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Abstract: In this study, a detailed chemical investigation of a streptomycin-resistant strain of the
deep-sea marine, actinomycete Amycolatopsis sp. WP1, yielded six novel amycolachromones A–F
(1–6), together with five known analogues (7–11). Amycolachromones A–B (1–2) possessed unique
dimer skeletons. The structures and relative configurations of compounds 1–11 were elucidated by
extensive spectroscopic data analyses combined with X-ray crystal diffraction analysis. Plausible
biogenetic pathways of amycolachromones A–F were also proposed.

Keywords: marine actinomycetes; secondary metabolites; isolation

1. Introduction

Marine microbial natural products, especially those derived from marine actino-
mycetes, have become an important source of novel bioactive compounds [1–3]. However,
traditional screening strategies generally do not provide access to the full array of secondary
metabolites encoded within actinomycete genomes [4]. For example, Streptomyces coeli-
color initially produces four classes of metabolites using laboratory fermentation, despite
genome sequencing revealing the capacity to produce >30 families of metabolites [5,6]. To
solve this problem, various strategies have been proposed to activate the expression of
otherwise silent biosynthetic gene clusters, including the ‘one strain many compounds’
(OSMAC) approach [7], co-cultivation with other microorganisms [8] and chemical epi-
genetics [9]. Recently, a ribosome engineering approach that targets ribosomal proteins
or RNA polymerase (RNAP) has shown promise for expression of cryptic gene clusters.
This method selects for mutants that are resistant to antibiotics that target the bacterial
ribosome, presumably activating the expression of bacterial cryptic genes by resistant
mutants [10,11]. Shima and co-workers demonstrated this method in actinomycetes by
activating the biosynthetic pathway for actinorhodin in mutant Streptomyces that devel-
oped resistance to streptomycin [12]. Recent adoptions of this approach demonstrated the
ability of streptomycin-resistant mutants to enhance production of actinolactomycin [13],
fredericamycin A and chlorinated alkaloids, inducamides A–C [14,15].

Chromones are oxygen-containing heterocyclic compounds with a chromone ben-
zoannelated γ-pyrone ring (4H-chromen-4-one, 4H-1-benzopyran-4-one) that are widely
distributed in bacteria, fungi and plant [16]. Chromones and analogues can be considered
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privileged structures in drug discovery due to their numerous biological activities, such
as anti-inflammatory, antiplatelet, anticancer, antimicrobial, anti-neurodegenerative and
anti-obesity effects [17]. In this paper, we undertook a ribosome engineering approach for
activating biosynthetic pathways in Amycolatopsis sp. WP1, a deep sea actinomycete isolated
from sediments collected at −2945 m in the Indian Ocean. A streptomycin-resistant strain,
designated as L-30-6 (Figure 1), was observed to produce six new chromone derivatives,
designated as the amycolachromones A–F (1–6), and five known chromone derivatives
(7–11) (Figure 2).
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Figure 2. Chemical structures of compounds 1–11. 

  

Figure 1. (a) Wild-type strain WP1 and streptomycin-resistant strain L-30-6 grown under identical
conditions on ISP2 media. (b) HPLC traces of wt-WP1 and mutant L-30-6 showing the production of
new compounds (UV detection at 300 nm).
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2. Results and Discussion

Amycolachromone A (1) displayed HRESIMS peak at m/z 477.1172 [M + Na]+ (calcd
477.1162) corresponding to the molecular formula C24H22O9, indicating fourteen degrees
of unsaturation. Analysis of the NMR data of 1 (Table 1, see Supplementary Materials)
revealed three aromatic protons at δH 6.64 (1H, s, H-8), 6.22 (1H, s, H-3′), 6.20 (1H, s, H-3),
two methoxy groups at δH 3.83 (3H, s, CH3O-7) and 3.75 (3H, s, CH3O-7′), two methyl
groups at δH 2.35 (3H, s, CH3-2) and 3.21 (3H, s, CH3-2′), two methylenes at δH 4.45 (2H,
d, J = 4.8 Hz, H-9′) and 3.98 (2H, s, H-9), two phenolic hydroxyl groups at δH 13.13 (1H s,
OH-5) and 13.10 (1H s, OH-5′), a hydroxyl group at δH 4.78 (1H, t, J = 5.2 Hz, OH-9′). The
13C NMR (Table 1) revealed 24 carbon signals: the two carbonyls C-4 (δC 183.2) and C-4′

(δC 182.5), the three aromatic carbons C-3 (δC 108.7), C-3′ (δC 108.4) and C-8 (δC 90.6), five
non-oxygenated quaternary aromatic carbons at C-4a (δC 110.8), C-6 (δC 104.4), C-4a’ (δC
106.7), C-6′ (δC 117.6), and C-8′ (δC 112.5), eight oxygenated quaternary aromatic carbons at
C-2 (δC 168.5), C-2′ (δC 168.3), C-7 (δC 163.8),C-7′ (δC 163.5), C-5 (δC 158.5), C-5′ (δC 158.3),
C-8a (δC 156.7), and C-8a’ (δC 154.8), two methoxy groups CH3O-7 (δC 63.2) and CH3O-7′

(δC 56.7), two methyl groups CH3-2 (δC 20.4) and CH3-2′ (δC 20.0), and two methylenes
C-9′ (δC 52.1) and C-9 (δC 16.9). Analysis of the 1H and 13C NMR data of 1 revealed the
presence of the same 5-hydroxy-4H-chromen-4-one moiety as found in xanthones [18,19],
and therefore suggested a compound comprising two xanthone building blocks.

