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SUMMARY 13 
Cellular heterogeneity of human adipose tissue, is linked to the pathophysiology of obesity and 14 
may impact the response to energy restriction and changes in fat mass. Here, we provide an 15 
optimized pipeline to estimate cellular composition in human abdominal subcutaneous adipose 16 
tissue (ASAT) from publicly available bulk RNA-Seq using signature profiles from our previously 17 
published full-length single nuclei (sn)RNA-Seq of the same depot. Individuals with obesity had 18 
greater proportions of macrophages and lower proportions of adipocyte sub-populations and 19 
vascular cells compared with lean individuals. Two months of diet-induced weight loss (DIWL) 20 
increased the estimated proportions of macrophages; however, two years of DIWL reduced the 21 
estimated proportions of macrophages, thereby suggesting a bi-phasic nature of cellular 22 
remodeling of ASAT during weight loss. Our optimized high-throughput pipeline facilitates the 23 
assessment of composition changes of highly characterized cell types in large numbers of ASAT 24 
samples using low-cost bulk RNA-Seq. Our data reveal novel changes in cellular heterogeneity 25 
and its association with cardiometabolic health in humans with obesity and following weight loss. 26 
 27 
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INTRODUCTION 29 
Adipose tissue is an important lipid storage and endocrine organ (1-3) that is highly 30 
heterogeneous where non-adipocytes compose more than 50% of the total cell population and 31 
reside within the stromal vascular fraction (e.g. stem cells, pre-adipocytes, vascular cells, and 32 
immune cells) (4, 5). While excess adiposity is associated with cardiometabolic disease 33 
progression (6, 7), increasing evidence suggests that altered cellular composition of adipose 34 
tissue – and not the sheer mass per se – is also tightly linked to, or even at the root of, 35 
cardiometabolic health complications that are often observed with obesity (8-10). Conversely, 36 
improvements in cardiometabolic health induced by weight loss are often accompanied by 37 
changes in the cellular composition of adipose tissue, particularly macrophages (11, 12). 38 
However, a comprehensive analysis of cell types that may be altered by weight loss is still 39 
lacking. Therefore, robust and accurate quantification of cell proportions in adipose tissue is 40 
paramount for understanding the etiology of cardiometabolic disease and optimizing its 41 
treatment. 42 
  43 
Since the advent of transcriptomics, researchers have sought to deconvolute bulk transcriptomics 44 
to estimate cell type proportions. This approach has surged with the development of single cell 45 
(sc) and single nuclei (sn) RNA-Seq platforms that can more accurately quantify cellular 46 
composition and provide cell-specific transcriptomes to aid in bulk deconvolution. While sc/sn 47 
RNA-Seq remains the most accurate way to quantify cell composition in adipose tissue with 48 
minimal bias, the pipeline remains expensive and requires technical bench-work that restricts 49 
broad application. Recently, we published a full-length snRNA-Seq atlas of abdominal 50 
subcutaneous adipose tissue (ASAT) from a prospective cohort of older and younger adults 51 
balanced for sex and body mass index (BMI) (13). The full-length snRNA-Seq methodology 52 
provided the highest gene detection per nuclei in human adipose tissue to date, therefore 53 
providing an exemplary dataset for accurate bulk RNA-Seq deconvolution. While bulk RNA-Seq 54 
deconvolution using sc/snRNA-Seq profiles has previously been performed in human ASAT (9, 55 
14, 15), to date no one has systematically identified which algorithm and signature matrix yields 56 
the most accurate results.  57 
 58 
Here, we leverage our full-length snRNA-Seq human ASAT dataset to optimize a pipeline to 59 
deconvolute bulk RNA-Seq datasets and determine how cellular heterogeneity of ASAT may be 60 
altered with both obesity and weight loss. Understanding the impact of one of the most cost-61 
effective and commonly prescribed interventions to treat obesity-related cardiometabolic health 62 
complications may lead to advanced weight loss strategies and cellular targets for improving 63 
cardiometabolic health outcomes.  64 
 65 
RESULTS 66 
Assessment of deconvolution algorithms 67 
Given there are currently several popular deconvolution algorithms, we aimed to assess which 68 
algorithm had the ability to 1) detect every cell type that we previously reported (13), from a large 69 
bulk RNA-Seq data set and 2) how accurately we could deconvolute a pseudobulk RNA-Seq data 70 
set, which is a bulk-like profile where gene expression data from individual nuclei are aggregated 71 
for each sample with known cell type proportions. In our preliminary testing, we compared popular 72 
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algorithms for their capability of detecting each cell type in the majority of samples from a large 73 
bulk RNA-Seq data set (METabolic Syndrome In Men; METSIM cohort (16) Figure 1). We also 74 
reasoned that for the algorithm to be effective it should be able to detect at least 25% of adipocytes 75 
in the majority of these samples (17). The results show that certain algorithms, despite the 76 
different gene composition iterations, were never reliable in detecting certain cell types. For 77 
example, when using all detected genes (‘All Genes’) and top 5000 highly variable genes (HVG) 78 
– which were used to cluster cell types in the original snRNAseq data (13) – rls and qprogwc 79 
always underestimated vascular cells. nnls (operated through ADAPTS or granulator) did not 80 
identify adipocytes in a large portion of samples (Figure 1A, S1A).  MuSiC- weighted consistently 81 
underpredicted stem and vascular proportions whereas MuSiC – all gene underpredicted  82 
macrophages and pre-adipocyte proportions (Figure 1A, S1A). While EPIC was able to detect all 83 
cell types, the proportion of these certain cell types in samples was extremely low (<1%) and 84 
therefore was not a completely reliable detection. Some algorithms such as ols, qprog, DCQ, 85 
proportionsInAdmixture, and DeconRNASeq were able to detect adipocytes in a large proportion 86 
of samples. However, these adipocyte estimates had an extremely low proportion of samples that 87 
had >25% of adipocyte estimated (Figure 1B). It was notable that dtangle was able to detect all 88 
cell type in every sample when all genes or 5000HVG signature was used (Figure 1A, S1A). 89 
Furthermore, dtangle consistently detected at least 25% of adipocytes in nearly 100% of samples 90 
(Figure 1B, S1B). 91 
 92 
In order to assess the effectiveness of different deconvolution algorithms, we compared estimated 93 
cell proportions from a pseudobulk data-set against actual cell-type proportions quantified with 94 
snRNA-Seq. Pearsons’s correlation coefficient (-1 to 1) and mean absolute deviance (mAD) (0-95 
100) were used to assess how accurately the deconvolution estimated cell type proportions, with 96 
a PCC of 1 and mAD of 0 indicating a completely accurate prediction of a given cell type (Figure 97 
1C-F). Overall dtangle, rls and MuSiC-weighted had the highest PCC values (Figure 1C-D). 98 
dtangle and MuSiC-weighted had the lowest average mAD out of all the algorithms that were able 99 
to detect every cell type (Figure 1E-F). 100 
 101 
Signature Matrix Optimization 102 
Due to dtangle being the best-performing algorithm from the bulk and pseudobulk RNA-Seq 103 
deconvolution assessments, we further sought to optimize this specific algorithm. 104 
 105 
In adipose tissue biology, macrophage content increases proportionally to increases in adipose 106 
tissue mass (18). We therefore reasoned that when deconvoluting bulk RNA-Seq data, we should 107 
see a positive correlation between macrophage proportion and adiposity (i.e., BMI and waist-to-108 
hip ratio (WHR)). We ran different iterations of gene signatures to assess which gave us the best 109 
correlation between macrophage proportion and BMI or WHR. We tested; all genes detected, and 110 
different iterations of HVG (2000, 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000).  Every gene 111 
signature was able to detect every cell type in every sample (Figure 2A). However, ‘All genes’ 112 
signature matrix predicted similar proportions of macrophages across all samples and therefore 113 
there was no correlation between percentage of macrophage proportion and WHR (Figure 2B, 114 
D) or BMI (Figure S2A). This highlights the need to optimize a gene signature when performing 115 
deconvolution rather than using all of the genes available. The 6000 HVG had the highest 116 
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correlation between both WHR and BMI with estimated proportion of macrophages, although 117 
5000 HVG, 4000 HVG, and 3000 HVG elicited similar results (Figure 2B, C, S2A).  118 
 119 
We further explored whether the snRNAseq-derived gene signature matrix and 6000 HVG list 120 
were influenced by the age of the participants as our snRNAseq reference data comprises 121 
samples from 10 older (≥ 65 years)) and 10 younger (≤ 30 years ) participants (13). By applying 122 
age-group specific gene signature matrices and age-group specific 6000 HVG lists to deconvolute 123 
METSIM bulk RNA-seq data, we found that macrophages were overestimated while pre-124 
adipocytes were underestimated when using gene signature matrix and 6000 HVG list from 125 
younger adults compared with when using those from older adults (Figure S2B-C). In addition to 126 
our main signature matrix and 6000 HVG from the age-group-integrated data, we provide age-127 
group-specific data (Supporting information). Using the 6000 HVG from the two different age 128 
groups, we found that 4762 genes among 6000 HVG (65.9%) were shared by both groups, 129 
suggesting that these 4762 genes may represent ‘age-neutral’ genes (Figure S2D). There was a 130 
remarkably tight correlation between the estimated proportions of each cell type from METSIM 131 
bulk RNA-seq data using the age-group-integrated 6000 HVG and ‘age-neutral’ 4762 HVG (0.94 132 
< R < 0.99) (Figure S2E), indicating that the initial 6000 HVG we tested may robustly estimate 133 
ASAT cell type proportions with minimal bias by age.  134 
 135 

