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Cell volume regulation (CVR) is essential for survival and functions of animal cells.
Actually, normotonic cell shrinkage and swelling are coupled to apoptotic and necrotic
cell death and thus called the apoptotic volume decrease (AVD) and the necrotic
volume increase (NVI), respectively. A number of ubiquitously expressed anion and
cation channels are involved not only in CVD but also in cell death induction. This series
of review articles address the question how cell death is induced or protected with
using ubiquitously expressed ion channels such as swelling-activated anion channels,
acid-activated anion channels and several types of TRP cation channels including
TRPM2 and TRPM7. The Part 1 focuses on the roles of the volume-sensitive outwardly
rectifying anion channels (VSOR), also called the volume-regulated anion channel
(VRAC), which is activated by cell swelling or reactive oxygen species (ROS) in a manner
dependent on intracellular ATP. First we describe phenotypical properties, the molecular
identity, and physical pore dimensions of VSOR/VRAC. Second, we highlight the roles
of VSOR/VRAC in the release of organic signaling molecules, such as glutamate,
glutathione, ATP and cGAMP, that play roles as double-edged swords in cell survival.
Third, we discuss how VSOR/VRAC is involved in CVR and cell volume dysregulation as
well as in the induction of or protection from apoptosis, necrosis and regulated necrosis
under pathophysiological conditions.

Keywords: cell volume regulation, apoptotic cell death, necrotic cell death, VSOR/VRAC, glutamate release, GSH
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INTRODUCTION

For the survival of animal cells, control of their cell volume
is essential, since the water permeability of cell membranes
is high enough to allow passive water fluxes in response to
changes in the extracellular and/or intracellular osmolarity
under both physiological and pathological situations (see
Books: Okada, 1998; Lang, 2006). Animal cells cope with
osmotic cell swelling by the regulatory volume decrease (RVD)
and with osmotic cell shrinkage by the regulatory volume
increase (RVI) attained by losing KCl and gaining NaCl from
intracellular and extracellular solutions, respectively (Lang et al.,
1998; Okada, 2004; Hoffmann et al., 2009). Among a large
variety of ion channels and transporters, most ubiquitously
expressed anion and cation channels ought to predominantly
participate in the mechanisms of cell volume regulation (CVR),
because this fundamental function is conserved throughout
evolution in animal cells irrespective of cell types for cell
survival. These ubiquitous volume-regulatory ion channels
include swelling-activated anion channels and stretch-activated
TRP cation channels as well as cell shrinkage-activated cation
channels, that is called the hypertonicity-induced cation channel
(HICC) (Wehner et al., 2003b). These volume-regulatory ion
channels also play protective roles against cell injury and
death caused by osmotic stress. The most ubiquitous swelling-
activated, volume-regulatory anion channel is called the volume-
sensitive outwardly rectifying anion channel (VSOR) (Okada,
1997), the volume-regulated anion channel (VRAC) (Nilius
et al., 1997) or the volume-sensitive organic osmolyte/anion
channel (VSOAC) (Strange et al., 1996). Here, we call
VSOR/VRAC or simply VSOR.

Dysfunction of CVR leads to cell death. Actually, persistent
cell shrinkage and swelling are major hallmarks of apoptotic and
necrotic cell death, and called the apoptotic volume decrease
(AVD) (Maeno et al., 2000) and the necrotic volume increase
(NVI) (Okada et al., 2001), respectively. AVD and NVI are
brought about by water fluxes driven by net loss of cellular
KCl and net gain of ambient NaCl, respectively. Thus, cell
death is initiated by dysfunction or impairments of CVR
mechanisms. Common pathological situations are injuries caused
by hypoxia or ischemia and that followed by re-oxygenation or
reperfusion, and they cause a variety of tissue stress including
not only osmotic perturbation but also production of reactive
oxygen species (ROS) and acidic overload. ROS are known to
activate VSOR, TRPM7 and TRPM2. Extracellular acidification
is known to directly activate one type of anion channel
which is called the acid-sensitive outwardly rectifying anion
channels (ASOR) (Wang et al., 2007) or the proton-activated
chloride channel (PAC) (Yang et al., 2019a). Acidity also rapidly
augments TRPM7 cation channel activity (Jiang et al., 2005;
Numata et al., 2019). Thus, altered activities of VSOR/VRAC
and ASOR/PAC anion channels as well as of TRPM2 and
TRPM7 cation channels are involved in dysfunction of CVR
that eventually leads to cell death. In the present article, we
review the roles of VSOR activity (in Part 1), as well as of
ASOR/PAC, TRPM2, and TRPM7 activities (in Part 2) in cell
death induction and protection.

