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Adalberto A. Pérez de León,

USDA-ARS San Joaquin Valley
Agricultural Sciences Center, Parlier,

CA, United States

Specialty section:
This article was submitted to

Parasite and Host, a section of the
journal Frontiers in Cellular and

Infection Microbiology

Received: 28 December 2020
Accepted: 16 February 2021
Published: 19 March 2021

Citation:
Saelao P, Hickner PV,

Bendele KG and Pérez de León AA
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This study was conducted to enhance the identification of novel targets to develop
acaricides that can be used to advance integrated tick-borne disease management.
Drivers for the emergence and re-emergence of tick-borne diseases affecting humans,
livestock, and other domestic animals in many parts of the world include the increased
abundance and expanded geographic distribution of tick species that vector pathogens.
The evolution of resistance to acaricides among some of the most important tick vector
species highlights the vulnerability of relying on chemical treatments for tick control to
mitigate the health burden of tick-borne diseases. The involvement of inward rectifier
potassium (Kir) channels in homeostasis, diuresis, and salivary gland secretion in ticks and
other pests identified them as attractive targets to develop novel acaricides. However, few
studies exist on the molecular characteristics of Kir channels in ticks. This bioinformatic
analysis described Kir channels in 20 species of hard and soft ticks. Summarizing relevant
investigations on Kir channel function in invertebrate pests allowed the phylogenomic
study of this class of ion channels in ticks. How this information can be adapted to
innovate tick control technologies is discussed.
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INTRODUCTION

Ticks (Acari) are obligate blood feeding parasites and vectors of a diverse array of pathogens
including bacteria, protozoa, and viruses that cause diseases among humans, livestock, and other
domestic animals (Sonenshine and Roe, 2013). The health burden of tick-borne disease (TBD)
increased globally (Paules et al., 2018; Madison-Antenucci et al., 2020). In the United States alone,
the number of human TBD cases more than doubled increasing from 22,527 to 48,610 between 2004
and 2016 (Rosenberg et al., 2018). Several species of hard and soft ticks are vectors of the diverse
pathogens causing tick-borne diseases (Brites-Neto et al., 2015). Recent studies have implicated ticks
in Alpha-Gal Syndrome, a potentially life-threatening allergy to red meat that is induced by the
sugar alpha-gal from a feeding tick (Crispell et al., 2019). The application of technological advances
is helping explain the global diversity of ticks and their ability to transmit pathogens (Dantas-
Torres, 2018; Yang and Han, 2018).
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Drivers for the emergence and re-emergence of tick-borne
diseases affecting humans, livestock, and other domestic animals
in many parts of the world include the increased abundance and
expanded geographic distribution of tick species that vector
pathogens. Dermacentor variabilis, the principal vector of
Rickettsia rickettsii causing Rocky Mountain spotted fever in
North America, expanded its range northward into Canada
surviving the milder winters associated with variability in
climatic patterns (Sonenshine, 2018). Due to its expanding
geographic distribution and vector biology, Ixodes scapularis
has become one of the most important disease vectors in
North America where it transmits Borrelia burgdorferi, Babesia
microti, and Powassan virus, causing Lyme disease, human
babesiosis, and Powassan virus disease, respectively (Eisen and
Eisen, 2018).

In addition, Amblyomma americanum and Amblyomma
maculatum have expanded their range northward, extending
the geographic range of additional tick species that threaten
livestock (Sonenshine, 2018). Detection of the Asian longhorned
tick, Haemaphysalis longicornis, in the United States (U.S.) in
2017 highlights the involvement of invasive tick species in the
emergence of tick-borne diseases (Rainey et al., 2018). Ha.
longicornis is a known vector of pathogens that affect humans,
livestock, and other domestic animals (Beard et al., 2018).
Control of tick populations, treatment of host infestations, and
reduction of exposure to tick bites are critical for tick-borne
disease management (Pérez De León et al., 2014).