Table 1. 1H (500 MHz) and 13C (125 MHz) NMR data of compounds 1 and 2 in DMSO-d6.

Position
1 2

δH δC, Type δH δC, Type

2 168.5, C 168.8, C
3 6.22 (s, 1H) 108.7, CH 6.23 (s, 1H) 108.7, CH
4 183.2, C 183.2, C
4a 110.8, C 110.8, C
5 158.5, C 158.9, C
6 104.4, C 100.9, C
7 163.8, C 164.2, C
8 6.64 (s, 1H) 90.6, CH 6.63 (s, 1H) 90.6, CH
8a 156.7, C 156.7, C
9 3.98 (s, 2H) 16.9, CH2 3.98 (s, 2H) 16.9, CH2
2′ 168.3, C 168.2, C
3′ 6.20 (s, 1H) 108.4, CH 6.22 (s, 1H) 108.5, CH
4′ 182.5, C 182.4, C
4a′ 106.7, C 106.7, C
5′ 158.3, C 158.6, C
6′ 117.6, C 114.1, C
7′ 163.5, C 163.4, C
8′ 112.2, C 112.5, C
8a′ 154.8, C 154.8, C
9′ 4.45 (d, J = 4.8 Hz, 2H) 52.1, CH2 4.35 (s, 2H) 63.2, CH2

2-CH3 2.35 (s, 3H) 20.4, CH3 2.35 (s, 3H) 20.4, CH3
7-OCH3 3.83 (s, 3H) 63.2, CH3 3.82 (s, 3H) 62.5, CH3
2′-CH3 2.21 (s, 3H) 20.0, CH3 2.21 (s, 3H) 20.0, CH3

7′-OCH3 3.75 (s, 3H) 56.7, CH3 3.76 (s, 3H) 56.6, CH3
9′-OCH3 3.29 (s, 3H) 57.7, CH3

5-OH 13.13 (s, 1H) 13.21 (s, 1H)
5′-OH 13.10 (s, 1H) 13.11 (s, 1H)
9′-OH 4.78 (t, J = 5.2 Hz, 1H)

1H-1H COSY correlations were observed from H-9′ to OH-9′. Further confirmation
was found for HMBC correlations of 5-OH to C-5, C-6, 4a; H-8 to C-6, C-4a, C-8a; H-3
to C-2; 2-CH3 to C-2, C-3, indicating the same Eugenin. HMBC correlations from 5′-OH
to C-5′, C-6′, 4a′; H-3′ to C-2′; 2′-CH3 to C-2′, C-3′; H-9′ to C-5′, C-6′, C-7′, indicated the
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same 6-Hydroxymethyleugenin (10) [20]. HMBC correlations from H-9 to C-7, C-5, C-4a,
C8′, C-7, C-8a′, indicated that Eugenin and 6-hydroxymethyleugenin are linked with C-9.
Selected key correlations in the observed NMR spectrum are shown in Figure 3. On the
basis of these results, the structure of compound 1 was established as shown.
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Amycolachromone B (2) displayed HRESIMS peak at m/z 469.1502 [M + H]+ (calcd
469.1499), m/z 491.1333 [M + Na]+ (calcd 469.1318), corresponding to the molecular formula
C25H24O9 (fourteen degrees of unsaturation). Analysis of the NMR data of 2 (Table 1)
revealed for three aromatic protons at δH 6.64 (1H, s, H-8), 6.22 (1H, s, H-3′), 6.23 (1H,
s, H-3), two methoxy groups at δH 3.82 (3H, s, CH3O-7) and 3.76 (3H, s, CH3O-7′), two
methyl groups at δH 2.22 (3H, s, CH3-2) and 3.37 (3H, s, CH3-2′), two methylene at δH
4.35 (2H, s, H-9′) and 3.98 (2H, s, H-9), two phenolic hydroxyl groups at δH 13.21 (1H s,
OH-5) and 13.11 (1H s, OH-5′). The 13C NMR (Table 1) revealed 25 carbon signals: the two
carbonyl group C-4 (δC 183.2), C-4′ (δC 182.4), three aromatic carbon C-3 (δC 108.7), C-3′