Deconvolution reveals distinct ASAT heterogeneity in obesity 136 

To further examine how ASAT cellular heterogeneity may be implicated in obesity and 137 
cardiometabolic health, we deconvoluted ASAT bulk RNA-seq data from previously published 138 
reports that collected ASAT from cohorts of lean and individuals with obesity that represented a 139 
wide range of age; adolescents (<18 years; obesity defined as 97th percentile BMI; “LCAT cohort”) 140 
(Figure 3A) (19), young and middle-aged adults (18-55 years; “Petersen et al., 2024”) (Figure 141 
3B) (20), and older adults (55-70years; “MD lipolysis cohorts”) (Figure 3C) (21). In addition to 142 
cohorts of adults with obesity who had relatively healthier cardiometabolic health traits (i.e. 143 
Metabolically Healthy Obese, MHO and Obese with insulin resistance, Obese-IR), two studies 144 
had another cohort that had impaired cardiometabolic health traits. For example, Metabolically 145 
Unhealthy Obese (MUO) had prediabetes, hepatic steatosis, and whole-body insulin resistance 146 
(Figure 3B) and Obese with Type 2 diabetes (Obese-T2D) were recently diagnosed with T2D by 147 
the time they were recruited (Figure 3C). Importantly, these cohorts were matched to their 148 
healthier cohorts with obesity by sex, age, and adiposity (see more details in ‘Human studies and 149 
deconvolution analysis’). Consistently observed across different age groups, our deconvolution 150 
analysis estimated a higher proportion of macrophages and a lower proportion of vascular cells 151 
in individuals with obesity compared with lean cohorts, aligning with the adipose tissue 152 
abnormalities (i.e., macrophage infiltration and capillary rarefaction) commonly observed in 153 
obesity (18, 22, 23) (Figures 3A-C). We previously characterized two adipocyte populations using 154 
snRNA-Seq (13). Adipocyte 1 was characterized by an upregulation of genes related to anti-155 
oxidation (GPX1 & GPX4) and pathways related to complement, oxidative phosphorylation and 156 
Srp dependent translational protein targeting to membrane and was labeled as ‘anti-oxidative’, 157 
while adipocyte 2 was labeled as ‘insulin-responsive’ adipocyte, demonstrated by upregulation of 158 
genes related to suppression of lipolysis (PDE3B), lipid metabolism (ABCA5), and of pathways 159 
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related to insulin receptor signaling cascade (13). Interestingly, the estimated proportions of both 160 
adipocytes were also lower in individuals with obesity compared with lean individuals (Figures 161 
3A-C). The estimated proportions of pre-adipocytes, stem cells, and mast cells were comparable 162 
between the individuals with obesity compared with lean (Figures 3A-C). 163 