PHENOTYPIC PORE PROPERTIES AND
MOLECULAR IDENTITY OF VSOR/VRAC

Phenotypical Properties of VSOR/VRAC
Currents
Among a number of types of mammalian anion channels,
VSOR and the maxi-anion channel (Maxi-Cl) are activated by
cell swelling and thereafter involved in RVD, thus both being
called volume-regulatory anion channels (Okada et al., 2018).
The functional expression of VSOR was first discovered in
1988 independently by two groups (Cahalan and Lewis, 1988;
Hazama and Okada, 1988). Its phenotypical properties were
fully clarified by a large number of groups (Strange et al., 1996;
Nilius et al., 1997; Okada, 1997), and can be summarized as
volume-sensitive, mildly outward-rectifying, non-hydrolytically
ATP-dependent anion channels with exhibiting an intermediate
single-channel conductance, low electric-field anion selectivity
(of Eisenman’s sequence I), sensitivity to intracellular free Mg2+,
and inactivation kinetics at large positive potentials (Okada et al.,
2019b). VSOR was found to be activated not only by cell swelling
but also by ROS independently by three groups (Browe and
Baumgarten, 2004; Shimizu et al., 2004; Varela et al., 2004) and
by a rise of nano-domain intracellular free Ca2+ induced by G
protein-coupled receptor (GPCR) stimulation (Akita and Okada,
2011; Akita et al., 2011).

Molecular Identities of VSOR/VRAC Core
Components
Since the discovery of VSOR activity in 1988, its molecular
entity had not been uncovered for a quarter of a century,
despite much efforts of proposing and disproving a number
of false-positive candidates including P-glycoprotein, pIcln,
ClC-3, Best1 and some TMEM16 (ANO) members especially
TMEM16F (ANO6), as summarized in recent review articles
(Pedersen et al., 2016; Okada et al., 2018, 2019b). At last,
through unbiased genome-wide approaches, LRRC8A was
recently identified as the core component of human VSOR
independently by two groups (Qiu et al., 2014; Voss et al.,
2014). This fact was subsequently confirmed to hold for VSOR
endogenously expressing in zebrafish (Yamada et al., 2016),
mouse (Okada et al., 2017), rat (Elorza-Vidal et al., 2018), and
insect (Kern et al., 2019). Furthermore, Jentsch’s group elucidated
that functional VSOR activity requires LRRC8A together with
LRRC8C, LRRC8D and/or LRRC8E (Voss et al., 2014). Sequential
co-immunoprecipitation studies evidenced physical interactions
between LRRC8A, LRRC8C and LRRC8E (Lutter et al., 2017).
In fact, a recent cryo-electron microscope (cryo-EM) study
demonstrated the hexameric structure of LRRC8A together with
LRRC8C (Deneka et al., 2018). However, it must be noted
that there may be some missing component or subcomponent
other than LRRC8 members, in light of the following facts. (1)
Double overexpression of LRRC8A and LRRC8C/8D/8E never
increased VSOR currents over the endogenous level in HEK293
and HCT116 cells (Voss et al., 2014) and HeLa cells (Okada
et al., 2017). (2) Overexpression of LRRC8A plus LRRC8D/8E
in cisplatin-resistant KCP-4 cells, that are largely deficient in
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VSOR activity, failed to restore VSOR currents up to the level
in its parental cisplatin-sensitive KB cells (Okada et al., 2017).
(3) Different cell types with similar LRRC8 expression levels
showed differences in VSOR activities (Okada et al., 2017).
(4) The activity of channels reconstituted with LRRC8A plus
LRRC8D/8E was found to be independent of intracellular ATP
(Syeda et al., 2016), the fact being at variance with native
VSOR activity that is requisitely dependent on intracellular ATP
(Jackson et al., 1994; Oiki et al., 1994). (5) Furthermore, the
channel reconstituted with purified LRRC8A plus LRRC8D/8E
was not activated by inflation-induced membrane expansion
(Syeda et al., 2016), the fact being contradictory to a known fact
that VSOR can be activated by pressure-induced cell inflation
(Hagiwara et al., 1992; Doroshenko, 1998; Best and Brown,
2009). In place of LRRC8 members, more recently, Tweety
homologs (TTYH1, TTYH2, and TTYH3) were proposed as
the VSOR core molecules in mouse astrocytes by Han et al.
(2019). Subsequently, TTYH1 and TTYH2 were reported to
serve as VSOR, in a manner independent of LRRC8A, in human
cancer cells including gastric SNU-601, hepatic HepG2 and
colonic LoVo cells by Bae et al. (2019). Our data also showed
that hypotonicity-induced VSOR currents were significantly
suppressed by siRNA-mediated triple knockdown of TTYH1,
TTYH2 and TTYH3 in human cervical HeLa cells (Okada et al.,
2020), suggesting an involvement of TTYHs in the regulation
or formation of VSOR. However, it must be pointed out that
studies with making gene knockout and channel reconstitution
of TTYH1, TTYH2, and TTYH3 are still missing to firmly
support the essential roles of TTYHs in the VSOR/VRAC
channel formation. At moment, we need to know as to whether
TTYHs can physically interact with LRRC8s and whether the
VSOR activity can be restored by overexpression of TTYHs
into cells in which all LRRC8s are knocked out. Also, it
must be stressed that it is still not definitely determined
whether LRRC8 and/or TTYH form the VSOR pore per se,
as summarized elsewhere (Okada et al., 2018; Okada, 2019),
because drastic alterations in the anion selectivity Eisenman’s
sequence and/or in the anion/cation permeability ratio have
not as yet been shown to be elicited by any charge-modifying,
especially charge-reversing, mutations at their putative pore-
forming regions.