The evolution of resistance to acaricides among some of the
most important tick vector species highlights the vulnerability of
relying on chemical treatments for tick control to mitigate the
health burden of tick-borne diseases. In the U.S. for example,
bovine babesiosis, or cattle tick fever, was eradicated by
eliminating the one-host fever tick vectors, Rhipicephalus
microplus and R. annulatus, through efforts of the Cattle Fever
Tick Eradication Program including the systematic treatment of
cattle with acaricides (Guerrero et al., 2014). However, the spread
of resistance to acaricides approved for use by the Cattle Fever
Tick Eradication Program among fever ticks causing outbreaks
raises the specter for the emergence of bovine babesiosis in the
U.S. (Thomas et al., 2020). Resistance to commonly used
commercial acaricides in the three-host ticks R. sanguineus and
Amblyomma mixtum, which are known vectors of human tick-
borne diseases, stresses the need to innovate tick control
technologies (Rodriguez-Vivas et al., 2017; Higa et al., 2020).

Discovering unique molecular targets facilitates the
development of safer acaricides with new modes of action
(Meng and Sluder, 2018). Previous research identified the
inward rectifier potassium (Kir) channels as attractive targets
to develop novel acaricides because of their involvement in
homeostasis, diuresis, and salivary gland secretion in ticks and
other pests (Li et al., 2019; Li et al., 2020). However, few studies
exist on the molecular characteristics of Kir channels in ticks.
Here, a bioinformatic analysis described Kir channels in 20
species of hard and soft ticks. Summarizing relevant
investigations on Kir channel function in invertebrate pests
allowed the phylogenomic study of this class of ion channels in
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 2
ticks. The adaptation of this information to innovate tick control
technologies is discussed.
KIR CHANNEL STRUCTURE AND
GENOME REPERTOIRES

Inward rectifier potassium (Kir) channels were named due to
their ability to facilitate the inward movement of K+ ions at
hyperpolarizing membrane voltages more readily than the
outward movement of K+ ions at depolarizing membrane
voltages, a function which has been compared to an electrical
diode wherein current flows in only one direction (Nishida and
Mackinnon, 2002; Tao et al., 2009). The S4 voltage sensor region
found in voltage-gated K+, Na+, and Ca2+ channels is absent in
Kir channels; therefore, Kir channels are refractory to changes in
membrane potential associated with the inward movement of
other cations (Nishida and Mackinnon, 2002; Hibino et al.,
2010). The outward movement of K+ is inhibited by
intracellular cations and polyamines that enter the pore from
the cytoplasmic side but cannot pass through, thus blocking the
channel and preventing the outward flow of K+ (Nishida and
Mackinnon, 2002; Hibino et al., 2010). These properties allow
Kir channels to maintain resting membrane potential and
regulate action potential duration (Hibino et al., 2010).

Kir channels are formed by the assembly of four identical or
similar protein subunits, each with two transmembrane domains
flanking a re-entrant loop region forming the channel pore, and
N- and C-terminal cytoplasmic regions (Nichols and Lopatin,
1997; Hibino et al., 2010). The subunits are organized such that
one transmembrane a-helix (TM1) is on the outside of the
channel while the other (TM2) is on the inside near the pore
(Hibino et al., 2010). The pore-forming region includes a
selectivity filter that confers passage of K+ but excludes Na+

(Doyle et al., 1998). In Eukaryotes, the selectivity filter is
characterized by a seven-residue motif TXGYGFR, where X is
an aliphatic amino acid, and F is sometimes replaced by a
different residue (Tao et al., 2009).

Sixteen genes encoding Kir channel subunits have been
identified in mammals. They belong to seven subfamilies (Kir1
to Kir7) comprising four functional groups: classical, G protein-
gated, ATP-sensitive, and K+-transport channels (Hibino et al.,
2010; Walsh, 2020). In mammals, Kir channels are expressed by
diverse tissues comprising the nervous, muscle, cardiovascular,
and urinary systems (Walsh, 2020). Consequently, abnormal
function of Kir channels has been implicated in human diseases
affecting these organ systems (Zangerl-Plessl et al., 2019).
Mutations that cause trafficking defects associated with Kir
channel dysfunction have been identified and primarily occur
in two “hotspots”: in and around the TM1 domain and in a
segment of the C-terminal cytoplasmic region (Zangerl-Plessl
et al., 2019).