 164 
Deconvolution reveals ASAT cell types that are linked with poor cardiometabolic health 165 
Macrophage infiltration and capillary rarefaction in ASAT are often associated with unfavorable 166 
cardiometabolic health in obesity, but the interpretation of their direct link can be confounded by 167 
increasing ASAT mass (7, 24). We investigated whether the estimated cellular composition differs 168 
between adults with obesity who have cardiometabolic health complications (i.e., MUO and 169 
Obese-T2D) and those well-matched individuals with obesity who are relatively healthy (i.e., MHO 170 
and Obese-IR). Compared with the MHO group, the MUO group was estimated to have a higher 171 
proportion of macrophages (p=0.0001) and a lower estimated proportion of adipocyte 2 and 172 
vascular cells (p=0.02 and p=0.0008, respectively) (Figure 3B). In the MD lipolysis cohorts, while 173 
the estimated proportion of adipocyte 2 was not different between older lean vs. older adults with 174 
Obese-IR, it was significantly lower in older adults with Obese T2D when compared with lean 175 
(p=0.0008) (Figure 3C). There was a trend for lower estimated proportion of vascular cells in 176 
Obese T2D compared to lean (p=0.07) (Figure 3C), collectively suggesting that alterations in 177 
macrophage and vascular cell populations may be directly linked with impairments in 178 
cardiometabolic health. Intriguingly, our findings further suggest that a lower proportion of insulin-179 
responsive adipocytes may also be implicated in adverse cardiometabolic health outcomes. 180 
We then used a ‘gene inference’ approach to understand whether or how specific phenotypes of 181 
adipose tissue macrophages (e.g., M1-like pro-inflammatory vs. M2-like anti-inflammatory) may 182 
be altered with obesity. By using marker genes for M1-like lipid-associated macrophage (LAM) 183 
(n=317 genes) or M2-like resident macrophages (n=2724 genes) that we previously acquired from 184 
our parent snRNA-Seq data (13), we conducted a correlation analysis between marker gene 185 
expressions and estimated proportions of macrophages. The number of resident macrophage 186 
marker genes that are significantly and positively correlated with the estimated proportion of 187 
macrophages was lower in adults with obesity (i.e., MHO and Obese IR) compared to lean (Figure 188 
3D), and higher in adolescents with obesity compared with lean adolescents (Figure 3D). These 189 
data suggest a possibility that adipose tissue macrophage polarization may be differentially 190 
regulated with obesity in youth. Notably, the number of associated marker genes for LAM was 191 
higher in adults with obesity and impaired cardiometabolic health (i.e., MUO and Obese T2D) 192 
compared with their well-matched obese groups (Figure 3D), aligning with the authors’ finding of 193 
higher markers of whole-body and local inflammation in MUO and Obese T2D (20, 21). 194 
 195 
Diet-induced weight loss modifies ASAT cell type proportions 196 