Physical Dimensions of the VSOR/VRAC
Pore
The pore size of native VSOR channel was evaluated by
three different methods. First, the cut-off size of the organic
anions with limited permeability yielded the radius (R) of
0.37 nm; when the same data were approximated using
the excluded area theory with taking frictional forces into
account, the value of 0.58 nm was obtained (Nilius et al.,
1999; Nilius and Droogmans, 2003). Second, the cross-
sectional radius of the VSOR pore was estimated from the
experiments with calixarenes, basket-shaped compounds, acting
as permeant blockers, and was found to be 0.57–0.71 nm
(Droogmans et al., 1998, 1999). Third, a value of 0.63 nm
was obtained by the non-electrolyte partitioning method using

non-charged polyethylene glycols (Ternovsky et al., 2004).
Thus, based on three different and unrelated methods, it
is concluded that the native VSOR pore has a functional
radius of 0.6–0.7 nm at the narrowest portion of the ion-
conducting pathway.

Cryo-EM studies of the recombinant LRRC8 paralogs
combined with single particle analysis generated a series of
spectacular 3D-structures of the VSOR channel (Deneka et al.,
2018; Kasuya et al., 2018; Kefauver et al., 2018; Kern et al.,
2019; Nakamura et al., 2020), which produced pore dimensions
along the central axis of the channel, as depicted together with
the above functional radii in Figure 1 (left panel). According
to the structure of the mouse LRRC8A homohexamer reported
by Deneka et al. (2018), the pore is ∼10 nm long but not
uniform: it begins with a wide extracellular vestibule with
a radius of ∼0.8 nm followed by a constriction with R ∼
0.29 nm located at about 1.5 nm from the entrance; then the
pore widens up to R ∼ 1.6 nm around the TM region and
ends with an intracellular vestibule with a radius of ∼0.7 nm.
The structure of human homohexameric LRRC8A was found
to have a similar extracellular vestibule of ∼0.74 nm, but
the constriction, the transmembrane (TM) region and the
intracellular vestibule were wider with radii of ∼0.38, 2.54, and
1.13 nm, respectively (Kasuya et al., 2018). It is plausible that the
narrowest constriction part of the pore serves as the selectivity
filter, which restricts the passage of ions and osmolytes. The
radius of constriction was smallest (R ∼ 0.1 nm) in the structure
reported by Kefauver et al. (2018). It should be noted that the
ionic strength conditions and lipid environments significantly
affect the packaging of the channel protein generating tighter
structures with a narrower pore or more relaxed structures
with a wider pore (Deneka et al., 2018; Kasuya et al., 2018;
Kefauver et al., 2018; Kern et al., 2019). The largest radius of
the constriction part (R ∼ 0.57 nm), which is close to the
functional radius of the native VSOR pore, was reported for the
homohexameric channel formed by human LRRC8D (Nakamura
et al., 2020). This paralog is known to play an important
role in the permeability for charged and non-charged organic
osmolytes (Lutter et al., 2017) including Pt-based anti-cancer
drugs (Planells-Cases et al., 2015) and antibiotic blasticidin S