Compared to mammals, insects possess a smaller repertoire of
Kir channels, ranging in number from three to six genes in the
species studied thus far (Lai et al., 2020). Based on phylogenetic
March 2021 | Volume 11 | Article 647020
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analysis, there are at least three different subtypes of insect Kir
channels. Drosophila melanogaster (Luan and Li, 2012) and
Nilaparvata lugens (Ren et al., 2018) each have three (Kir1-
Kir3), while Aedes aegypti has four due to a duplication in Kir2
(Kir2A and Kir2B) (Piermarini et al., 2013). However, the aphids
Acyrthosiphon pisum and Aphis glycines have only two (Kir1 and
Kir2), suggesting a loss of Kir3 during aphid evolution
(Piermarini et al., 2018). A recent study of Kir channels
revealed a possible fourth subtype in Lepidoptera (Kir4), which
was not found in the Diptera, Heteroptera, and Homoptera
included in the study (Lai et al., 2020).
BIOINFORMATICS OF KIR CHANNELS IN
TICKS

Screening of the NCBI databases produced a single Kir channel
subunit gene in 20 tick species ranging from 474 to 492 amino
acids in length (Table 1). All are apparently full-length, having
start and stop codons, except for Ornithodoros erraticus and O.
moubata, which did not have stop codons. Their length,
however, was similar to the Kir channels in O. rostratus and O.
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
turicata and likely represent full-length or near full-length
proteins. Kir channels in R. annulatus and R. microplus were
manually annotated from their respective genome assemblies
and have coding sequences with six exons spanning 7,014 and
9,318 nucleotides, respectively. Despite improvements in
sequencing technologies that have led to the generation of
several high-quality tick genome assemblies in recent years
(Miller et al., 2018; Jia et al., 2020), the lack of genome
assemblies prevented the screening of all 20 tick species for
additional Kir channel genes.

Based on phylogenetic analysis of the Kir channel subunits in
a soft tick (O. turicata), two hard ticks (I. scapularis and R.
microplus), two Diptera (D. melanogaster and Ae. aegypti) and
two Lepidoptera (Manduca sexta and Danaus plexippus), the tick
Kir channels belong to the Kir1 clade in insects (Figure 1A).
Amino acid percent identity of tick Kirs to D. melanogaster Kir1
ranged from 50 to 51%. The relationships among all 20 tick Kir
channel subunits are consistent with recent systematic analysis of
ticks based on 18S and 28S rRNA genes and whole mitochondrial
genomes (Mans et al., 2019). The soft ticks (Argasidae) and hard
ticks (Ixodidae) are separated into two distinct clades, with
Ornithodoros spp. representing the soft ticks and the remaining
A B

C

FIGURE 1 | Phylogenetic relationships and protein features of tick and insect Kir channels. (A) Estimated phylogenetic relationships of three tick Kir channels with
those in D. melanogaster (Dmel), Aedes aegypti (Aaeg), Manduca sexta (Msex) and Danaus plexippus (Dple). The multiple alignment was conducted using the L-INS-I
method in MAFFT v7.475 (Katoh et al., 2019). The phylogenies (A, B) were estimated using the maximum likelihood method and LG substitution model in RaxML
v8.2.11 (Stamatakis, 2014). Bootstrap support was estimated using 500 replications. The trees are rooted at the midpoint. (B) Estimated phylogenetic relationships
among 20 tick Kir channel proteins. (C) Multiple sequence alignment of 20 tick Kir channels illustrating the predicted transmembrane (TM) and cytoplasmic domains,
and the K+ selectivity filter (SF). The C-terminus of the Metastriata ticks, except Ha. longicornis (Hlon) contains long stretches of glutamine repeats. Multiple alignment
conducted using MAFFT v7.475 (Katoh et al., 2019).
March 2021 | Volume 11 | Article 647020

https://www.frontiersin.org/journals/cellular-and-infection-microbiology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles


Saelao et al. Tick Inward Rectifier Potassium Channels
being hard ticks (Figure 1B). The soft and hard ticks differ in
their feeding strategies, wherein the soft ticks are fast-feeding,
and the hard ticks are long-feeding, and adaptations associated
with these different feeding strategies have been described (Mans
and Neitz, 2004). The divergence observed between the hard and
soft tick Kir channels could reflect the physiological demands of
the different feeding strategies. The Ixodidae Kir subunits formed
two clades representing the Prostriata (Ixodes) and the
Metastriata (all other Ixodidae), which can be separated based
on morphological characteristics of the anal grooves.

