arteriolar membranes from −45 to −80 mV,
and causes a rapid and profound dilation of isolated pres-
surized parenchymal arterioles as well as arterioles in brain
slices [131]. Thus, astrocytic activation after BBB disruption,
subsequent reduction in K+ buffering and the increase of
extracellular glutamate and K+, elevates the [K+]o levels.
This will consequent in enhancement of the mutual activity
of glutamate-mediated [Ca2+]i oscillations in astrocytes, BK
activation and vasodilatation through SMC K+ channels.
A direct link between the metabolic state in the brain
tissue and astrocyte signaling was recently established [132].
According to our hypothesis, the changes in the perivascular
microenvironment and the metabolic dysregulation arising
from impairment in cerebrovascular response as disturbed
or extensive hyperemia may take part in the mechanisms
underlying brain pathologies. Hyperemia in the active
regions and hypoperfusion of surrounding areas, under some
conditions (extent, duration and location) may result in
impaired metabolism, inadequate homeostasis preservation,
formation of reactive oxygen species and insufficient removal
of toxic metabolites. These insults may participate in the
evolvement of cognitive or psychiatric illnesses. Mechanisms
of abnormal plasticity are also suspected to participate in
the development of mental disturbances following BBB
breakdown, glial activation and inflammation, via the effect
of excess of glutamate. We hypothesize that diffusion of
glutamate and K+ out of the narrow synaptic cleft will
affect neighboring synapses, resulting in a loss of synapse-
and pathway-specific plasticity. Astrocyte-mediated plas-
ticity mechanisms utilize glutamate for transient mGluR-
dependent neuromodulation. In addition long-term poten-
tiation via NMDAR-independent mechanism showing Ca2+

elevation in astrocytes that modulates transmitter release
probability and evokes long-term synaptic plasticity [133].
This control in transmitter release at the synapse and
the strengthening of synaptic connectivity may possibly
result in synaptic tuning in circuits involved in cognitive
processing and the control of limbic system excitability [134].
Formation of new synapses may reduce specificity and is
expected to activate larger neuronal networks in response to
stimuli. These alterations might be expressed in disturbed
thinking processes and extreme mood-related behavioral
responses, depending on the involved network.

10. Conclusion

Inflammation and vascular pathology have a significant con-
tribution for the pathogenesis of T2DM complications. Neu-
ropsychiatric disorders are also associated with inflammatory
reaction and cerebrovascular impairments. Brain injuries
that often involve BBB breakdown and astrocytic response
increase the risk for neuropsychiatric sequelae, including
personality changes, depression, anxiety, dementia, and
perhaps psychosis [135, 136]. T2DM patients show higher
susceptibility to cerebrovascular diseases which according to
our hypothesis may explain the increased incidence of cog-
nitive deterioration, depression, vascular dementia, lacunar

infarcts, hemorrhages and Alzheimer’s disease among these
patients. Revealing the mechanisms underlying the effects of
diabetes on BBB structure and function and understanding
the role of inflammation, impaired neurovascular coupling,
metabolic defects and altered neuronal plasticity in the
neuropsychiatric sequela of T2DM, will create a target
for clinical and pharmacologic modalities and a potential
platform for future therapeutic intervention.
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