(δC 108.5) and C-8 (δC 90.6), five nonoxygenated quaternary aromatic carbons at C-4a (δC
110.8), C-6 (δC 100.9), C-4a′ (δC 106.7), C-6′ (δC 114.1), and C-8′ (δC 112.5), eight oxygenated
quaternary aromatic carbons at C-2 (δC 168.8), C-2′ (δC 168.2), C-7 (δC 164.2), C-7′ (δC 163.4),
C-5 (δC 158.9), C-5′ (δC 158.6),C-8a (δC 156.7), and C-8a′ (δC 154.8), three methoxy groups
CH3O-7(δC 62.5), CH3O-9′ (δC 57.7), and CH3O-7′ (δC 56.6), two methyl groups CH3-2 (δC
20.4) and CH3-2′ (δC 20.0), two methylene C-9′ (δC 63.2) and C-9 (δC 16.9). Analysis of the
1H and 13C NMR data of 2 revealed the presence of the same 5-hydroxy-4H-chromen-4-one
moiety as found in xanthones [18,19], and comprised two xanthones. In contrast, the NMR
data of 2 showed them to be nearly identical except for a methoxy group linked with C-9′.
Further confirmation was found for HMBC correlations of 5-OH to C-5, C-6, 4a; H-8 to C-6,
C-4a, C-8a, C-7; H-3 to C-2; 2-CH3 to C-2, C-3, indicated that same as Eugenin [20]. HMBC
correlations from 5′-OH to C-5′, C-6′, 4a′; H-3′ to C-2′; 2′-CH3 to C-2′, C-3′; H-9′ to C-5′, C-
6′, C-7′, indicated that same as 6-Methoxymethyleugenin (9) [21]. HMBC correlations from
H-9 to C-7, C-5, C-4a, C8′, C-7, C-8a′, indicated that Eugenin and Methoxymethyleugenin
are linked with C-9. Selected key correlations in the observed NMR spectrum are shown
in Figure 3. On the basis of these results, the structure of compound 2 was established
as shown.

Amycolachromone C (3) displayed HRESIMS ion at m/z 351.0515 [M + Na]+ (calcd
351.0514), corresponding to the molecular formula C14H16O7S, indicating nine degrees
of unsaturation. Analysis of the NMR data of 3 (Table 2) revealed two aromatic protons
at δH 6.78 (1H, s, H-8), 6.32 (1H, s, H-3), a methoxy group at δH 3.90 (3H, s, CH3O-7), a
methyl group at δH 2.39 (3H, s, CH3-2), three methylenes at δH 4.39 (2H, s, H-1′), δH 3.80
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(2H, q, J =6.1 Hz, H-4′), and 3.21 (2H, t, J = 6.3, H-3′), a phenolic hydroxyl group at δH 11.40
(1H s, OH-5), and a hydroxyl group at δH 5.03 (1H, t, J = 5.4 Hz, 1H, OH-4′). Examination
of the 13C NMR spectrum (Table 2) revealed 14 carbon signals: a carbonyl group C-4 (δC
182.4), the two aromatic carbons C-3 (δC 108.9) and C-8 (δC 91.3), three non-oxygenated
quaternary aromatic carbons at C-8a (δC 158.2), C-4a (δC 104.6), and C-6 (δC 101.0), and three
oxygenated quaternary aromatic carbons at C-2 (δC 168.9), C-5 (δC 159.9), and C-7 (δC 163.9)
and the methylene C-1′ (δC 49.3). Analysis of the 1H and 13C NMR data of 2 revealed the
presence of the same 5-hydroxy-4H-chromen-4-one moiety as found in xanthones [18,19].

Table 2. 1H (500 MHz) and 13C (125 MHz) NMR data of compounds 3–5 in DMSO-d6.

Position
3 4 5

δH δC, Type δH δC, Type δH δC, Type

2 168.9, qC 168.7, qC 168.8, qC
3 6.31, s 108.9, CH 6.30, s 108.9, CH 6.29, s 108.9, CH
4 182.4, qC 182.3, qC 182.3, qC

4a 104.6, qC 104.7, qC 104.7, qC
5 159.9, qC 159.1, qC 159.6, qC
6 101.0, qC 101.2, qC 102.3, qC
7 163.9, qC 163.7, qC 163.6, qC
8 6.78, s 91.3, CH 6.76, s 91.1, CH 6.76, s 91.2, CH

8a 158.2, qC 158.2, qC 157.8, qC
1′ 4.39, s 49.3, CH2 4.33, s 49.4, CH2 3.99, d, (6.7) 48.4, CH2
3′ 3.21, t (6.3) 56.6, CH2 2.91, s 42.0, CH3 2.54, s 39.1, CH3
4′ 3.80, q (6.1) 55.3, CH2

OH-5 13.40, s
OH-4′ 5.03, t (5.4)

OCH3-7 3.90, s 57.2, CH3 3.90, s 57.2, CH3 3.90, s 57.2, CH3
CH3-2 2.39, s 20.4, CH3 2.39, s 20.4, CH3 2.39, s 20.4, CH3

In the 1H-1H COSY spectrum, there were correlations from H-4′ to OH-5′ and H-3′.
According to the HMBC, there were correlations from H-1′ to C-6, C-5, and C-7, H-4′ to
C-3′, OH-4′ to C-3′. The sulfur atom present in 3 was shown to be attached at C-1′and
C-3′, indicated that C-1′was attached at C-6. Further confirmation was found for HMBC
correlations of OH-5 to C-4a, C-6, C-5; CH3-2 to C-3, C-2; CH3O-7 to C7, H-3 to CH3-2,
C-4a, C-2; H-8 to C-4a, C-6, C-8a, C-7, C-4, a hydroxyl group could be located at C-5, a
methoxy groups could be located at C-7, a methyl group could be located at C-2. Selected
key correlations in the observed NMR spectrum are shown in Figure 3. On the basis of
these results, the structure of compound 3 was established as shown.