Diet-induced weight loss (DIWL) is known to improve cardiometabolic health, often accompanying 197 
alterations in the ASAT microenvironment that include reduced inflammation and improved lipid 198 
metabolism (25-28). However, it is unclear whether cell type composition in ASAT can be modified 199 
by DIWL and may underlie the improved health outcomes observed with DIWL. We deconvoluted 200 
ASAT bulk RNA-Seq data from several dietary intervention studies that induced weight loss of 201 
~10% (range: 8~11%). Comprehensive Assessment of the Long-term Effects of Reducing Energy 202 
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Intake (CALERIE) Study is a randomized clinical trial that examined the effects of 12 and 24 203 
months of 25% caloric restriction (CR) in humans without obesity (29). Compared with the control 204 
group (AL, Ad Libitum), participants in the CR group lost ~11% of weight (~6kg fat mass) in 205 
response to 12 months of CR, which was maintained at 24 months (Table S1). Our deconvolution 206 
analysis suggested that the proportion of macrophages was significantly reduced after 12 and 24 207 
months of CR compared to baseline (p=0.002 and p=0.003, respectively) (Figure 4A). In 208 
concordance with this finding, there was a trend of positive correlation between the change in fat 209 
mass (D kg) and the change in estimated macrophage proportion (D %) from baseline to month 210 
12 (p=0.07) (Figure 4B) i.e. a decrease in fat mass (kg) correlates with decreases in estimated 211 
macrophage proportion. Interestingly, we did not observe a decrease in estimated macrophage 212 
proportion in the other two studies where short-term caloric restriction was prescribed to 213 
individuals with overweight/obesity. In the Diet, Obesity, and Genes (DiOGene) study, 220 adults 214 
with overweight/obesity (Age: 18-65 years, BMI: 27-45kg/m2) underwent an 8-week low-calorie 215 
diet (LCD), all achieving at least 8% weight loss by the time of their post-ASAT sample collection 216 
(Table S2) (26). In agreement with the findings of upregulated expression of macrophage genes 217 
in these participants (26), our deconvolution analysis suggested an increased proportion of 218 
macrophages in response to eight weeks of LCD (p=5.64e-13) (Figure 4C). Conversely, the 219 
estimated proportion of adipocyte 1, adipocyte 2, and vascular cells was reduced (p=2.24e-17, 220 
8.32e- 5, 0.016, respectively) with a slight increase in estimated stem cell proportion (p=0.014) 221 
(Figure 4C). Similarly, we observed a trend of increased estimated proportion of macrophages 222 
(p=0.062) and reduced estimated proportion of adipocyte 1 and adipocyte 2 (p=0.021 and 0.013, 223 
respectively) from a small cohort of women with obesity (n=10, Age: 61±4 years, BMI: 39±3kg/m2) 224 
who rapidly lost ~10% of their weight through very low-calorie diet (VLCD) over 6.6±2.2 weeks 225 
(Figure 4D, Table S2) (27). Interestingly, the authors of this study reported an increased density 226 
of crown-like structures – which are aggregates of macrophages – in ASAT after VLCD, which 227 
aligns with our findings from the deconvolution analysis.   228 
Additionally, the number of significantly associated marker genes for both LAM and resident 229 
macrophages with estimated proportions of macrophages was reduced by 12 and 24 months of 230 
CR in CALERIE (Figure 4E). However, the magnitude of reduction was greater in LAM marker 231 
genes compared with resident macrophage marker genes, leaving less than 10% of significantly 232 
associated genes after 2 years of CR (Figure 4E). Although we observed an increased estimated 233 
proportion of macrophages in DioGenes cohorts and Aleman et al., 2017 (Figures 4C, D), our 234 
‘gene inference’ approach showed a greater increase in the number of resident macrophage 235 
marker genes that are associated with estimated macrophage proportion, compared with LAM 236 
marker genes. This finding suggests that the increased estimated proportion of macrophages by 237 
short-term DIWL in adults with obesity may have been driven by an increased abundance of 238 
resident macrophages, which has been reported to buffer lipids and counteract inflammatory 239 
responses, thereby contributing to appropriate and favorable adipose tissue remodeling (30). 240 
 241 
 242 
DISCUSSION 243 
 244 
Using publicly available algorithms and a refined the reference data derived from our published 245 
full-length snRNA-Seq (i.e., gene signature matrix and 6000HVG (13)), we established a 246 
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deconvolution pipeline that robustly estimates ASAT cell type proportions from bulk RNA-Seq 247 
data that requires less cost and labor compared with sc or snRNA-seq. Using this algorithm, we 248 
identify cellular heterogeneity in obesity, which is characterized by higher proportions of 249 
macrophages, and lower proportions of adipocytes and vascular cells. Additionally, altered 250 
abundance of some cell types, such as insulin-responsive adipocytes, macrophages, and 251 
vascular cells may directly underlie the impaired cardiometabolic health in individuals with obesity. 252 
We further show a dynamic change in cell type proportions in response to DIWL, which may play 253 
an important role in mediating some of the health benefits conferred by DIWL. 254 
 255 
Increased adipose tissue macrophage infiltration and capillary rarefaction are hallmarks of 256 
excessive adiposity that are tightly associated with functional abnormalities in adipose tissue (8, 257 
22, 23, 31). Our findings of higher estimated proportions of macrophages and lower estimated 258 
proportions of vascular cells in individuals with obesity confirm this notion and further suggest that 259 
these ASAT abnormalities are linked with cardiometabolic health complications independent of 260 
ASAT mass. Additionally, higher estimated proportions of macrophages in MUO and Obese-T2D 261 
were associated with more marker genes of LAMs compared with MHO and Obese-IR 262 
respectively, suggesting that alterations in both macrophage abundance and phenotype may be 263 
directly linked with cardiometabolic health complications in middle-aged and older adults. 264 
However, this phenotypical switch of macrophages towards a pro-inflammatory type during the 265 
progression of obesity may not apply in adolescent populations. We found that the estimated 266 
proportions of macrophages in adolescents with obesity in the LCAT cohorts were more 267 
associated with marker genes for anti-inflammatory type resident macrophages. We speculate 268 
that ASAT in adolescents with obesity may require a higher abundance of resident macrophages 269 
because it is under continuous tissue expansion and remodeling at such a young age (32-34).  270 
 271 
Our deconvolution outcomes suggested a possibility of a lower proportion of mature adipocytes 272 
in obesity, which serve as primary storage for excess lipid. Lower proportions of adipocytes do 273 
not translate to lower number of total adipocytes when comparing individuals with obesity to lean 274 
individuals. For example, the total number of adipocytes was estimated to be more than 2.5-fold 275 
higher in adolescents with obesity compared to lean adolescents in the LCAT cohorts (35). 276 
Therefore, while total adipocytes in adipose tissue may be increased with increasing adiposity, its 277 
relative abundance to other cell types appears to be reduced. Our novel finding that the estimated 278 
proportion of insulin-responsive adipocytes (adipocyte 2), characterized by upregulated genes 279 
involved in lipid storage/metabolism and insulin signaling (13), was lower in individuals with 280 
obesity and impaired cardiometabolic health (i.e., MUO and Obese-T2D) compared with matched 281 
individuals with obesity who are relatively healthy (i.e., MHO and Obese-IR) indicates a tight 282 
relationship between adipocyte heterogeneity and cardiometabolic health. Although the potential 283 
mechanistic link bridging these two is unclear, the lower estimated proportion of adipocyte 2 in 284 
MUO was paralleled with significantly higher ectopic fat mass (i.e., intra-abdominal adipose tissue 285 
and intrahepatic triglyceride content) (20), which is indicative of impaired lipid storage capacity of 286 
the ASAT (36, 37). We therefore speculate that the lower abundance of adipocyte 2 may have 287 
contributed to the limited lipid storage capacity of ASAT in MUO, resulting in the accumulation of 288 
ectopic fat, which can cause tissue-specific and whole-body insulin resistance (38). 289 
 290 
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Although DIWL-mediated attenuation of systemic inflammation has been commonly reported in 291 
individuals with overweight/obesity (39, 40), the CALERIE study was the first to reveal that 292 
reduced markers of systemic inflammation after one to two years of CR in individuals without 293 
obesity (41). We found a reduced estimated proportion of ASAT macrophages after one and two 294 
years of CR in the CALERIE cohort which may explain the reduced systemic inflammation. 295 
Reduced proportions of macrophages by one and two years of CR was also paralleled by a vast 296 
reduction of the number of associated marker genes for LAM, suggesting a phenotypical switch 297 
of macrophages in addition to the change of abundance. Conversely, the increased estimated 298 
proportion of ASAT macrophages in response to DIWL from DioGenes cohorts and participants 299 
in Aleman et al (27) indicates that cellular remodeling during DIWL may vary significantly 300 
depending on specific conditions and contexts. These findings support the ‘biphasic’ responses 301 
in adipose tissue inflammation during weight loss, where markers of macrophages and 302 
inflammation are increased during early weight loss then followed by a larger reduction as 303 
weight loss sustains (11, 25, 42). Perhaps, our view is that weight loss may improve lipolytic 304 
capacity of adipocytes that in turn induces macrophage recruitment (11), and our gene 305 
inference data suggest that this rise may be driven by an increased abundance of M2-like 306 
resident macrophages, indicating a potentially favorable adaptation (43). 307 

Weight loss induces extensive morphological and functional remodeling of adipocytes, which 308 
includes reduced adipocyte size and restoration of lipid metabolism in obesity (11, 25, 44). Our 309 
finding of a reduced estimated proportion of adipocytes after short-term DIWL in adults with 310 
obesity (DioGenes and Aleman et al.) suggests a potential modification in adipocyte 311 
‘abundance’ by weight loss. While this may simply be a reciprocal shift in proportion due to an 312 
increased proportion of other cell types (e.g., macrophage and stem cell), we cannot rule out the 313 
possibility that this may reflect changes in adipocyte turnover (i.e., net balance between 314 
adipocyte formation and deletion). Weight loss may inhibit adipogenesis (45) which may 315 
contribute to the negative balance of adipocyte abundance. However, many studies suggest the 316 
opposite (46, 47), and it is unlikely that the reduced rate of adipogenesis was translated into a 317 
meaningful reduction in adipocyte abundance in a relatively short period (~8 weeks) given the 318 
slow rate of adipogenesis in humans (34). Alternatively, increased adipocyte apoptosis may 319 
have driven cellular turnover during weight loss (48). Interestingly, it was previously 320 
demonstrated that removal of adipocytes by apoptosis recruited M2-like macrophages into 321 
adipose tissue in mice (49), which may also explain the increased association of resident 322 
macrophage marker genes with increased estimated proportion of macrophages in response to 323 
short-term DIWL.  324 

