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Abstract

Elevated concentrations of serum phosphate are linked with progression and

increased case fatality rate in animals and humans with chronic kidney disease. Ele-

vated concentrations of serum phosphate can be a risk factor for development of

renal and cardiovascular diseases or osteoporosis in previously healthy people. In

rodents, an excess intake of dietary phosphorus combined with an inverse dietary

calcium : phosphorus ratio (<1 : 1) contributes to renal calcification. Renal injury also

has occured in cats fed experimental diets supplemented with highly soluble phos-

phate salts, especially in diets with inverse calcium : phosphorus ratios. However, not

all phosphorus sources contribute similarly to this effect. This review, which focuses

on cats, summarizes the published evidence regarding phosphorus metabolism and

homeostasis, including the relative impact of different dietary phosphorus sources,

and their impact on the kidneys. No data currently shows that commercial cat foods

induce renal injury. However, some diets contain high amounts of phosphorus rela-

tive to recommendations and some have inverse Ca : P ratios and so could increase

the risk for development of kidney disease. While limiting the use of highly soluble

phosphates appears to be important, there are insufficient data to support a specific

upper limit for phosphate intake. This review also proposes areas where additional

research is needed in order to strengthen conclusions and recommendations regard-

ing dietary phosphorus for cats.
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1 | INTRODUCTION

Phosphorus (P) is a nutritionally essential macromineral and is

involved in most, if not all, of the metabolic reactions in the body,

including energy metabolism, bone and teeth formation, osmotic and

acid-base balance, electrolyte transport, and numerous enzyme
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systems; and is a constituent of nucleic acids.1-4 Most nonskeletal P in

the body is intracellular. The body controls extracellular P concentra-

tions primarily by regulation of urinary excretion but also by intestinal

absorption and deposition into and release from bound sources in

bone and other tissues.

Although P is essential, excess can be detrimental. Elevated con-

centrations of blood phosphate or maladaptive activation of hormonal

systems involved in regulating phosphate could have direct toxic

effects on the kidneys and cardiovascular system.5,6 Reducing serum

phosphate concentration (sPi) in subjects with chronic kidney disease

(CKD) delays progression and death.7-12 Evidence in humans suggests

that elevated sPi (in the high normal range or highest quartile in popu-

lation studies) can be a risk factor for development of renal disease,

cardiovascular disease, or osteoporosis, and is associated with increased

mortality.13-16 Although there are discrepancies between dietary P and

sPi, dietary factors do contribute to sPi, as detailed below. Human diets

considered to increase risk for elevated sPi are those high in added

phosphates (Pi) and low in calcium (Ca), resulting in inverse Ca : P ratios

(phosphorus greater than calcium) which is itself a risk factor for renal

injury.17,18 In cats, under some circumstances, intake of highly soluble Pi

salts can induce damage to otherwise healthy kidneys.19,20 The detri-

mental effects of the Pi salts are not limited to clearly excessive dietary

P nor inverse dietary Ca : P ratios. In some cases, the effects occur dur-

ing feeding of diets containing total P concentrations not in excess of

that found in some commercial diets, although the sources and propor-

tions of added Pi in the experimental diets differ from those in commer-

cial diets.

This review summarizes the published evidence regarding P metabo-

lism and homeostasis, including how these factors affect the kidneys. This

review further notes the limitations and gaps in the existing evidence, and

proposes areas where additional research is needed in order to strengthen

conclusions and recommendations regarding dietary P for cats.

2 | PHOSPHORUS DIGESTION,
METABOLISM, AND HOMEOSTASIS IN
MAMMALS

Dietary P is absorbed in the small intestine via 2 general mechanisms:

sodium-dependent active absorption (primary route), and concentration

dependent paracellular diffusion (secondary route) in humans and rodents.