Amycolachromone D (4) displayed HRESIMS peak at m/z 321.0406 [M + Na]+ (calcd
321.0409), corresponding to the molecular formula C13H14O6S (nine degrees of unsatu-
ration). Analysis of the NMR data of 4 (Table 2) revealed for two aromatic protons at
δH 6.76 (1H, s, H-8), 6.30 (1H, s, H-3), a methoxy groups at δH 3.90 (3H, s, CH3O-7), two
methyl groups at δH 2.91 (3H, s, H-3′) and 2.39 (3H, s, CH3-2), a methylene group at δH
4.33 (2H, s, H-1′). The 13C NMR (Table 2) revealed 13 carbon signals: a carbonyl group
C-4 (δC 182.3), two aromatic carbon C-3 (δC 108.9) and C-8 (δC 91.1), three nonoxygenated
quaternary aromatic carbons at C-8a (δC 158.2),C-4a (δC 104.7), and C-6 (δC 101.2), three
oxygenated quaternary aromatic carbons at C-2 (δC 168.7), C-5 (δC 159.1), and C-7 (δC 163.7),
a methoxy groups CH3O-7 (δC 57.2), two methyl groups C-3′ (δC 42.0) and CH3-2 (δC 20.4),
a methylene group C-1′ (δC 49.4). Analysis of the 1H and 13C NMR data of 4 revealed the
presence of the same 5-hydroxy-4H-chromen-4-one moiety as found in xanthones [18,19].
A side-by-side comparison of the NMR spectroscopic data with those of 3 showed them to
be nearly identical except for the final hydroxymethyl unit on the side chain.

According to the HMBC correlations from H-1′ to C-6, C-5 and C-7, the sulfur atom
present in 4 was shown to be attached at C-1′and C-3′, indicating that C-1′ was attached
at C-6, Further confirmation was found for HMBC correlations of CH3O-7 to C7; H-3 to
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CH3-2, C-4a, C-2; H-8 to C-4a, C-6, C-8a, C-7, C-4, a methoxy group could be located at C-7
and a methyl group could be located at C-2. Selected key correlations in the observed NMR
spectrum are shown in Figure 3. On the basis of these results, the structure of compound 4
was established as shown.

Amycolachromone E (5) displayed HRESIMS peak at m/z 305.0462 [M + Na]+ (calcd
305.0460), corresponding to the molecular formula C13H14O5S (eight degrees of unsatu-
ration). Analysis of the NMR data of 5 (Table 2) revealed for two aromatic protons at
δH 6.76 (1H, s, H-8), 6.29 (1H, s, H-3), a methoxy groups at δH 3.90 (3H, s, CH3O-7), two
methyl groups at δH 2.54 (3H, s, H-3′) and 2.39 (3H, s, CH3-2) and a methylene group at
δH 3.99 (2H, d, J = 6.7 Hz, H-1′). The 13C NMR (Table 2) revealed 13 carbon signals: a
carbonyl group C-4 (δC 182.3), two aromatic carbon C-3 (δC 108.9) and C-8 (δC 91.2), three
nonoxygenated quaternary aromatic carbons at C-8a (δC 157.8), C-4a (δC 104.7), and C-6
(δC 102.3), three oxygenated quaternary aromatic carbons at C-2 (δC 168.8), C-5 (δC 159.6),
and C-7 (δC 163.6), a methoxy groups CH3O-7 (δC 57.2), two methyl groups C-3′ (δC 39.1)
and CH3-2 (δC 20.4), a methylene group C-1′ (δC 48.4). Analysis of the 1H and 13C NMR
data of 5 revealed the presence of the same 5-hydroxy-4H-chromen-4-one moiety as found
in xanthones [18,19]. A side-by-side comparison of the NMR spectroscopic data with those
of 3 showed them to be nearly identical except for the final sulfur monoxide unit on the
side chain.

According to the HMBC correlations from H-1′ to C-6, C-5 and C-7, H-3′ to C-1′, the
sulfur atom present in 5 was shown to be attached at C-1′and C-3′, indicating that C-1′

was attached at C-6, Further confirmation was found for HMBC correlations of CH3O-7 to
C7; H-3 to CH3-2, C-4a, C-2; H-8 to C-4a, C-6, C-8a, C-7 and C-4, a methoxy group could
be located at C-7, a methyl group could be located at C-2. Selected key correlations in the
observed NMR spectrum are shown in Figure 3. On the basis of these results, the structure
of compound 5 was established as shown.