Although our study enabled robust estimation of cell type proportions in human ASAT from bulk 325 
RNA-Seq data, it is important to acknowledge some limitations that are inherent to in silico 326 
analysis. Since the bulk RNA-Seq datasets we used were derived from other authors, we could 327 
not directly validate our deconvolution analysis with the original tissue samples. However, many 328 
of our cell type estimations align with findings from original articles. For example, our findings of 329 
higher macrophage proportion in adolescents with obesity and after short-term VLCD in adults 330 
with obesity parallel with the higher macrophage immunostaining in LCAT cohorts with obesity 331 
and increased CLS after rapid VLCD in adults with obesity from Aleman et al. respectively, 332 
supporting the robustness and accuracy of our deconvolution pipeline. Additionally, while the 333 
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full-length snRNA-Seq data from which we generated reference data has a superior gene 334 
coverage rate per nuclei compared with conventional single-end (i.e., 3’-end) snRNA-Seq 335 
techniques, subtypes of macrophages were not defined at the parent level, preventing direct 336 
estimation of those cell populations. However, by associating marker genes of LAM and 337 
resident macrophage acquired from a secondary cell clustering analysis (13) with estimated 338 
proportion of macrophages, we show that macrophage phenotypes may be altered by obesity 339 
and DIWL. Furthermore, the intriguing findings that the abundance of certain cell types (i.e., 340 
adipocyte 2, macrophage, and vascular cell) may be associated with the progression of 341 
cardiometabolic health complications, yet the direct linkage remains inconclusive.  342 

In summary, our findings indicate that compared with lean individuals, those with obesity exhibit 343 
distinct cellular heterogeneity in ASAT, and further alterations in cell type proportions are tightly 344 
linked with impaired cardiometabolic health. Moreover, DIWL can induce dynamic alterations in 345 
ASAT cell type proportions, potentially contributing to the improved cardiometabolic health. 346 
Overall, our work expands the understanding of adipose tissue cellular heterogeneity implicated 347 
in cardiometabolic health and weight loss interventions by providing an optimized computational 348 
deconvolution pipeline that can be easily used to estimate cell type proportions in human ASAT.   349 