Active absorption of P is up- or down-regulated depending on the animal's

needs and various regulating factors, while paracellular diffusion is more

dependent on the total amount consumed.21-23 Parathyroid hormone

(PTH), 1-25-dihydroxy vitamin D3 (1,25D3), fibroblast growth factor

23 (FGF23), thyroid hormone, glucocorticoids, estrogens and metabolic

acidosis are just some of the endogenous metabolic factors that can mod-

ify intestinal P uptake either directly or indirectly.2,23-25 In addition, P

absorption in most species is dependent on the intestinal pH, P needs of

the animal, source of P, and interactions with other dietary factors such as

dietary Ca, magnesium (Mg), and phytates.2,21,24-31 Metabolic acidosis

upregulates sodium-dependent P uptake in the intestines of mice while

simultaneously increasing urinary excretion of phosphate (Pi).2 Dietary Ca

and Ca : P ratio exert an influence over P availability, with intestinal

absorption of P inversely affected by dietary Ca and Ca : P ratio, thus

increasing when Ca : P is low. This has been demonstrated in dogs and

cats, as well as other animals.21,32 Likewise, dietary Mg affects intestinal

uptake of both Ca and P in both rats and cats, with higher Mg decreasing

uptake of Ca and P.26,31,33,34

Increased dietary protein appeared to enhance renal Pi excretion

and decrease Pi retention in both adult and growing cats, so P require-

ments might be dependent on dietary protein content.28,35,36 This

effect could be an artifact of protein's effect on pH. Since Pi is a criti-

cal component of urinary titratable acids used to remove excess acid

from the body in a buffered form (dihydrogen phosphate), an acidic

pH can increase urinary Pi (uPi) excretion. This has been confirmed in

cats in 1 study designed to evaluate dietary base excess on urine

pH.37 In that study, there was a significant, negative correlation

between urinary pH and uPi. Similarly, in cats given phosphoric acid

to increase urinary acidification, average 24-hour Pi excretion was sig-

nificantly higher than in cats with less acidic urine despite identical

dietary P concentrations.38 Thus, as urine becomes less acidic, uPi

decreases which could increase positive P balance and increase sPi.

Dietary P can be intrinsic to ingredients, such as meats, bone

meals, and grains, or be added as inorganic sources such as mined

phosphate rock, phosphoric acid, or various phosphate salts. (Table 1).

Phosphorus from animal sources is primarily present as calcium phos-

phates (such as hydroxyapatite) and phosphate esters. The apparent

digestibility of P ranges between 0% and 80% depending on source

and other dietary variables. Grain and oilseed based P is poorly

digested because it is primarily present as phytate, with digestibility

between 0% and 40%.16,22,39 Supplemental inorganic Pi, such as those

in phosphate-containing food additives, have an intestinal uptake of

80% or greater.16,39 One study comparing cats fed P coming primarily

from poultry, meat, fish meals with added inorganic Pi (mono- and di-

basic sodium phosphates) confirmed greater intestinal uptake of the P

from sodium phosphates, with about 40% absorption compared to

about 20% absorption for the diet containing primarily animal sources

of P.27 Concurrent with this were increases in sPi and uPi in cats fed

the more digestible sodium phosphate containing diet.27 Although

supplemental inorganic P sources are generally more bioavailable than

those intrinsic to food ingredients, they are not uniform is this respect. In

dogs, monosodium phosphate (NaH2PO4) and monopotassium phosphate

(KH2PO4) significantly increased sPi and PTH compared to similar amounts

of P from poultry meal (Herbst S, Dobenecker B. Effects of phosphorus

addition from organic and inorganic sources on kinetics of selected blood

parameters in dogs. Proc Eur Soc Vet Clin Nutr 2018, Munich, Germany.

Abstract) while another study showed that the effects of calcium diphos-

phate (Ca[H2PO4]2) were intermediate between phosphorus from poultry

meal and monosodium phosphate (Siedler S, Dobenecker B. Effect of dif-

ferent P sources in high phosphorus diets with balanced Ca/P ratio on

serum PTH, phosphorus and calcium levels as well as apparent digestibility

of these minerals in dogs. Proc Eur Soc Vet Clin Nutr 2015, Toulouse,

France. Abstract).

Meta-analysis of digestion trials in dogs and cats estimated the

average true digestibility of P to be 17% in dogs and 31% in cats.32 In

2188 LAFLAMME ET AL.



T
A
B
L
E
1

N
am

es
an

d
ch

em
ic
al
fo
rm

ul
as

fo
r
ph

o
sp
ha

te
sa
lt
s

C
he

m
ic
al

fo
rm

ul
aa

C
o
m
m
o
n
na

m
ea

A
lt
er
na

te
na

m
es

a
U
se
d
in

re
se
ar
ch

ci
te
d
in

th
is
d
o
cu

m
en

t
U
se
d
in

ca
t
fo
o
d
s

(t
yp

e)
b

N
aH

2
P
O

2
So

di
um

hy
po

ph
o
sp
hi
te

M
ul
ti
pl
e

So
di
um

ph
o
sp
ha

te
U
se
d
as

ge
ne

ri
c
te
rm

fo
r
m
o
no

-,
di
-,
an

d
tr
i-
so
di
um

ph
o
sp
ha

te
s

W
et

N
aH

2
P
O

4
M
o
no

so
di
um

ph
o
sp
ha

te
So

di
um

D
ih
yd

ro
ge

n
ph

o
sp
ha

te
,S

D
H
P
;S

o
di
um

ph
o
sp
ha

te
m
o
no

ba
si
c,
so
di
um

di
hy

dr
o
ge

n

o
rt
h
o
ph

o
sp
ha

te

D
o
be

ne
ck
er

2
0
1
7
-c
at
s;
D
o
b
en

ec
ke

r
2
0
1
8
-c
at
s;

