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Sclerostin as a novel marker of bone turnover in athletes

INTRODUCTION
Regular physical exercise affects bone remodelling. In recent years it 
has become clear that the cells actively involved in bone remodelling 
include not only osteoblasts and osteoclasts but also osteocytes.
Bone resorption and bone formation are assessed by measuring the 
concentrations of certain chemicals referred to as bone turnover mark-
ers [1]. The International Osteoporosis Foundation (IOF) and the 
International Federation of Clinical Chemistry and Laboratory Medi-
cine (IFCC) suggest using procollagen type I N terminal peptide (P1NP) 
as a marker of bone formation and C-terminal telopeptide of type I 
collagen (CTx) as a specific marker of bone resorption [2].

It should be noted here that while the above markers of bone 
turnover reflect the main functions of osteoblasts and osteoclasts, 
they do not take into consideration the significant role of osteocytes. 
Sclerostin seems to be a good marker of bone turnover that is involved 
in bone remodelling and may reflect the activity of osteocytes [3].

Sclerostin is a product of the SOST gene, which is located in the 
17q12-21 chromosomal region. Sclerostin acts as a negative regu-
lator of bone formation, through inhibition of the Wnt signalling 
pathways, which is of critical importance for the development and 
function of osteoblasts [4]. Sclerostin is a glycoprotein that belongs 
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to the DAN family of bone morphogenetic protein (BMP) antago-
nists [5] and contains a C-terminal cysteine knot-like domain [5, 6]. 

The expression of sclerostin by osteocytes is regulated by me-
chanical forces and hormones known to affect bone metabolism, 
such as parathyroid hormone, calcitonin and glucocorticoids [7]. 
Mechanical stimulation of the skeleton induces bone formation 
through either exercise or experimental loading, while immobilisation 
increases the number of sclerostin positive osteocytes [8, 9]. Scleros-
tin concentrations are also affected by sex steroids [10]. 

Sclerostin changes bone mass through alterations in osteocyte 
and osteoblast Wnt and prostacyclin signalling pathways [11]. 
Sclerostin influences vitamin D metabolite concentrations, the con-
centrations of phosphaturic peptides such as fibroblast growth factor 
23 (FGF-23), and the renal handling of calcium and phosphorus 
[12]. In the absence of sclerostin, concentrations of the active me-
tabolite of vitamin D 1α,25(OH)2D are increased, whereas concen-
trations of the inactive metabolite of vitamin D 24,25(OH)2D are 
decreased [13, 14]. In the absence of sclerostin the excretions of 
urinary Ca is diminished, suggesting a direct effect of the protein on 
renal Ca excretion. To respond to alterations in bone mass, 1,25(OH)2D 
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and FGF-23 concentrations are altered, as is the renal excretion of 
calcium, thereby resulting in a positive calcium and phosphorus 
balance [12, 15].

Physical exercise affects serum sclerostin levels. Sclerostin con-
centrations decrease in response to mechanical strain [16, 17] and 
increase during bed rest [9]. However, an increase of sclerostin con-
centration has been observed as a consequence of a 3-week bicycle 
race [18]. There are only a few reports in the available literature on 
the effects of regular physical activity of several years’ duration (the 
case of professional athletes) on basal serum concentrations of scleros-
tin [19, 20, 21]. Therefore we wanted to compare concentrations 
of sclerostin, selected markers of bone turnover (PTH, P1NP) and 
25(OH)D3 in professional athletes and male controls characterized 
by a low level of physical activity.

MATERIALS AND METHODS 
The study was conducted in December in 59 healthy males aged 
17-37. Forty-three of them were professional football players (group 
A, athletes) with mean career duration of 14.7±4.5 years. The mean 
age in A was 26.5±3.4 years, body weight 76.3±7.3 kg, height 
182.0±6.6 cm and BMI 23.1±1.5 kg · m-2. The mean maximal 
oxygen consumption in A was 56.09±4.29 ml · kg -1· min-1. Athletes 
were in the competitive phase and undertook similar exercise loads. 
In the winter season, they trained outdoors for about 3 hours daily in 
Wrocław, Poland (51°10’N) in uniforms covering 80% of their bodies. 
The control group (group NA, non-athletes) consisted of 16 healthy, 
non-smoking men whose mean age was 29.5±4.3 years and whose 
level of physical activity was low (1357.36 ± 1720.48 MET h· week -1). 
The mean body weight in NA was 81.7±8.7 kg, height 178.7±4.1 
cm and BMI 25.6±3.1 kg · m-2. All subjects from the control group 
worked indoors.

Neither A nor NA used any food supplements/medications contain-
ing vitamin D or calcium. 

Height was measured with a stadiometer and body mass with an 
electronic scale. 

The level of physical activity in the control group was determined 
using the Polish version of the International Physical Activity Ques-
tionnaire (IPAQ, short form). Food intake was evaluated by dietary 
recall (we evaluated foods and beverages the subjects consumed 
over 24 hours for 7 days). The computer software Dieta 5.0 was 
used to calculate the quantities of vitamin D and calcium for each 
of the soccer players and each of the controls.