 350 
 351 
 352 
METHODS 353 
 354 
BIOINFORMATIC ANALYSES 355 
 356 
DATA GENERATION 357 
Source data was generated in Seurat V4.4.0 with SeuratObject V4.1.4 using a previously 358 
published data set (13). Seurat objects from each individual sample were merged into 1 large 359 
seurat object before being split into a list of seurat objects based on individual samples. 360 
SCTtransform with glmGamPoi was performed on this seurat list. Highly Variable Genes (HVG) 361 
were determined by performing SelectIntegrationFeatures() on the SCTransformed seurat list.  362 
 363 
A signature matrix was generated using AggregateExpression() and aggregating 364 
SCTtransformed counts for each cell type across all participants. The signature matrix was then 365 
filtered by HVG list and used for subsequent deconvolution analyses. A pseudobulk RNA-Seq 366 
data set was generated by using AggregateExpression() and aggregating SCTtransformed 367 
counts for each sample across all cell types. 368 
 369 
PIPELINE OPTIMIZATION 370 
We initially compared popular deconvolution algorithms that were either operated through R 371 
package granulator (50) (ols- ordinary least squares, qprog – quadratic programming without 372 
constraints, rls- re-weighted least squares (51), qprogwc- quadratic programming with non-373 
negativity and sum-to-one constraint (52), nnls- non negative least squares (53) and dtangle (54)) 374 
or R package ADAPTS (55) (DCQ- Digitial cell quantifier (56), deconRNASeq (52), nnls- non 375 
negative least squares and ProportionsInAMixutre) and from stand alone R Packages MuSiC 376 
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(weighted and All Genes) (57) and EPIC (58). As nnls algorithm was included in both granulator 377 
and ADAPTS we used both and assigned an A for Adapts and G for Granulator to identify which 378 
package it was performed on. 379 
 380 
Algorithms comparison 381 
We tested each algorithms capability of detecting each cell type and detecting at least 25% of 382 
adipocytes in the majority of samples from a large bulk RNA-Seq data set (METabolic Syndrome 383 
In Men; METSIM cohort, GSE135134 (16)). To ensure we were not prematurely dismissive of a 384 
certain algorithm we tested the deconvolution using; the full gene signature (Figure S1A, B), and 385 
using a signature matrix that used 5000 highly variable genes (named 5000 HVG) that was used 386 
for clustering in the original snRNA-Seq analyses. We reasoned that these 5000 HVG dictated 387 
the clustering of cells and therefore would be an optimal initial signature to detect cell types in 388 
bulk RNA-Seq data. For deconvolution using algorithms from granulator, function deconvolute() 389 
was performed with the TPM-normalized bulk RNA-Seq data and the SCTransform signature 390 
matrices. For deconvolution using algorithms using ADAPTS, functions estCellPercent.nnls(), 391 
estCellPercent.DCQ(), est.CellPercent.proportionsInAMixture(), estCellPercentDeconRNASeq() 392 
were performed with the TPM-normalized bulk RNA-Seq data and the SCTransform signature 393 
matrices. For deconvolution using MuSiC the integrated Seurat Object was first converted to a 394 
SingleCellExperiment with function as.SingleCellExperiment(). The TPM-normalized bulk RNA-395 
Seq data was converted to an expression matrix with ExpressionSet() and exprs() and then 396 
music_prop() was performed with either all genes or with markers argument set to the 5000 HVG. 397 
For deconvolution using EPIC function EPIC() was performed on the TPM normalized bulk RNA-398 
Seq data and the SCTransform signature matrices. For each cell type the percentage of samples 399 
estimated to have that cell type was calculated, in addition to the percentage of samples estimated 400 
to have at least 25% of adipocytes (adipocyte_1 and adipocyte_2 combined). 401 
 402 
Pseudobulk assessment 403 
In order to assess the effectiveness of different deconvolution algorithms we compared estimated 404 
cell proportions from a pseudobulk data-set against actual cell-type proportions quantified with 405 
snRNA-Seq. In this instance deconvolution was performed with the above functions and with the 406 
5000HVG signature matrix but instead with a pseudobulk RNA-Seq data that was generated from 407 
aggregated SCTtransformed counts for each sample across all cell types. Principle correlation 408 
coefficient (-1 to 1) and mean absolute deviance (mAD) (0-100) were used to assess how 409 
accurately the deconvolution estimated cell type proportions. MAD was calculated as the sum of 410 
the absolute differences between the predicted proportion from the actual proportion divided by 411 
the by the total number of samples (n = 20). 412 
 413 
Signature Matrix Optimization 414 
Using the SelectIntegrationFeatures() we generated iterations of HVG lists (2000, 3000, 4000, 415 
5000, 6000, 7000, 8000, 9000, 10000) and filtered the signature matrix to these gene lists creating 416 
a list of signatures matrices. Deconvolution was then performed using deconvolute() with just 417 
dtangle algorithm, using the list of signature matrices and the TPM normalized bulk RNA-Seq 418 
METSim data. Estimated Macrophage proportions were correlated to BMI and WHR (59), using 419 
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function bicorAndPvalue() from R Package WGCNA (60), to determine which signature matrix 420 
elicited the most meaningful known physiological results. 421 
 422 
Macrophage subtype marker gene inference 423 
Marker genes for LAM (n=317) and resident macrophages (n=2724) were acquired by using 424 
FindMarker() function in Seurat (logFC>0.5, adjusted p<0.05) from sub-clustered macrophages 425 
(13). Significantly correlated marker genes of LAM or resident macrophages with estimated 426 
proportion of macrophages from each publicly available dataset were acquired by using 427 
bicorAndPvalue() from R Package WGCNA (60) (p<0.05).  428 
 429 
 430 
HUMAN STUDIES AND DECONVOLUTION ANALYSIS 431 
 432 
Leipzig Childhood Adipose Tissue (LCAT) cohorts. The LCAT cohort includes white children, both 433 
female and male, aged 0-18 years who underwent elective orthopedic surgeries, 434 
herniotomy/orchidopexy, or other surgical procedures (35). Youth participants with severe 435 
diseases and medications that could influence adipose tissue biology, such as diabetes, 436 
generalized inflammation, malignant diseases, genetic syndromes, or permanent immobilization, 437 
were excluded. Obesity was defined by cutoffs of 1.88 standard deviation score, corresponding 438 
to the 97th percentile. During surgery, subcutaneous adipose tissue samples were collected, 439 
washed three times in PBS, and immediately frozen in liquid nitrogen for RNA extraction. RNA 440 
sequencing was completed on 35 normal weight participants (13 female and 22 male) and 26 441 
participants with obesity (14 female and 12 male) as described previously (61). Gene count matrix 442 
was acquired from GSE141221, and subsequently normalized using DESeq2.  443 
 444 
Metabolically healthy lean (MHL), healthy obese (MHO), and unhealthy obese (MUO) cohorts. 445 
The study cohort includes 55 females and males, aged 18-55 years who were classified into three 446 
groups based on cardiometabolic health criteria (20). MHL (n = 15; 7 males and 8 females) was 447 
defined as having a body mass index (BMI) of 18.5–24.9 kg/m2, and normal fasting plasma 448 
glucose (<100 mg/dL), oral glucose tolerance (2-h glucose <140 mg/dL), IHTG content (£5%), 449 
plasma triglycerides (<150 mg/dL), and normal whole-body insulin sensitivity, defined as the 450 
glucose infusion rate (GIR) per kg fat-free mass divided by the plasma insulin concentration 451 
(GIR/I) during the final 20 min of the HECP >40 (µg/kg FFM/min)/(µU/mL). MHO (n = 20; 3 males 452 
and 17 females) was defined as having a BMI of 30.0–49.9 kg/m2 and normal fasting plasma 453 
glucose, oral glucose tolerance, plasma triglycerides, and IHTG content and normal whole-body 454 
insulin sensitivity. MUO (n = 20; 3 males and 17 females) was defined as having a BMI of 30.0–455 
49.9 kg/m2, impaired fasting glucose or oral glucose tolerance, high IHTG content (³5%) and 456 
impaired whole-body insulin sensitivity, defined as a GIR/I < 40 (µg/kg FFM/min)/(µU/mL). There 457 
were no differences in BMI, body fat%, fat-free mass, or subcutaneous abdominal adipose tissue 458 
volume between the MHO and MUO, and these two groups were matched for sex and age. 459 
Abdominal subcutaneous adipose tissue was collected from the periumbilical area by aspiration 460 
using a 3-mm liposuction cannula (Tulip Medical Products, San Diego, CA) connected to a 60cc 461 
syringe. Samples were immediately rinsed in ice-cold saline, flash frozen in liquid nitrogen. RNA 462 
extraction and sequencing were completed on 15 MHL, 19 MHO, and 19 MUO as described 463 
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previously (20). Gene count matrix was acquired from GSE244118 and subsequently normalized 464 
using DEseq2.  465 
 466 
MD lipolysis cohorts. The study cohort includes 27 white females (aged 54-70 years) and males 467 
(aged 50-70 years), who were classified into three groups (21). Lean (n=9; 6 females and 3 males) 468 
was defined as having a BMI of 18-25 kg/m2, normal fasting glucose (fP-Glucose < 6.1mmol/l), 469 
HbA1c (<42 mmol/mol), and fasting insulin (fS-Insulin < 7.0mU/l). Individuals with obesity with 470 
insulin resistance (Obese IR) (n=9; 5 females and 4 males) was defined as having a BMI of 30-471 
40 kg/m2, fP-Glucose < 7.0 mmol/l, HbA1c (<48mmol/mol), and fS-Insulin (³9.0 mU/l). Individuals 472 
with obesity with type 2 diabetes (Obese T2D) (n=9; 5 females and 4 males) had BMI of 30-40 473 
kg/m2, and have been diagnosed with T2D less than 6 years. Obese NGT and Obese T2D were 474 
matched for age, sex, menopausal status, BMI, and fat mass. Abdominal subcutaneous adipose 475 
tissue was collected from the periumbilical area by needle aspiration. RNA extraction and 476 
sequencing were completed on 9 Lean, 8 MHO (4 females and 4 males), and 8 MUO (4 females 477 
and 4 males) as described previously (21). Gene count matrix was acquired from GSE141432 478 
and subsequently normalized using DEseq2.  479 
 480 
Comprehensive Assessment of Long-term Effects of Reducing Intake of Energy (CALERIE) 481 
cohorts. CALERIE cohort includes healthy men (aged 21-50 years) and premenopausal women 482 
(aged 21-47 years) without obesity (BMI, 22-27.9 kg/m2) who were enrolled in a randomized, 483 
controlled trial that targeted to evaluate the time-course effects of 25% calorie restriction (CR) 484 
below the subject’s baseline level over a 24 months period. Recruited participants were 485 
randomized into either an ad libitum (AL) control group or CR group. RNA-Seq was completed on 486 
13 AL participants and 23 CR participants (62). In the AL group, RNAseq was conducted on 11 487 
participants at month 12 and 6 participants at month 24. In the CR group, RNA-Seq was 488 
conducted on 23 participants at month 12 and 12 participants at month 24. Detailed subject 489 
characteristics are provided in Table S1. 490 
 491 
Diet, Obesity, and Genes (DiOGenes) study cohorts. DiOGenes cohort includes adults with 492 
overweight/obesity as having a BMI of 27-45 kg/m2 and aged 18-65 years (63). 220 participants 493 
underwent low-calorie-diet (LCD) period for 8 weeks. During the 8-week weight-loss phase, 494 
participants received an LCD that provided 3.3 MJ (800 kcal) per day with the use of Modifast 495 
products (Nutrition et Santé). Participants were allowed to eat up to 400 g of vegetables, providing 496 
a total, including the LCD, of 3.3 to 4.2 MJ (800 to 1000 kcal) per day. Abdominal subcutaneous 497 
adipose tissue biopsies were obtained by needle aspiration, about 10 cm from the umbilicus, 498 
under local anesthesia after an overnight fast. Samples were obtained at baseline and upon 499 
weight loss. RNA extraction and sequencing were completed on samples as described previously 500 
(26). Gene count matrix was acquired from GSE1412221 and subsequently normalized using 501 
DEseq2.  502 
 503 
Very-low-calorie diet (VLCD) cohorts. 10 postmenopausal females with obesity (age: 61±4 years) 504 
having a BMI >35 kg/m2 underwent VLCD that induced approximately 10% of weight loss (27). 505 
The VLCD consisted of a commercially available diet (New Direction Program, Robard Corp., 506 
Mount Laurel, NJ) that provided ~800 kcal per day with an estimated macronutrient energy 507 
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distribution of 54% protein, 26% carbohydrate, 20% fat (including 4% saturated fat and 200 mg 508 
of cholesterol), and 10g of fiber. Baseline abdominal subcutaneous adipose tissue biopsy 509 
specimen was taken in the left lower quadrant of the abdomen of each subject, whereas the post 510 
weight-loss biopsy specimen was taken in the right lower quadrant abdomen. RNA extraction and 511 
sequencing were completed as described previously (27). DESeq2-normalized gene count matrix 512 
was acquired from GSE106289.  513 
 514 
STATISTICS 515 
Pearson’s correlation coefficient was used to calculate all correlation analyses. Two-tailed 516 
independent Student’s t-test was used to compare LCAT cohorts with obesity vs. lean. One-way 517 
ANOVA was used to compare MHL vs. MHO vs. MUO and Lean vs. Obese-IR vs. Obese-T2D. 518 
Two-way ANOVA linear mixed model was applied to examine the main effects of time, group, and 519 
time x group interaction effects from CALERIE cohorts (time, Baseline vs. Year1 vs. Year2; group, 520 
AL vs. CR). For significant ANOVA results, post hoc pairwise comparisons were performed using 521 
the estimated marginal means with Tukey’s adjustment for multiple comparisons. Two-tailed 522 
paired Student’s T test was used to examine the effect of DIWL in DiOGenes cohorts and women 523 
with obesity in Aleman et al., 2017. Statistical computations were performed using R (R, Vienna, 524 
Austria). P value < 0.05 was considered statistically significant. 525 
 526 
 527 
DATA AND CODE AVAILABILITY 528 
Gene signature matrix and top 6000 HVG list have been uploaded to 529 
https://github.com/KWhytock13/deconvolution-wat.  530 
Code for generating source data and running the deconvolution pipeline is also available at 531 
https://github.com/KWhytock13/deconvolution-wat. 532 
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 547 
 AL CR 