A
le
xa
nd

er
2
0
1
8
-c
at
s;
M
at
su
za
ki

1
9
9
9
-r
at
s;
F
in
co

1
9
9
9
-c
at
s

D
ry
,w

et

N
a 2
H
P
O

4
D
is
o
di
um

ph
o
sp
ha

te
D
is
o
di
um

hy
dr
o
ge

n
ph

o
sp
ha

te
,s
o
di
um

ph
o
sp
ha

te
di
ba

si
c

C
o
lt
he

rd
2
0
1
8
-c
at
s;
F
in
co

1
9
9
9
-c
at
s

D
ry
,w

et

N
a 3
P
O

4
T
ri
so
di
um

ph
o
sp
ha

te
So

di
u
m

o
rt
ho

ph
o
sp
ha

te
,t
ri
ba

si
c
so
di
um

ph
o
sp
ha

te
;

tr
is
o
di
um

o
rt
ho

ph
o
sp
ha

te
,T

SP

W
et

N
a 5
P
3
O

1
0

So
di
um

tr
ip
o
ly
ph

o
sp
ha

te
c

P
en

ta
so
di
um

tr
ip
ho

sp
ha

te
,S

T
P
P

C
o
lt
he

rd
2
0
1
8
-c
at
s;
M
at
su
za
ki

1
9
9
9
-r
at
s

D
ry
,w

et

N
a 4
P
2
O

7
T
et
ra
so
di
um

py
ro
ph

o
sp
ha

te

T
SP

P
,S

o
di
um

py
ro
ph

o
sp
ha

te
D
ry
,w

et

(N
aP

O
3
) 6

So
di
um

he
xa
m
et
ap

ho
sp
ha

te

So
di
u
m

po
ly
m
et
ap

ho
sp
ha

te
D
ry
,w

et

H
3
P
O

4
P
ho

sp
ho

ri
c
ac
id

d
O
rt
ho

ph
o
sp
ho

ri
c
ac
id

D
ry
,w

et

C
aH

4
(P
O

4
) 2
;O

R

C
a(
H
₂P
O
₄)
₂

M
o
no

ca
lc
iu
m

ph
o
sp
ha

te
C
al
ci
um

bi
ph

o
sp
ha

te
,C

al
ci
um

m
o
no

ba
si
c
ph

o
sp
ha

te
,

C
al
ci
um

di
hy

dr
o
ge

n
ph

o
sp
ha

te

D
o
be

ne
ck
er

2
0
1
7
-c
at
s;
D
o
b
en

ec
ke

r
2
0
1
8
-c
at
s

D
ry
,w

et

C
a 3
(P
O

4
) 2

C
al
ci
um

ph
o
sp
ha

te
T
ri
ca
lc
iu
m

o
rt
ho

ph
o
sp
ha

te
,p

en
ta
-C

al
ci
um

hy
dr
o
xi
de

tr
ip
ho

sp
ha

te
,C

al
ci
um

ph
o
sp
ha

te
tr
ib
as
ic

D
ry
,w

et

C
aH

P
O

4
D
ic
al
ci
um

ph
o
sp
ha

te
c,
d

C
al
ci
um

hy
dr
o
ge

n
ph

o
sp
ha

te
,c
al
ci
um

ph
o
sp
ha

te
di
ba

si
c

C
o
ck
el
l2

0
0
2
an

d
2
0
0
4
-r
at
s;
P
aB

la
ck

2
0
1
6
-c
at
s;

D
ry
,w

et

C
a 3
(P
O

4
) 2

T
ri
ca
lc
iu
m

ph
o
sp
ha

te
c

C
al
ci
um

ph
o
sp
ha

te
D
ry
,w

et

C
a 1

0
(P
O

4
) 6
(O

H
) 2

C
al
ci
um

ap
at
it
e

H
yd

ro
xy
ap

at
it
e

C
a 4
N
a(
P
O

4
) 3

D
ef
lu
o
ri
na

te
d
ph

o
sp
ha

te
D
ef
lu
o
ri
na

te
d
fe
ed

ph
o
sp
ha

te
D
ry
,w

et

K
H

2
P
O

4
M
o
no

po
ta
ss
iu
m

ph
o
sp
ha

te

P
o
ta
ss
iu
m

di
hy

dr
o
ge

n
ph

o
sp
ha

te
C
o
ck
el
l2

0
0
2
an

d
2
0
0
4
-r
at
s;
T
an

i2
0
0
7
-r
at
s;
M
at
su
za
ki

1
9
9
9
-r
at
s

D
ry
,w

et

K
2
H
P
O

4
D
ip
o
ta
ss
iu
m

ph
o
sp
ha

te
P
o
ta
ss
iu
m

ph
o
sp
ha

te
di
ba

si
c

K
3
P
O

4
T
ri
po

ta
ss
iu
m

ph
o
sp
ha

te
P
o
ta
ss
iu
m

ph
o
sp
ha

te
,p

o
ta
ss
iu
m

ph
o
sp
ha

te
tr
ib
as
ic

K
5
P
3
O

1
0

P
o
ta
ss
iu
m

tr
ip
o
ly
ph

o
sp
ha

te

P
en

ta
po

ta
ss
iu
m

tr
ip
ho

sp
ha

te
,p

o
ta
ss
iu
m

tr
ip
ho

sp
ha

te
M
at
su
za
ki

1
9
9
9
-r
at
s

K
4
P
2
O

7
P
o
ta
ss
iu
m

py
ro
ph

o
sp
ha

te
P
o
ta
ss
iu
m

di
ph

o
sp
ha

te
,t
et
ra
po

ta
ss
iu
m

di
ph

o
sp
ha

te
;