The study was approved by the Bioethics Committee of the Uni-
versity School of Physical Education in Wrocław, Poland.

Biochemical analysis
Blood sampling was carried out fasting at 8.00 am (after a 24-hour 
period without training in the group of football players). Serum was 
separated from the samples and stored at –70°C.

Serum concentrations of 25(OH)D3, parathormone (PTH), and 
procollagen type I N-terminal peptide (P1NP) were determined by 

electrochemiluminescence (ECLIA) using the Elecsys system (Roche, 
Switzerland). The intra- and interassay coefficients of variation (CVs) 
and the limit of detection were respectively: 5.6%, 8.0% and 4 ng · ml-1 
(10 nmol · l-1) for 25(OH)D3; 4.5%, 4.8% and 1.20 pg · ml-1 (0.127 
pmol · l-1) for PTH; and 2.3%, 2.8% and <5 ng · ml-1 for P1NP.

Sclerostin concentrations were determined by ELISA (Biomedica, 
Austria). The intra- and interassay of coefficients of variation were 
5% and 4% and the limit of detection was 2.6 pmol · l-1. Serum 
calcium was determined by colorimetry using the Konelab 60 system 
(bioMérieux, France). The intra- and interassay CVs were 1.4% and 
1.95%, and the limit of detection was 0.36 mmol · l-1 (1.4 mg · dl-1).

Statistical analysis
Statistical analyses were performed using PQStat for Windows (version 
1.4.2.324). Serum concentrations of bone metabolic markers were 
compared between the groups using parametric tests (Student’s t-test) 
for normally distributed variables and non-parametric tests (the Wil-
coxon signed-rank test) for variables that did not meet the criterion 
for normal distribution. The relationship between serum concentrations 
of 25(OH)D3, bone turnover markers and calcium, and the intake of 
vitamin D, calcium and energy was analysed by estimating the Spear-
man rank correlation coefficient. Data are presented as mean ± SD 
with p<0.05 being indicative of statistical significance.
 
RESULTS 
The results of the study are summarised in Table 1. There were no 
significant differences in the values of anthropometric parameters 
between the group of athletes (A) and non-athletes (NA). 

Table 1 shows the mean and SD values of: serum concentrations 
of sclerostin, 25(OH)D3, markers of bone turnover (PTH, P1NP), 
serum calcium, values of calcium, vitamin D and energy, vitamin D 
and calcium intake in A and NA. 

The mean concentration of sclerostin in A was significantly high-
er than in NA. The athletes had higher concentrations of P1NP and 
25(OH)D3 and lower concentrations of PTH. We did not find any 
significant differences in the intake of calcium, vitamin D or energy 
between the two study groups.

Assuming the concentrations of serum 25(OH)D3 in the range 
30–50 ng · ml-1 are the physiological norm [22], we found that only 
14% of A fulfilled this criterion while 76.7% had vitamin D defi-
ciency. In the control group, 100% of the subjects were vitamin D 
deficient.

We found a significant negative correlation (r= –0.28) between 
serum sclerostin and serum calcium in the studied subjects.  
 
DISCUSSION 
The literature reports on the concentrations of sclerostin in athletes 
compared with non-active individuals are scarce and inconclusive.

Lombardi et al. [21], investigating sclerostin concentrations in 
elite athletes, found higher sclerostin concentrations in males per-
forming weight-bearing activities as compared to those performing 
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non-weight-bearing activities. It is therefore possible that different 
types of physical activity result in differences in sclerostin levels. 
Lombardi et al. [21], similarly to us, also found that individuals with 
low levels of physical activity have lower serum concentrations of 
sclerostin (0.35±0.05 ng · ml-1) than professional rugby players 
(0.44±0.11 ng · ml-1) or endurance athletes (0.42±0.04 ng · ml-1). 
Fazeli et al. [20] investigated 50 adolescents between 15 and 21 
years of age and also noted higher sclerostin concentrations in athletes 
compared to non-athletes. Grasso et al. [18] followed 9 profes-
sional cyclists during a cycling stage race and found an increasing 
trend for sclerostin plasma concentration (day 1, 12, 23 of race). 
Moreover, sclerostin concentration was correlated with the effort, the 
urine Ca, and the muscular activity [18].

It is not clear why sclerostin concentrations might be higher in 
athletes compared to non-athletes. Circulating sclerostin concentra-
tion may, for instance, reflect total-body skeletal mass, as a larger 
skeleton may simply produce and release more sclerostin into the 
circulation. In contrast to what would normally be expected, given 
that sclerostin is a potent inhibitor of the Wnt signalling pathway, 
serum sclerostin concentrations have been found to be positively 
associated with bone mineral mass [23]. Furthermore, it may well 
be that higher concentrations of sclerostin in athletes are associated 
with counteracting the constant increases in bone formation and 
bone mass from repetitive mechanical loading.