Time point Baseline 
(n=14) 

Month 12 
(n=11) 

Month 24 
(n=6) 

Baseline 
(n=23) 

Month 12 
(n=23) 

Month 24 
(n=12) 

Age (y) 38 ± 8 NA NA 37 ± 7 NA NA 

Sex  8F, 6M 5F, 6M 3F, 3M 18F, 5M 18F, 5M 9F, 3M 

BMI (kg/m2) 25.1 ± 
1.4 

25.1 ± 
1.9 26.0 ± 2.4 25.5 ± 

1.6 
22.4 ± 
1.6a,b,c,d 

22.6 ± 
1.9a,b,c,d 

Weight (kg) 74.6 ± 
9.7 

75.3 ± 
11.6 78.0 ± 8.0 71.5 ± 

9.2 
63.0 ± 
8.9a,b,c,d 

63.5 ± 
9.1a,b,c,d 

∆ Fat mass 
(kg) NA 0.3 ± 1.7 0.2 ± 1.9 NA -6.2 ± 

2.0b,c 
-6.5 ± 
1.9b,c 

∆ Fat-free 
mass (kg) NA 0.1 ± 0.9 0.9 ± 1.3 NA -2.0 ± 

1.2b,c 
-1.8 ± 
1.1b,x 

Table S1. CALERIETM subject characteristics. 548 
Basic subject characteristics from CALERIETM participants whose ASAT samples were 549 
sequenced and used for deconvolution. a, significantly different against AL-Baseline; b, 550 
significantly different against AL-Month 12; c, significantly different against AL-Month 24. d, 551 
significantly different against CR-Baseline. AL, Ad Libitum; CR, Calorie Restriction, BMI, Body 552 
Mass Index. 553 
 554 
 555 
 556 
 DiOgenes 

(8-week LCD) 
Aleman et al., 2017 
(10% Weight loss targeted VLCD) 