Amycolachromone F (6), [α]25
D−54 (c 0.1, MeOH), displayed HRESIMS peak at m/z

337.0915 [M + H]+ (calcd 337.0923), corresponding to the molecular formula C16H16O8
(nine degrees of unsaturation). Analysis of the 1H data of 6 (Table 3) revealed resonance
for three aromatic protons at δH 7.52 (1H, t, J = 8.3 Hz, H-3), 6.60 (1H, d, J = 8.3 Hz, H-4),
6.53 (1H, d, J = 8.3 Hz, H-2), a methoxy group at δH 3.50 (3H, s, H-15), a methyl group at
δH 1.06 (3H, d, J = 6.4 Hz, H-16), a methylene at δH 2.81 (1H, dd, J = 14.4, 12.9 Hz, H-9a)
and 2.25 (1H, dd, J = 14.5, 5.3 Hz, H-9b), a oxygenated methine at δH 4.20 (1H, dd, J = 10.5,
6.0 Hz, H-7), a methine at δH 1.97–1.86 (1H, m, H-8), three hydroxyl groups at δH 11.35 (1H
s, OH-1), 8.09 (1H, s, OH-11), and 5.91 (1H, d, J = 6.0 Hz, OH-7). The 13C NMR (Table 3)
revealed sixteen carbon signals: three carbonyl group C-10 (δC 198.6), C-12 (δC 191.8) and
C-14 (δC 168.5), three aromatic carbon C-3 (δC 138.7), C-2 (δC 109.5), and C-4 (δC 107.4), a
nonoxygenated quaternary aromatic carbons at C-13 (δC 106.5), two oxygenated quaternary
aromatic carbons at C-1 (δC 161.9) and C-5 (δC 158.9), two sp3-quaternary carbon C-11 (δC
90.0) and C-6 (δC 73.0), a methoxy group C-15 (δC 52.7), a methyl group C-16 (δC 18.6),
an oxygenated methine C-7 (δC 71.8), a methine C-8 (δC 31.1) and a methylene C-9 group
(δC 43.1). Analysis of the 1H and 13C NMR data of 6 revealed the presence of the same
5-hydroxy-4H-chromen-4-one moiety as found in xanthones [18,19]. In the 1H-1H COSY
spectrum, the correlations from H-7 to H-8 and OH-7, from H-8 to H-9 and H-16. Further
confirmation was found for HMBC correlations of H-7 to C-16, C-6, C-11 and C-9; H3-16 to
C-7, C-8 and C-9, indicated that C-16 was attached to C-8, and OH-7 was located at C-7.
HMBC correlations from the O-methyl proton signal H3-15 to the carboxylic carbon C-14
confirmed that the O-methyl group was located at C-14. HMBC correlations from OH-11
to C-11, C-6 and C-10, OH-1 to C-2, C-13 and C-1 indicated that OH-1 and OH-11 were
attached to C-1 and C-11, respectively [22,23]. Selected key correlations in the observed
NMR spectrum are shown in Figure 3. Thus, the planar structure of 6 was established.
Moreover, the relative configuration of 6 was established to be 6R*, 7S*, 8R* and 11R* by
X-ray crystallography using Mo Ka radiation (Figure 4).
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Table 3. 1H (500 MHz) and 13C (125 MHz) NMR data of compound 6 in DMSO-d6.

Position
6

δH δC, Type

1 161.9, qC
2 6.53, d (8.3) 109.5, CH
3 7.52, t (8.3) 138.7, CH
4 6.60, d (8.3) 107.4, CH
5 158.9, qC
6 73.0, qC
7 4.20, dd (10.5, 6.0) 71.8, CH
8 1.97–1.86, m 31.1, CH

9 2.81, dd (14.4, 12.9);
2.25 dd(14.5, 5.3) 43.1, CH2

10 198.6, qC
11 90.0, qC
12 191.8, qC
13 106.5, qC
14 168.5, qC
15 3.50, s 52.7, CH3
16 1.06, d (6.4) 18.6, CH3

OH-1 11.35, s
OH-7 5.91, d (6.0)

OH-11 8.09, s
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Further analysis of the structures allowed us to raise a plausible biosynthetic pathway
of compounds 1–6. As outlined in the Scheme 1, compounds 1–5 were structurally related
to the known metabolite 6-methoxymethyleugenin, which was derived from the widely
existing 5,7-dihydroxy-2-methylchromone via the hydroxymethylation with formaldehyde
and the methylation with SAM (S-adenosyl methionine). The compound 1 was the dimer-
ization of 6-methoxymethyleugenin, and the sequential methylation with SAM could afford
the related compound 2. For compound 3–5, we proposed that the sulfur in these structures
was from L-cysteine. Thus, the Michael addition of L-cysteine to the ortho-quinone methide
intermediate from 6-methoxymethyleugenin gave the compound I. Then, transamination,
decarboxylation and reduction sequence of I furnished the 2-sulfo-ethanol II occurred.
An oxidation of sulfur in II gave the compound III. Finally, compound 3 was obtained
through the double oxidation of sulfur in II. The oxidation of the hydroxyl group in III to
the corresponding carboxylic acid occurred and followed with a decarboxylation afforded
for compound 5. Furthermore, compound 4 was the oxidation product of 5 [24,25]. In
addition, compound 6 was the oxidation product of the known natural product blennolide
B, which was proposed by Franck to be a derivative of emodin (Scheme 2) [26].
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The structures of five known compounds were identified as 6-ethoxymethyleugenin
(7), 6-methoxymethyleugenin (8), 6-hydroxymethyleugenin (9), emodin (10) and the as-
comycete metabolite chaetoquadrin D (11) by comparison of spectroscopic data with
reported values and are described here for the first time as produced by Amycolatopsis sp.

The AlkB family of DNA repair enzymes utilize an α-ketoglutarate/Fe(II)-dependent
mechanism to oxidize the aberrant alkyl groups, finally repairing alkyl DNA bases [27,28].
Compounds 1–11 were evaluated for their in vitro ABH2 inhibitory activities. Compounds
1–11 exhibited weak inhibitory activity against the ABH2 enzyme. However, in 2019, a
paper was published that tested emodin (10). It exhibited strong inhibitory activity for the
ALKH3 enzyme with IC50 of 8.8 µM [29]. This hinted that these compounds might inhibit
other members of the AlkB family of enzymes.