te
tr
ap

o
ta
ss
iu
m

py
ro
ph

o
sp
ha

te

a
P
ri
m
ar
y
re
so
ur
ce

fo
r
ch

em
ic
al
na

m
es

an
d
fo
rm

ul
as
:P

ub
C
he

m
:U

S
N
at
io
na

lL
ib
ra
ry

o
f
M
ed

ic
in
e.

b
U
S
C
at

fo
o
ds
,b

as
ed

o
n
in
gr
ed

ie
nt

in
fo
rm

at
io
n
lis
te
d
o
n
C
he

w
y.
co

m
,a
cc
es
se
d
F
eb

ru
ar
y
2
0
1
9
,a
nd

M
in
te
l's

G
lo
ba

lN
ew

P
ro
du

ct
s
D
at
ab

as
e
(g
np

d.
co

m
)a

cc
es
se
d
F
eb

ru
ar
y
2
0
2
0
.

c A
m
o
n
g
m
o
st

co
m
m
o
n
p
h
o
sp
h
at
e
ad

d
it
iv
es

u
se
d
in

w
et

ca
t
fo
o
d
s
in

U
SA

(g
n
p
d
.c
o
m
).

d
A
m
o
ng

m
o
st

co
m
m
o
n
ph

o
sp
ha

te
ad

di
ti
ve

s
us
ed

in
dr
y
ca
t
fo
o
ds

in
U
SA

(g
np

d.
co

m
).

LAFLAMME ET AL. 2189

http://chewy.com
http://gnpd.com
http://gnpd.com
http://gnpd.com


both dogs and cats, as in other species, Ca : P ratio affects P diges-

tion : higher ratios are associated with lower digestibility. Adult cats

fed diets with Ca : P ratios of 1 : 1 have apparent digestibility of P

averages about 50%, while increasing Ca to a ratio of 2 : 1 or 4 : 1

reduces apparent absorption.40 The reverse also holds true, with P

digestibility increased when the Ca : P ratio is less than 1 : 1.30,32 The

average true digestibility of dietary P was summarized as: 49% when

the Ca : P was less than 1 : 1; 27% when the Ca : P ratio fell between

1 : 1 and 2 : 1; and approximately 0% when Ca : P was greater than

2 : 1.32 It is not known how much of this effect is strictly the Ca : P

ratio or if differences in P sources or other dietary variables affect the

apparent digestibility of P.