It should also be noted that our study was carried out in Decem-
ber, at the end of the competitive period, following a long (8-month) 
training period. As has been previously reported [24, 25], the con-
centrations of bone markers are affected by the time of sampling 
within the training period.

A factor that is undoubtedly adding to the divergence and incon-
sistency is that the available assays measure different components 
of the sclerostin molecule [26].

Our results are in line with those reported by Bell et al. [27], who 
investigated body builders versus physically inactive individuals. On 
the other hand, Zittermann et al. [28], comparing representatives of 
various disciplines (triathlon, team sports, track and field sports) 

with sedentary controls, found higher concentrations of 25(OH)D3 
in the group of athletes. The higher serum concentrations of 25(OH)
D3 in the athletes studied by us may have resulted from the fact that 
they had more frequent and longer exposure to sunlight (outdoor 
training). We did not observe any association between serum con-
centrations of sclerostin and 25(OH)D3 in the studied subjects. 
Similar results were presented by Dawson-Hughes et al. [19]. Treat-
ment with vitamin D did, however, increase serum sclerostin con-
centrations in healthy older men [29].

We observed a highly significant difference between A and NA in 
regard to PTH and P1NP serum concentrations. PTH in A was low-
er than in NA, which was consistent with the observation by Du-
rosier et al. [26]. Several studies have demonstrated that PTH con-
centrations do not change or increase during exercise [27, 30, 31, 
32, 33, 34]. Lower concentrations of PTH coupled with higher cal-
cium concentrations in A may indicate that endurance exercise in-
duces permanent suppression of PTH secretion. Another explanation 
of increased PTH concentrations in controls is the presence of a more 
pronounced vitamin D deficiency. 

Both in experimental and clinical studies, PTH impacts sclerostin 
concentrations and PTH actually down-regulates sclerostin activation. 
A negative correlation is thus observed between PTH and sclerostin 
concentrations [26, 35, 36, 37]. Like Mirza et al. [38], in premeno-
pausal women we did not observe correlations between the concen-
trations of sclerostin and PTH in the studied men.

Our findings suggest that high levels of physical activity may be 
associated with higher concentration of P1NP – the most specific 
marker of bone formation. In contrast with these, Scott et al. [39] 
found that exercise of high intensity did not affect the concentrations 
of such bone turnover markers as P1NP or bone alkaline phosphatase. 
They did, however, suggest that the concentrations of bone formation 
markers might increase after a prolonged period of physical activity. 
The high level of P1NP responsible for bone formation in football 
players may be a reflection of the dynamic changes in the bone that 
are associated with the repair of microinjuries caused by physical 
activity.

TABLE 1. Serum concentrations of bone turnover markers, 25(OH)D3 and calcium, and daily dietary intake of energy, vitamin D, and 
calcium in the group of athletes (A) versus non-athletes (NA).

A (n=43) NA (n=16) P

Sclerostin (pmol · l-1) 35.3 ± 8.9 28.0 ± 5.6 0.004

P1NP (ng · ml-1) 145.6 ± 77.5 61.2 ± 22.3 <0.0001

PTH (pg · ml-1) 25.8 ± 8.3 38.2 ± 11.5 <0.0001

25(OH)D3 (ng · ml-1) 16.9 ± 8.4 10.3 ± 4.3 0.004

Calcium (mmol · l-1) 2.55 ± 0.05 2.36 ± 0.09 0.0004

Vitamin D intake (μg · d-1) 5.1 ± 4.2 4.7 ± 5.1 NS

Calcium intake (mg · d-1) 1072.1 ± 373.7 1051.3 ± 484.1 NS

Energy intake (kcal · d-1) 2655.7 ± 448.7 2585.1 ± 664.3 NS

Note: The values are presented as mean ± SD; P – p value; NS – not significant
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Our study also showed a negative correlation of circulating scleros-
tin concentrations with serum calcium levels. It is consistent with the 
recent findings reported by Amrein et al. [40].

Mödder et al. [10] studied men aged 20 to 39 years and simi-
larly to us did not find any significant correlation of sclerostin concen-
trations with such markers of bone turnover as PTH and P1NP. Du-
rosier et al. [26] also found no association of sclerostin concentrations 
with those of PTH and 1,25(OH)2D. However, after adjustment for 
bone mineral mass, serum sclerostin concentration was inversely 
associated with PTH, 25(OH)D3 and P1NP (after adjustment for sex). 
A weak correlation was also observed between the changes in serum 
sclerostin concentrations and P1NP (adjusted for age and BMI) in 
the group of premenopausal women [16]. Fazeli et al. [20], on the 
other hand, found a positive association between sclerostin and P1NP.

CONCLUSIONS 
Our results suggest that professional, years-long training in athletes 
may be associated with increased serum concentration of sclerostin. 
We did not find any significant correlation between sclerostin and 
the other markers of bone turnover (PTH, P1NP) in the studied 
subjects.
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