In conclusion, the chemical investigation of a streptomycin-resistant strain of the deep-
sea marine actinomycete, Amycolatopsis sp. WP1, led to the isolation and identification of six
novel compounds, amycolachromones A–F (1–6) and five known analogues (7–11). Among
them, amycolachromones A–B (1–2) represents an unusual fused skeleton between two
6-hydroxymethyleugenin, and the relative configuration of amycolachromones F (6) was
determined by the signal-crystal X-ray diffraction. The discovery of amycolachromones
A–F not only expanded the chemical diversity of natural products and inspire further
synthetic studies, but also provided a template for the exploration of inhibitors of other
members of the AlkB family of enzymes.

3. Materials and Methods

General experimental procedures. All chemical reagents and solvents were purchased
from Sigma–Aldrich (Shanghai, China). UV spectra were acquired with a DU 800 UV/vis
spectrophotometer (Beckman Coulter, Brea, CA, USA). IR spectra were acquired with a
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Nicolet 380 FT-IR (Thermo Electron Corporation, Beverly, MA, USA). NMR experiments
were conducted using an Agilent NMR 500 MHz spectrometer (Santa Clara, CA, USA) and
BRUKER NMR 600 MHz spectrometer (San Jose, CA, USA) with (CD3)2SO as the solvent
(referenced to residual DMSO at δH 2.54 and δC 39.5) at 25 ◦C. Electrospray ionization mass
spectra (ESIMS) were acquired using an AB Sciex TripleTOF 4600 spectrometer (Boston,
MA, USA) in the positive and negative ion mode. HPLC experiments were performed on a
Hitachi Elite LaChrom system (Tokyo, Japan) equipped with a diode array detector model
L-2450, pump L-2130 and autosampler L-2200. Semipreparative HPLC experiments were
completed with a Waters XBridge Prep C18 (Miflord, CO, USA) 5 µm, 10 mm × 250 mm
column and Phenomenex Luna C18 5 µm, 250 mm × 21.2 mm column.

Bacterial Strain and Culture Conditions. The WP1 strain (CGMCC No. 10738) was
isolated from deep-sea sediments of the Southwest Indian Ocean and identified as Amyco-
latopsis sp. by 16S rRNA sequence comparison. WP1 was grown in ISP2 medium consisting
of 1.0% (w/v) malt extract, 0.4% (w/v) yeast extract, 0.4% (w/v) glucose and 3% (w/v) sea
salt, the pH of medium was adjusted to 7.4 using 2 M HCl and 2 M NaOH.

Mutants of strain WP1. The WP1 strain suspensions were spread onto ISP2 plates
containing different concentrations (0, 10, 20, 30, 40, 50 and 60 mg/mL) of streptomycin.
The plates were incubated at 37 ◦C for 7 days. Mutant colonies producing the white pigment
different than the WP1 strain were selected, generating mutant strain L-30-6, which was
obtained on the IPS2 plate containing 30 mg/mL streptomycin.

Extraction and isolation. The mutant L-30-6 strain was inoculated into ISP2 broth with
3% sea salt in 250 mL Erlenmeyer flasks, at 30 ◦C on a rotary shaker at 180 rpm for 2 days as
seed culture. Each of the seed cultures (32 mL) was transferred into 1 L Erlenmeyer flasks
containing 400 mL of ISP2 supplemented with 3% sea salt. These flasks were incubated
at 30 ◦C on a rotary shaker at 180 rpm for 6 days. The resulting cultures (60 L) were
centrifuged to yield the supernatant and a mycelial pellet. The supernatant was adsorbed
onto macroporous resin XAD16N (DOW, St. Louis, Missouri, CA, USA) and eluted with
linear gradient of 0–100% EtOH in H2O to afford six fractions (A–F).

Fraction C (3.8 g) was subjected to semipreparative HPLC (Phenomenex Luna C18,
250 mm × 21.2 mm, 5 µm, 10 mL/min) using a gradient solvent from 40–90% MeOH
in H2O over 30 min to give five fractions (C1–C5). Fraction C2 was further purified by
semipreparative HPLC (Waters XBridge Prep C18 5 µm, 10 mm× 250 mm, 4 mL/min)
using an isocratic solvent system of CH3CN:H2O (15:85) over 30 min to afford compound
6 (10.2 mg) and C2A. Subfraction C2A was further purified by preparative HPLC with
MeOH-H2O (45:55) to provide compound 7 (2.6 mg). Fraction C3 was further purified
by semipreparative HPLC with MeOH-H2O (45:55) to yield compound 12 (6.5 mg), 3
(3.1 mg) and 4 (2.2 mg). Fraction C4 was further purified by semipreparative HPLC with
MeOH:H2O (45:55) to afford compound 5 (2.2 mg).

Fraction D (2.1 g) was subjected to semipreparative HPLC (Phenomenex Luna C18,
250 mm × 21.2 mm, 5 µm,10 mL/min) using a gradient solvent from 50–80% MeOH in
H2O over 30 min to generate five fractions (D1–D5). Fraction D3 was further purified by
semipreparative HPLC using an isocratic solvent system of MeCN:H2O (50:50) to afford
compound 1 (1.7 mg) and compound 2 (1.8 mg). D4 was subjected to preparative HPLC
with MeCN:H2O (30:70) to provide compounds 9 (35.3 mg) and 10 (13.5 mg). D5 was
further purified by preparative HPLC with MeOH-H2O (45:55) to yield compounds 8
(1.9 mg) and 11 (6.8 mg). The following are details of the extraction and isolation of the
compounds.