A multiple sequence alignment shows the vast majority of
variation to be in the N- and C-terminal domains of the protein,
which flank the more highly conserved transmembrane region
(Figure 1C). All of the tick Kir channels examined in the present
study have the K+ selectivity filter motif of TIGYGSR, except for
O. moubata which has the motif TIGYGFR (Figure S1). The C-
terminal domain of the Prostriata ticks, with the exception ofHa.
longicornis, is characterized by microsatellite repeats (CAG and
CAA) coding for runs of glutamine (Q), ranging from 10 to 13
residues in length (Figures 1C and S1). The role of this highly
variable region of the N-terminal domain has yet to
be determined.
KIR CHANNELS AS TARGETS FOR NOVEL
CONTROL MEASURES

Hematophagous arthropods overcome extreme physiological
challenges during and after blood feeding, most notably, post-
prandial diuresis (Beyenbach, 2003; Benoit and Denlinger, 2010);
therefore, inhibition of renal function could provide a means to
control blood feeding arthropods and the pathogens they
transmit (Piermarini et al., 2017). A series of experiments
aimed at understanding insect renal physiology led to the
discovery of Kir channels as key components of diuresis in
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
insect Malpighian tubules. Among these studies were gene
expression analyses showing relatively high expression of Kir
channels in Malpighian tubules and functional characterization
of Kir1 and Kir2 subtypes using Drosophila S2 and Xenopus
oocyte heterologous expression systems (Döring et al., 2002;
Piermarini et al., 2013).

The identification of small molecule inhibitors has proven to
be invaluable for in vivo and in vitro analyses of Kir channels and
could lead to the development of novel insecticides. The small
molecule inhibitors of mammalian Kir channels, VU590 and
VU573, (Raphemot et al., 2011; Denton et al., 2013) were found
to modulate the activity of Ae. aegypti Kir1 (VU590 and VU573)
and Kir2B (VU573) and cause renal failure and/or mortality in
Ae. aegypti (Piermarini et al., 2013; Raphemot et al., 2014). One
of the major concerns during the development of insecticides is
the effect on non-target species such as humans and beneficial
insects. A small molecule inhibitor of mosquito Kir1 (VU041)
was identified by high-throughput screening that does not inhibit
most mammalian Kir channels (exception Kir2.1) and is not
lethal to honey bees when applied topically at the concentrations
tested (Swale et al., 2016). Further, VU041 was effective in
reducing fecundity in insecticide resistant and wild-type strains
of Ae. aegypti and An. gambiae (Swale et al., 2016).

In addition to Malpighian tubules, there is growing evidence
that Kir channels perform vital functions in the salivary glands,
which are essential for osmoregulation, blood feeding, and
pathogen transmission in hematophagous arthropods, making
them attractive targets for disruption (Ribeiro, 1987; Sauer et al.,
1995; Sauer et al., 2000; Swale et al., 2017; Nuttall, 2019).
Bioactive factors produced in the salivary glands enable the
acquisition of a blood meal at the host interface and facilitate
the transmission of tick-borne pathogens to vertebrate hosts
(Kazimıŕová and Stibraniova, 2013).

A recent study on the role of Kir channels in tick salivary
gland function provided evidence that pharmacological
TABLE 1 | Summary of tick Kir channel proteins identified in the NCBI databases. All were from transcriptome shotgun assemblies (TSA database) except Rh.
annulatus and Rh. Microplus, which were acquired from their respective genome assemblies.