Dietary Mg is another macromineral that interacts with Ca and

P. In cats, as dietary Mg (added as MgCO3) increases, intestinal

absorption of dietary P and urinary excretion of Pi are both reduced in

a linear manner.31 In addition to impact on Pi homeostasis, low serum

Mg is correlated with CKD, cardiovascular disease and all-cause mor-

tality.6,41,42 Mg can reduce vascular mineralization in the face of

hyperphosphatemia, reduce sPi, and reduce FGF23 which indepen-

dently contribute to death in CKD.6,41-43

In healthy subjects, nearly 100% of sPi is filtered via the renal glo-

merulus and 80% to 90% is typically reabsorbed via sodium-mediated

facilitated cotransporters in the renal tubules.16 That portion not

reabsorbed is excreted in the urine. Total renal phosphorus excretion

is balanced to phosphorus intake under the control of PTH, 1,25D3,

and FGF23 (and its cofactor α-klotho) so as to maintain sPi within a

fairly stable range.4,44 In cats, for example, acute responses to high

intake of readily available inorganic phosphate appear to involve rapid

secretion of PTH, resulting in increased uPi.45 Adaptation to longer

term feeding of cats with diets high in readily available phosphate

results in increases in both FGF23 and PTH, both increasing uPi.19 In

a healthy adult animal at steady state (not pregnant or lactating), the

total urinary Pi is thought to approximate the amount absorbed in the

intestines,46,47 although exceptions to this have been noted.47,48 In

particular, with inadequate intake of P or low absorption of P from

the intestine, uPi is low and may serve as an indicator of altered P reg-

ulation.44,49 In the face of kidney disease, however, urinary excretion

of P is compromised.50

The amount of phosphorus entering renal tubules is dependent

on glomerular filtration, as there are no other mechanisms by which

additional Pi can be added to the filtrate. Thus, for a given sPi, the

amount of Pi entering the tubules is dependent on glomerular filtra-

tion rate (GFR). As GFR decreases in the face of CKD, the amount of

filtrate decreases. Likewise, for a given GFR, the sPi affects the

amount of Pi entering the tubules. Thus, as sPi increases, the amount

of Pi entering the tubules increases despite the reduced GFR. Once in

the renal tubules, reabsorption or excretion is controlled by PTH,

1,25D3, and FGF23, as noted above. However, these also are impacted by

CKD. Both FGF23 and PTH are increased in CKD which result in reduced

renal tubular reabsorption of Pi and greater urinary Pi excretion, reduced

activation of 1,25D3 and reduced intestinal P absorption,51maintaining sta-

ble sPi despite reduced GFR. As CKD progresses, however, there is a

reduction in kidney-derived α-klotho, an essential cofactor for FGF23.25,52

In the absence of α-klotho, FGF23 is nonfunctional, thereby limiting the

kidney's ability to regulate Pi reabsorption despite increased concentrations

of FGF23. As the ability to regulate Pi homeostasis continues to decline

with advancing CKD, sPi increases until a new equilibrium is reached but at

a greater sPi. The increase in PTH, FGF23 and sPi that occur in CKD all are

associated with ongoing renal damage and increased mortality rates.53-55

3 | PHOSPHORUS DYSREGULATION AND
IMPACT ON RENAL HEALTH

Hyperphosphatemia contributes to ongoing damage in the face of

existing kidney disease, and dietary P restriction can help reduce this

ongoing damage.8,16,56-58 In humans, hyperphosphatemia secondary

to CKD is linked with disease progression, increased vascular damage

and cardiovascular morbidity and death.16,23,58 In mice with CKD fed

high P diets (ie, 0.9% P vs 0.5% P; Ca : P 0.66 : 1 vs 1.2 : 1), high P

intake results in vascular calcification which can aggravate CKD or

contribute to cardiovascular disease.59,60 Elevations in serum PTH and

FGF23, which are stimulated in healthy subjects by increased P intake

and which are increased in patients with established CKD, are associ-

ated with increased risk of CKD progression6,61 Likewise, in cats, ele-

vations in sPi, PTH and FGF23 are risk or prognostic factors for all-

cause mortality and progression of CKD.55,62-65 Serum Pi is positively

correlated with severity of interstitial fibrosis in cats with CKD.66

However, it is not known if these substances actually contribute to

renal injury, or are simply markers of ongoing renal injury.16

Female rats are predisposed to development of nephrocalcinosis,

or calcification of kidney tissue especially at the corticomedullary

junctions. This form of kidney disease is responsive to dietary P and

to the dietary Ca : P ratio.18,67-70 An inverse Ca : P ratio (Ca less than

P) appears to be the primary risk factor although absolute amounts of

Ca and P also influence nephrocalcinosis.18,68 For example, when

female rats were fed a diet that contained approximately 5 g Ca and

6 g P/kg dry diet and had a molar Ca : P ratio of about 0.66 : 1, kidney

tissue accumulated 171 ± 130 μmol calcium/g dry tissue weight. In

the same study, female rats fed diets modified with considerably more

Ca and P but molar Ca : P ratios of 1.1-1.2 : 1 showed significantly less

calcification. The highest Ca diet, containing 20 g Ca and 13 g P/kg

dry diet, with a molar Ca : P ratio of 1.2 : 1, resulted in only

39 ± 31 μmol calcium/g dry tissue weight despite containing 4× more

Ca and 2× more P than the diet with the inverse Ca : P ratio.68

In dogs with induced CKD, restriction of dietary P reduces the

associated morbidity and improves survival.56,71,72 In cats with induced

renal failure, restriction of dietary P from 1.56% of diet dry matter

(DM) to 0.42% results in less renal mineralization, fibrosis and inflam-

matory cell infiltration.7 Cats on the lower P intake also have lower

serum Pi and PTH concentrations compared to those fed the high P

diet. It is important to note that the high P diet used a highly soluble

inorganic P salt mixture (Na3PO4) for a large portion of the P (about

73% of total P, or 1.1% diet DM added Pi) and also had an inverse Ca : P

ratio, both of which can alter bioavailability and renal effects of P.7