Amycolachromone A (1): White, amorphous powder; UV (MeOH) λmax (log ε) 253
(3.28) nm; IR (ZnSe) νmax 3426, 3195, 2844, 1656, 1445, 1008 cm−1; 1H and 13C NMR data,
Table 1; HRESIMS m/z 477.1172 [M + Na]+ (calcd for C24H22O9, 477.1162).

Amycolachromone B (2): White, amorphous powder; UV (MeOH) λmax (log ε) 254
(3.46) nm; IR (ZnSe) νmax 3460, 3190, 2894, 1658, 1445, 1008 cm−1; 1H and 13C NMR data,
Table 1; HRESIMS m/z 469.1502 [M + H]+ (calcd for C25H24O9, 469.1499), m/z 491.1333 [M
+ Na]+ (calcd 469.1318).
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Amycolachromone C (3): White, amorphous powder; UV (MeOH) λmax (log ε) 250
(3.43), 233 (3.46) nm; IR (ZnSe) νmax 3420, 3199, 2993, 1650, 1310, 1089 cm−1; 1H and 13C
NMR data, Table 2; HRESIMS m/z 351.0515 [M + Na]+ (calcd for C14H16O7S, 351.0514).

Amycolachromone D (4): White, amorphous powder; UV (MeOH) λmax (log ε) 250
(3.56), 233 (3.58) nm; IR (ZnSe) νmax 3520, 32,469, 2990, 1750, 1281, 1008 cm−1; 1H and 13C
NMR data, Table 2; HRESIMS m/z 321.0406 [M + Na]+ (calcd for C13H14O6S, 321.0409).

Amycolachromone E (5): White, amorphous powder; UV (MeOH) λmax (log ε) 250
(3.61), 240 (3.61) nm; IR (ZnSe) νmax 3470, 3122, 2880, 1603, 1210, 1089 cm−1; 1H and 13C
NMR data, Table 2; HRESIMS m/z 305.0462 [M + Na]+ (calcd for C13H14O5S, 305.0460).

Amycolachromone F (6): White, crystal; UV (MeOH) λmax (log ε) 356 (3.20), 277 (3.68)
nm; IR (ZnSe) νmax 3477, 2956, 2916, 1748, 1622, 1475, 1349, 1083 cm−1; 1H and 13C NMR
data, Table 3; HRESIMS m/z 337.0915 [M + H]+ (calcd for C16H16O8, 337.0923).

6-Ethoxymethyleugenin (7): White, amorphous powder; HR-ESIMS m/z 287.0891 [M
+ Na]+ (calcd for C14H16O5, 287.0985). 1H-NMR (600 MHz, DMSO-d6): δH 13.19 (s, OH-5),
6.70 (s, 1H, H-8), 6.28 (s, 1H, H-3), 4.41 (s, 2H, CH2OCH3), 3.89 (s, 3H, OCH3), 3.44 (q, J = 7.0
Hz, 2H, 6-CH2OCH2), 2.40 (s, 3H, 2-CH3), 1.08 (t, J = 7.0 Hz, 3H, OCH2CH3). 13C-NMR (150
MHz, DMSO-d6): δC182.6 (C-4), 168.5 (C-2), 164.3 (C-7), 159.9 (C-5), 158.0 (C-8a), 109.1 (C-3),
108.9 (C-6), 104.4 (C-4a), 89.6 (C-8), 65.1 (CH2OCH3), 59.3 (6-CH2OCH2), 56.9 (7-OCH3),
20.4 (2-CH3) and 15.3 (CH2CH3).

6-Methoxymethyleugenin (8): White, amorphous powder; HR-ESIMS m/z 273.0738
[M + Na]+ (calcd for C13H14O, 273.0739). 1H-NMR (600 MHz, CDCl3): δH 13.04 (s, OH-5),
6.36 (s, 1H, H-8), 6.04 (s, 1H, H-3), 4.55 (s, 2H, CH2OCH3), 3.90 (s, 3H, OCH3), 3.40 (s, 3H,
CH2OCH3), 2.35 (s, 3H, CH3). 13C-NMR (150 MHz, CDCl3): δC182.4 (C-4), 166.6 (C-2),
164.2 (C-7), 160.6 (C-5), 158.2 (C-8a), 109.1 (C-3), 108.9 (C-6), 105.1 (C-4a), 89.6 (C-8), 61.6
(CH2OCH3), 58.2 (CH2OCH3), 56.2 (OCH3) and 20.4 (2-CH3).