Species Common name NCBI accession Length

Amblyomma aureolatum GFAC01003848 490
Dermacentor variabilis American dog tick GGTZ01000785 486
Haemaphysalis longicornis Asian longhorned tick GIKJ01016725 480
Hyalomma excavatum GEFH01003741 488
Ixodes holocyclus Australian paralysis tick GIBQ01000735 474
Ixodes persulcatus Taiga tick GBXQ01023957 479
Ixodes ricinus Castor bean tick GFVZ01130232 479
Ixodes scapularis Black-legged tick GGIX01123694 479
Ornithodoros erraticus GFWV01008518 492
Ornithodoros moubata African hut tampan GFJQ01004171 486
Ornithodoros rostratus GCJJ01005425 485
Ornithodoros turicata Relapsing fever tick GDIE01101609 489
Rhipicephalus annulatus Cattle fever tick WOVY00000000 488
Rhipicephalus appendiculatus Brown ear tick GEDV01010278 487
Rhipicephalus bursa GFZJ01000158 487
Rhipicephalus haemaphysaloides GIJA01021829 488
Rhipicephalus microplus Southern cattle fever tick WOVZ00000000 490
Rhipicephalus pulchellus Zebra tick GACK01008623 488
Rhipicephalus sanguineus Brown dog tick GINV01002203 488
Rhipicephalus zambeziensis GFPF01010722 487
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inhibition of these ion channels reduces the secretory activity of
salivary glands in the lone star tick, Amblyomma americanum (Li
et al., 2019). The reduced secretory capacity of the salivary gland
was directly correlated with a dramatic reduction of blood
ingestion during feeding. This study identified small-molecule
modulators of Kir channel function (VU041, VU625, and
VU688) that were previously shown to be inhibitors of
mosquito Kir channels (Raphemot et al., 2014; Swale et al.,
2016). Similarly, small molecule inhibitors reduced salivary
gland secretion (VU041, VU590, VU937, and VU063) and
blood meal ingestion (VU041 and VU063) in the horn fly,
Haematobia irritans (Li et al., 2020). Although four inhibitors
(VU041, VU590, VU937, and VU063) caused mortality, VU041
was the highest at 82 ± 11% (Li et al., 2020).

A recent study suggests an insecticide targeting a Kir channel
has been developed and been in use for several years. Flonicamid
(N‐cyanomethyl‐4‐trifluoromethylnicotinamide) is an
insecticide that is highly effective against aphids, but not
against other insects, including some coleopterans,
lepidopterans, and dipterans (Morita et al., 2014). It is
structurally similar to neonicotinoid insecticides, which target
nicotinic acetylcholine receptors (Ren et al., 2018). However,
flonicamid had no activity against nicotinic acetylcholine
receptors, acetylcholine esterase or sodium channels (Morita
et al., 2014). The mode of action remained elusive until
recently, when a study showed flonicamid had a similar effect
on the Nilaparvata lugens Kir1 channel as VU590 (Ren et al.,
2018), which is a potent inhibitor of Kir1 in Ae. aegypti (Rouhier
et al., 2014). Flonicamid also inhibited renal excretion in Culex
pipiens and, taken together, suggests its mode of action is by
inhibiting the insect Kir1 subtype (Ren et al., 2018). Curiously,
flonicamid showed little efficacy against Ha. longicornis after
spray application at 50 ppm concentration (Park et al., 2019).
This lack of activity is likely due to a failure to inhibit the Ha.
longicornis Kir channel, thus demonstrating the need for
identification of tick Kir channel inhibitors.
CONCLUSION

This review highlights the importance of Kir channels as
potential targets for inhibition of renal and salivary gland
function in arthropod pests and vectors of disease.
Furthermore, we describe the Kir channel subunits in 20 tick
species, thus providing the framework for in vitro functional
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
analyses and screening of small molecule inhibitors. Recent
efforts have only begun to shed light on the importance of Kir
channels in tick physiology, especially their role in the regulation
of blood feeding. Many gaps in our knowledge regarding the
functional, temporal, spatial, and molecular characteristics of
ticks still exist today. This review highlights the critical need for
follow-up studies that can help elucidate these key aspects of tick
Kir channel biology. The evidence for Kir channels as potential
targets of insecticides and acaricides is mounting. These findings
hold the potential to identifying targets for tick-borne pathogen
intervention and control measures. Continued research
elucidating the functional mechanisms of Kir channels and
other membrane bound proteins, promises to bring an exciting
new era in targeted pharmacological interventions. Although
studies on the physiological role and molecular basis of Kir
channel function in mammals and insects have provided critical
groundwork, Kir channels in ticks remain understudied.
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