While no studies have evaluated P restriction alone in cats with

2190 LAFLAMME ET AL.



naturally occurring CKD, several do show clinical benefits in cats with

CKD fed “renal diets” (restricted in phosphorus, protein, and sodium,

plus alkalinizing buffers and often with other changes compared to

maintenance diets) or those treated with phosphate binders.9,10,73,74

Evidence in people has been accumulating that elevations in sPi

can be a risk factor for development of renal disease, cardiovascular

disease and increased mortality even in patients with apparently nor-

mal kidney function.14-17 These epidemiological studies evaluated sPi

rather than intake, and the association between dietary P and sPi is

weak at best.58,75,76 Discrepancies between dietary P and sPi in

healthy subjects are due to several factors including normal diurnal

variation in sPi and efficient excretion of excess P such that fasting

sPi does not change with alterations in P intake.15,77,78Serum Pi,

which represents only about 1% of total body P, also can be affected

by fluxes into and out of intestine, bone and intracellular spaces.76,78

Additional factors include differences in bioavailability of various P

sources, and other dietary factors that can alter P absorption, such as

the dietary Ca : P ratio.15,45,58 Studies evaluating P intake yielded

mixed results regarding impact on morbidity or mortality rates. For

example, the NHANES III study found no association between dietary

P and mortality in patients with compromised renal function, yet

another study in dialysis patients reports a strong association between

dietary P and mortality rate.16 In the NHANES III study, analysis of

data from the subset of subjects that were healthy at the start of the

study demonstrated a positive association between diet P and mortal-

ity among individuals consuming more than 1400 mg per day.79 How-

ever, in that same study, diets with the lowest P concentrations

(energy basis) were also associated with greater all-cause mortality.79

A study in human patients with or without diabetes mellitus docu-

mented an increased risk for development of CKD in those diabetic

patients consuming the highest P diets, but no impact was observed

in the nondiabetic subjects.80

A small study in pet dogs and cats suggests a positive correlation

between high P intake (assessed through dietary questionnaire) and

CKD in cats, but not in dogs.81 Median P intake at the time of diagno-

sis was 239% of the recommended allowance in cats with CKD and

147% of the recommended allowance in the controls. Home-made

diets were the most commonly fed diet type in this study, and the P

sources and Ca : P ratio were not reported. In a different study of

aged cats (10 years of age or older) without clinical evidence of CKD,

a higher P diet (2.6 g/Mcal) had no impact on development of azote-

mic CKD compared with those fed a lower P diet (1.6 g/Mcal) over an

18-month period.77 It should be noted that in this study the overall

prevalence of azotemic-CKD was less than expected, so the study

might have been underpowered to detect an effect from P intake.

High Pi concentrations alter vascular and endothelial function and

alter the nitric oxide pathway in in vitro studies.82,83 It is hypothesized

that these changes can contribute to increased proteinuria, which

might contribute to further renal injury.16 In human patients with and

without CKD, there is a significant association between sPi or uPi

excretion and proteinuria.16 The endothelial effects have been con-

firmed with in vivo studies in humans and rats.82-85 For example,

healthy men fed 1200 mg P (vs 400 mg P) show 2-hours postprandial

elevations in sPi and compromised vascular function measured as

flow-mediated dilation of the brachial artery. However, the Ca : P

ratio in this treatment group was 0.167 : 1.82 The lower the dietary

Ca : P ratio, the higher the apparent likelihood of adverse effects

related to any given dietary P intake.58 Lack of control of the Ca : P

ratio is a common confounding issue in studies investigating the

effects of high P intake.15,16,70,79,82-84

4 | EVIDENCE FOR PHOSPHORUS' ROLE
IN RENAL HEALTH IN CATS

Although there is currently no evidence that P in commercial cat

foods induces renal disease in healthy cats, high “ash” content in food

might be a risk factor for developing CKD.86 Ash refers to all the min-

erals in food, and this includes P but is not specifically correlated to

it. In that study, higher intakes of dietary fiber, magnesium and sodium

all were associated with reduced risk for CKD. Each of these nutrients

can impact dietary P availability. Another small study suggests that

increased P and protein intakes might be associated with CKD in cats.81

Studies in healthy cats show an impact of dietary P, or inverse

Ca : P ratios, on markers of kidney function.19,20,87,88 In the earliest

study, cats were fed 4 purified diets each for 28 days with incremental

increases in dietary P (4.6, 9.2, 18.4, and 27.7 mmol/MJ [0.28%,

0.56%, 1.12%, and 1.71% of dry diet]). Dietary Ca was held constant

so that the Ca : P ratio decreased with increasing dietary P, provided

as sodium dihydrogen phosphate dihydrate (NaH2PO4-2H2O). The

Ca : P ratios ranged from 1.8 : 1 down to 0.3 : 1.87 At the highest P

level tested (with lowest Ca : P ratio), food intake decreased; sPi was

reduced and serum alkaline phosphatase increased. Also, in this diet

group, creatinine clearance decreased, suggesting an adverse impact on

renal function in otherwise healthy cats. Fasting sPi was reduced with

the higher dietary P and reduced GFR, although the significance of this

is not known.

In the second study, healthy cats developed glucosuria, micro-

albuminuria and showed significantly decreased creatinine clearance

within 28 days of being fed a diet containing approximately 3 g

P/Mcal ME (1.6% of diet DM) with approximately 2/3 provided as a

combination of monocalcium (CaH4[PO4]2) and monosodium-(NaH2PO4)

phosphates.20 The amount of phosphorus from highly soluble mono-

sodium phosphate was approximately 0.4 g/Mcal ME or 0.17% of diet

DM, in a diet with a Ca : P ratio of approximately 0.4 : 1.