6-Hydroxymethyleugenin (9): White, amorphous powder; HRESIMS m/z 259.0579 [M
+ Na]+ (calcd for C12H12O5, 259.0582). 1H-NMR (600 MHz, DMSO-d6): δH 13.09 (s, OH-5),
6.65 (s, 1H, H-8), 6.24 (s, 1H, H-3), 4.55 (t, J = 5.3 Hz, CH2OH), 4.43 (d, J = 5.2 Hz, 2H, H-9),
3.87 (s, 3H, OCH3), 2.38 (s, 3H, CH3). 13C-NMR (150 MHz, DMSO-d6): δC182.5 (C-4), 168.4
(C-2), 164.1 (C-7), 159.1 (C-5), 157.7 (C-8a), 112.5 (C-6), 08.8 (C-3), 104.6 (C-4a), 90.7 (C-8),
56.7 (OCH3), 50.9 (CH2OH) and 20.4(CH3).

Emodin (10): White, amorphous powder; HRESIMS m/z 269.0448 [M − H]− (calcd
for C15H12O5, 269.0450). 1H-NMR (500 MHz, DMSO-d6): δH 12.07 (d, J = 19.5 Hz, 2H, OH),
7.49 (d, J = 1.1 Hz, 1H, H-5), 7.16 (s, 1H, H-7), 7.10 (d, J = 2.4 Hz, 1H, H-4), 6.57 (d, J = 2.4
Hz, 1H, H-2), 2.41 (s, 3H, CH3). 13C-NMR (150 MHz, DMSO-d6): δC190.0 (C-9), 182.0 (C-10),
166.6 (C-6), 165.0 (C-8), 161.9 (C-1), 148.6 (C-3), 135.6 (C-10a), 133.3 (C-4a), 24.6 (C-2), 120.9
(C-4), 113.9 (C-9a), 109.6 (C-5), 109.2 (C-7), 108.4 (C-8a) and 22.0 (CH3).

Chaetoquadrin D (11): White, amorphous powder; HRESIMS m/z HR-ESIMS m/z
370.0969 [M + H]+ (calcd for C16H19NO7S, 370.0960). 1H-NMR (500 MHz, DMSO-d6): δH
13.43 (s, 5-OH), 8.08 (t, NH), 6.79 (s, H-8), 6.32 (s, H-3), 4.36 (s, H-1′), 3.92 (s, 7-OCH3), 3.45
(dd, J = 13.6, 6.1 Hz, H-4′), 3.20 (t, J = 7.0 Hz, H-3′), 2.41 (s, 2-CH3), 1.81 (s, H-7′). 13C-NMR
(125 MHz, DMSO-d6): δC 182.4 (C-4), 70.1 (C-6′), 169.0 (C-2), 163.7 (C-7), 159.9 (C-5), 158.2
(C-8a), 108.9 (C-3), 104.5 (C-4a), 100.8 (C-6), 91.4 (C-8), 57.3 (7-OCH3), 52.9 (C-3′), 48.5 (C-1′),
32.9 (C-4′), 22.9 (C-7′) and 20.42 (2-CH3).

X-ray Crystallographic Analysis of Compound 6. Crystals of 6 were obtained in the
mixed solvent comprising MeOH and H2O, and crystallographic data were deposited at
the Cambridge Crystallographic Data Centre (CCDC) under the reference number CCDC
1873441. The X-ray diffraction data were collected with Mo Kα radiation (λ = 0.71073 Å).
The structure was solved by direct methods using the SHELXS-97 program. Orthorhom-
bic C16H16O8, CH4O, H2O, a = 7.7760(3) Å, b = 8.6993(4) Å, c = 26.8196(11) Å, α = 90◦,
β = 90◦, γ = 90◦, V = 1814.23(13) Å3, Z = 4, ρCalcd = 1.414 g/cm3, µ = 0.118 mm−1, and F (0
0 0) = 816. Measurements were in the range 3.038◦ ≤ θ ≤ 26.368◦, with 3697 independent
reflections, of which 3133 unique reflections with I > 2σ (I) were collected for the analysis,
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Rint = 0.0332. The final R indices: R1 = 0.0455, wR2 = 0.1177 [I > 2σ(I)], R indices (all data):
R1 = 0.0566, wR2 = 0.1256, and largest difference peak and hole: 0.560 and-0.231 e Å-3.

The ABH2 family DNA repair enzyme assay. Effects of compounds 1–11 on the ABH2
family demethylase activity reactions on m3c-ss-DNA were evaluated. All reactions were
performed at 37 ◦C in reaction buffer [5 µM Fe(NH4)2(SO4)2, 0.93 mMα-ketoglutarate,
1.86 mM ascorbic acid, and 46.56 mM HEPES (pH 8.0)] for 1 h. Varying concentrations
of compounds 1–11 (0, 5.0, 7.5, 20, 30, 40, 50, 75 and 100 µM) were used for tests. The
m3c-ss-DNA was pre-mixed with reaction buffer in a concentration of 5.0 µM. The reactions
were initiated by adding 2.0 µM ABH2. The reactions were stopped by adding 10.0 mM
EDTA followed by heating to 95 ◦C for 5 min. All the results of reaction were analyzed by
HPLC. All reaction samples were quantified by DNApac PA-100 column (4 mm × 250 mm,
Thermo Scientific, (Waltham, MA, USA) with isocratic 60 % mobile B, 1.5 M ammonium
acetate, under a constant flow rate of 1.0 mL/min. Mobile A was water. The UV detection
wavelength was 260 nm.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/md20030162/s1. Figures S1–S35: 1D and 2D NMR, HRESI mass spectra,
and crystal data for compounds 1–6. Table S1. Crystallographic data for Amycochromone F (6).
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