Age  (y)  41 ± 6 61 ± 4 
Baseline BMI (kg/m2) 34.8 ± 4.9 38.8 ± 3.4 
Weight loss during intervention (%) -11.1 ± 2.7 -10.3 

Intervention Duration (weeks) ~8  6.6 ± 2.2  

Table S2. Subject characteristics of DioGenes and Aleman et al., 2017. 557 
 558 
  559 
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FIGURE LEGENDS 560 
 561 
Figure 1. Assessment of deconvolution algorithms.  562 
(A) The percentage of samples from the METSIM cohort that are estimated to contain that cell 563 
type when predicted with different deconvolution algorithms using log normalized signature matrix 564 
from all detected genes. (B) The percentage of samples from the METSIM cohort that are 565 
estimated to have >25% of adipocytes predicted with different deconvolution algorithms using log 566 
normalized signature matrix from all detected genes. (C) The pearsons correlation coefficient 567 
(PCC) comparing estimated cell proportions from pseudobulk RNA-Seq data against quantified 568 
cell proportions from snRNA-Seq for different algorithms for each cell type (D) and the average 569 
PCC score across all cell types. (E) The mean absolute deviation (mAD) between estimated cell 570 
proportions pseudobulk RNA-Seq data and quantified cell proportions from snRNA-Seq for 571 
different algorithms for each cell type (F) and the average mAD score across all cell types. If box 572 
is grey the algorithm did not estimate that cell type and PCC therefore cannot be quantified. HVG, 573 
Highly variable genes. 574 
 575 
Figure 2. Correlation between estimated macrophage proportions and BMI or WHR using 576 
different gene signatures to subset the signature matrix.  577 
(A) Estimated cell type proportions of each METSIM RNA-Seq samples using different HVG to 578 
modify the signature matrix. Algorithm dtangle was used and the data was log normalized. (B) R 579 
value and –log10(p value) for estimated macrophage proportion and WHR for the METSIM RNA-580 
Seq data. (C) Scatterplot showing the estimated macrophage proportion and WHR for the 6000 581 
HVG or (D) all genes signature.  582 
 583 
Figure 3. Estimated ASAT cell type proportions from cross-sectional obesity studies. 584 
(A) Deconvoluted ASAT cell type proportions from lean and obese cohorts in LCAT study (19). 585 
Sample size: Normal weight = 35, Obese = 26. (B) Deconvoluted ASAT cell type proportions from 586 
cohorts of MHL, MHO, and MUO (20). Post-hoc Tukey HSD was used for cell types with significant 587 
ANOVA group differences. Sample size: MHL= 15, MHO = 19, MUO = 19. (C) Deconvoluted 588 
ASAT cell type proportions from cohorts of lean, Obese with IR, and Obese with T2D in MD 589 
lipolysis cohorts (21). Tukey HSD was used for post hoc analysis of cell types with significant 590 
ANOVA group differences. Sample size: Lean = 9, Obese IR = 8, Obese T2D = 8. (D) Number of 591 
marker genes for LAM or resident macrophage that are significantly associated with the estimate 592 
proportion of macrophages in each study (19-21). LCAT; Leipzig Childhood Adipose Tissue, MHL; 593 
Metabolically Healthy Lean, MHO: Metabolically Healthy Obese, MUO; Metabolically Unhealthy 594 
Obese, HSD; Honestly Significant Difference, IR; Insulin resistance, T2D; Type 2 Diabetes. LAM; 595 
Lipid associated macrophage. 596 
 597 
Figure 4. Estimated ASAT cell type proportions from longitudinal DIWL studies. 598 
(A) Deconvoluted ASAT cell type proportions from CALERIETM cohorts. Least square means was 599 
used for post hoc analysis of macrophage in the CR group. Sample size; AL-Baseline, n=14, AL-600 
Month 12, n=11, AL-Month 24, n=6; CR-Baseline, n=23; CR-Month12, n=23; CR-Month 24, n=12. 601 
(B) Correlation between change of fat mass (∆ kg) and change of cell type proportions (∆ %) in 602 
CALERITM participants who completed 12-month intervention. (C) Deconvoluted ASAT cell type 603 
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proportions from DioGenes cohorts who underwent 8-week low-calorie diet using meal 604 
replacement product (26). Sample size = 220. (D) Deconvoluted ASAT cell type proportions from 605 
women with obesity who achieved 10% weight loss by very low-calorie diet (27). Sample size = 606 
10. (E) Number of marker genes for LAM or resident macrophage that are significantly associated 607 
with the estimate proportion of macrophages in each study (26, 27, 29). DIWL, Diet-induced 608 
weight loss; AL, Ad Libitum; CR, Calorie Restriction.  609 
 610 
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Fig 3A LCAT cohorts (0-18 yrs) Petersen et al., 2024 (18-55 yrs)Fig 3B
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BA

Figure S1. The capability of different algorithms to predict cell types in bulk RNA-Seq data from METSIM and 
normalized counts from snRNA-Seq. 
(A) The percentage of samples from the METSIM cohort that are estimated to contain that cell type when predicted with 
different deconvolution algorithms using log normalized signature matrix subset to 5000 HVG. (B) The percentage of 
samples from the METSIM cohort that are estimated to have >25% of adipocytes predicted with different deconvolution 
algorithms using log normalized signature matrix subset to 5000 HVG. 
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Figure S2. HVG optimization.
(A) Estimated cell type proportions of each METSIM bulk RNA-Seq samples using different HVG to modify the signa-
ture matrix. Algorithm dtangle was used and the data was log normalized. R value and –log10(p value) for estimated 
macrophage proportion and BMI for the METSIM bulk RNA-Seq data. Scatterplot showing the estimated macrophage 
proportion and BMI for the 6000 HVG or all genes signature. (B) Deconvolution result of METSIM bulk RNA-seq using 
age-group-specific gene signature matrice and 6000 HVG. (C) Bland-Altman plots for estimated proportion of each 
cell type using Older (n=10) vs. young (n=10) snRNAseq data. Contrast is Older - Younger. Points above dashed line 
(Y=0) indicates higher estimation of cell proportion when using reference data from Older individuals. (D) Venn 
diagram of overlapping HVG among integrated 6000 HVG, Old-specific 6000 HVG, and Young-specific 6000 HVG. (E) 
Scatter plot for each cell type showing correlation between estimated cell proportion in METSIM using integrated 6000 
HVG and ‘age-neutral’ 4762 HVG.
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