A third study compared a diet supplemented with sodium dihydrogen

phosphate (SDHP: NaH2PO4, also referred to as monosodium phosphate)

to deliver 4.78 g P/Mcal ME (1.93% diet DM) with a Ca : P ratio of 0.6 to

a control diet providing 1.23 g P/Mcal ME (0.52% diet DM) and Ca : P at

1.1.19 Within 4 weeks after starting on this HP-NaP diet, cats developed

changes consistent with renal injury: increased plasma creatinine and urea

nitrogen; increased urinary microalbuminuria; decreased GFR; and ultra-

sound echogenicity changes consistent with altered renal morphology.

GFR also decreased in the control group, but to a lesser extent than the

HP-NaP group. A final study evaluated a more moderate diet providing

3.6 g P/Mcal ME (1.5% diet DM), including approximately 1.5 g P (0.6%
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diet DM) from SDHP, and a Ca : P ratio of 0.9.19 Urinary albumin excre-

tion was significantly increased in the higher P cats by week 4 and

remained elevated throughout the study. Three cats (12.5%) fed this diet

developed biochemical evidence of kidney disease and 36% of the cats

showed evidence of altered renal morphology. In addition, 15 cats (60%)

fed this diet developed renal stones, compared with 6 cats (27%) fed the

control diet.19 Thus, multiple studies show adverse renal effects in cats

fed diets containing highly soluble inorganic Pi especially, but not exclu-

sively, in diets with a Ca : P ratio less than 1 : 1—findings consistent with

those reported in other species. A key question not addressed in these

studies is the applicability of these findings to other P sources.

The studies above did not compare the effects of different P sources

on renal biomarkers, however other research evaluated different P sources

on other physiologically important parameters. One study compared a mix

of dietary P sources (poultry, meat, fish meals, and calcium phosphate) with

supplemental inorganic P from mono- and di-basic sodium phosphates, and

confirmed significantly greater uptake, along with increases in sPi and uPi

in cats fed the more digestible inorganic P.27 Two studies in cats compared

diets providing P only from rice and beef (total P approximately 0.54%-

0.64% DM) with high P diets providing additional P from either mono-

sodium phosphate (HP-NaP: total P, 1.7% DM) or monocalcium phosphate

(HP-CaP: total P, 1.5% DM).88 Monosodium phosphate is a water soluble P

source whereas monocalcium phosphate is poorly water soluble.89 The

Ca : P ratio was held constant for all diets at about 1.3 : 1. Each diet was

fed for 29 days. Urine volume doubled in cats fed HP-NaP diet (which was

high in sodium as well as P). Despite this increase in volume, uPi concentra-

tion increased. Glucosuria occurred in 54% of cats fed this diet but did not

occur with the HP-CaP diet. The authors concluded the differences in

phosphaturic effects were due to the high solubility of monosodium

phosphate.88

A different study design was used in series of acute kinetic trials in

cats fed diets with 2 different inorganic sodium phosphate sources, SDHP

and sodium tripolyphosphate (Na5P3O10).
45 Each randomized, cross-over

trial measured relevant blood parameters (plasma Pi, PTH and FGF-23

concentrations, and whole blood ionized Ca) over a 6-hour postprandial

period with no dietary adaptation period. The trials indicate a dose-

dependent and threshold effect from the supplemental sodium phos-

phates on plasma Pi: at 0.5 g P/Mcal (0.64 g kg diet DM) or greater added

inorganic Pi, plasma Pi and PTH increases and blood iCa decreases,

whereas with lesser additions or with increased food-source P, no

increases in plasma Pi or PTH occurs during the 6-hour postprandial

period. Furthermore, the Ca : P ratio of the diet affects the response to

dietary sodium phosphates, with a prolonged elevation in plasma Pi in

cats fed diets with Ca : P less than 1 : 1.45 Given that prolonged eleva-

tions in blood Pi are associated with renal injury and increased all-cause

mortality, at least in humans, this can have clinical importance.14

5 | PHOSPHORUS IN COMMERCIAL CAT
FOODS

Phosphorus sources have many uses in pet food in addition to their

contribution to nutritional adequacy. Some of these functional uses

include: control of urine pH for prevention of stone formation (ie,

phosphoric acid); reduced accumulation of dental tartar (ie, sodium

hexametaphosphate); and, processing aids to ensure optimal cooking

and texture (ie, sodium phosphates). Among commercial cat foods in

the United States, the most commonly added phosphorus sources for

wet foods include tricalcium phosphate, dicalcium phosphate, and

sodium tripolyphosphate, while phosphoric acid and dicalcium phos-

phate are the most commonly added sources of phosphate in dry cat

foods (Table 1).

United States pet food regulations address both nutrient content

of foods and ingredients used. Table 2 lists the recommendations for

Ca and P levels as cited by the NRC (National Research Council),

AAFCO (Association of American Feed Control Officials), and FEDIAF

(Fédération européenne de l'industrie des aliments pour animaux

familiers—The European Pet Food Industry Federation).90-92 None of

these organizations currently list a maximum or safe upper limit for

phosphorus for cat foods although FEDIAF does list a maximum for

the Ca : P ratio of 2 : 1, and both FEDIAF and AAFCO provide maxi-

mum limits for phosphorus for dog foods. In 2019, FEDIAF added a

TABLE 2 Calcium and phosphorus
recommendations for cats

Calcium (minimum) Phosphorus (minimum)

g/Mcal g/100 g DM g/Mcal g/100 g DM Ca : P ratio

FEDIAF

Growth and reproduction 2.5 1.0 2.1 0.84 1 : 1 to 1.5 : 1

Adults, 100 kcal/kg0.67 1.48 0.59 1.25 0.50 1 : 1 to 2 : 1

Adults, 75 kcal/kg0.67 1.97 0.79 1.67 0.67 1 : 1 to 2 : 1

AAFCO

Growth and reproduction 2.5 1.0 2.0 0.8 NRb

Adults 1.5 0.6 1.25 0.5 NRb

NRC (RA)a

Growth and reproduction 2.7 1.9 NRb

Adults 0.72 0.64 NRb

aRA, recommended allowance.
bNR, no recommendation.
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footnote relative to P, stating “High intake of inorganic phosphorus

compounds (such as NaH2PO4) may affect indicators of renal health

in cats (Alexander et al 2018, Dobenecker et al 2018 a, b). More

research is needed to clarify potential risk.”92

United States pet food regulations require all ingredients, includ-

ing specific sources of P, to be listed individually in descending order

by weight but this is not required for European pet foods. Further-

more, neither US nor European regulations require that total amounts

of P or Ca be listed on commercial pet food labels. Many cat foods in

the United Kingdom are not in compliance with published nutritional

guidelines, and more relevant to the topic of this paper, about 10%

have inverse Ca : P ratios (below 1 : 1).93 Likewise, among 82 cat

foods sold in the United States, approximately 16% had an inverse

Ca : P ratio.94 Given that the combination of low Ca : P ratios coupled

with use of some highly soluble Pi salts are associated with markers of

renal injury, it is important to address this potential danger. Although

much remains to be studied, currently available data suggests the need

to maintain dietary Ca : P at or above 1 : 1, while also avoiding excess

inorganic Pi salts. However, specific guidelines regarding inorganic Pi

salts require additional data as different inorganic Pi show differences

in bioavailability and may differently impact renal health.27,45,88

6 | WHAT CONCLUSIONS CAN AND
CANNOT BE DRAWN BASED ON CURRENTLY
AVAILABLE EVIDENCE?

Based on currently available evidence, it is clear that excess phospho-

rus, especially when provided as highly soluble inorganic phosphate

salts, can be damaging to kidneys. This effect appears to be more pro-

nounced in foods with an inverse Ca : P ratio. What is not known is

the impact of various phosphate salts which vary in digestibility and

physiological effects. Safe upper limits have not been established for

the various Pi salts. Adverse effects can occur with high Pi diets in rel-

atively short term studies, but might lower amounts be detrimental

over longer periods or do physiological adaptations occur to protect

against these effects and, if so, do individuals vary in their ability to

adapt? Other dietary factors, such as the presence of phytates, fibers,

other minerals, differences in base excess and differences in the base

diet matrix, also may alter the impact of dietary P. No data currently

shows that commercial diets induce renal injury. However, some com-

mercial diets contain high amounts of phosphorus relative to recom-

mendations and some have inverse Ca : P ratios, so could increase the

risk for development of CKD.

It is clear that more research is needed. Until more evidence is

available, the authors recommend avoiding diets with a Ca : P less

than 1 : 1. Postprandial increases in serum Pi and PTH can occur when

highly soluble sodium phosphates are added to diets in amounts equal

to or greater than 0.5gP/Mcal, despite a Ca : P ratio above 1 : 1. How-

ever, similar results do not occur with other inorganic phosphates,

such as calcium phosphates, and many inorganic phosphate sources

have not yet been evaluated in this manner. While limiting the use of

highly soluble phosphates, such as sodium- or potassium-phosphates,

appears to be important, there are insufficient data to support a spe-

cific upper limit for inorganic or soluble phosphates at this time.

Among the additional research needed are studies to identify sensitive

markers of renal injury; to identify risk, if any, from current commer-

cial products; and to generate more information about the kinetics,

impact of different phosphorus sources, and the physiological adapta-

tions to long term feeding of highly bioavailable phosphates.
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