(Lee et al., 2014). As seen in Figure 1 (left panel), the radii
structurally evaluated by cryo-EM observations are smaller than
those functionally estimated by electrophysiological recordings.
In this regard, it must be pointed out that the cryo-EM
structural radii correspond to homohexamer of LRRC8A or
LRRC8D but not the native VSOR-forming heterohexamer of
LRRC8A+LRRC8C/D/E. Also, one cannot rule out a possibility
that the cryo-EM structure may represent the closed state, but
not the open state, of the channel.

Taken together, it appears that the native heterohexameric
channel composed of various combinations of LRRC8 paralogs
in native lipid environments should have an effective radius of
0.6–0.7 nm in the open state. As depicted in Figure 1 (right
panel), this size would thus allow passage of not only chloride
(R ∼ 0.18 nm) but also of taurine (R ∼ 0.31 nm), excitatory
amino acids such as aspartate (R ∼ 0.34 nm) and glutamate
(R ∼ 0.35 nm) very freely, and also ATP, ADP and UTP
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FIGURE 1 | VSOR/VRAC pore size and dimensions of the signaling molecules released via VSOR/VRAC. The pore radii depicted as the bar graphs were taken from:
1 – Kefauver et al., 2018; 2 – Kern et al., 2019; 3 – Deneka et al., 2018; 4 – Kasuya et al., 2018; 5 – Nakamura et al., 2020; 6 – Nilius et al., 1999; Nilius and
Droogmans, 2003; 7 – Ternovsky et al., 2004; 8 – Droogmans et al., 1998, 1999. The values for bars #1 and #2 were deduced from the graphs of the pore radius
plotted against the distance along the pore axis by the cited authors. Other values are as given by the cited authors. The hatched part of bar #8 indicates lower and
upper limits given by the authors. Blue and yellow bars represent the radii structurally evaluated by cryo-EM studies for LRRC8A/D homohexamers and those
functionally estimated for the native VSOR channel by electrophysiological studies, respectively. The unhydrated radii of the organic anions (shown as dashed lines)
were calculated as a geometric mean of molecular dimensions produced using Molecular Modeling Pro computer software (Norgwyn Montgomery Software Inc.,
North Wales, PA, United States). Values for ATP and glutamate were reported previously (Sabirov and Okada, 2005). Color coding: C, green; H, white; O, red;
N, blue; P, purple; S, yellow; Cl, gray.

(R∼ 0.53–0.61 nm) in a very limited manner (for more osmolytes
see Table 2 in Sabirov and Okada, 2005).

ROLES OF VSOR/VRAC IN RELEASE OF
ORGANIC SIGNALS FOR CELL DEATH
INDUCTION/PROTECTION

Role of VSOR/VRAC in Release of
Excitotoxic Glutamate
Glutamate is the principal and most important excitatory
neurotransmitter in the vertebrate nervous system under
physiological conditions (Meldrum, 2000). Glutamate is released
from neurons by the vesicular exocytosis mechanism into
the synaptic cleft, and then is cleared by a Na+-dependent
reuptake mechanism, which keeps the extracellular glutamate
at concentrations below the activation threshold for glutamate
receptors. The extracellular space normally occupies about one
quarter of the total brain volume, but it decreases down to
12–17% during over-excitation by repetitive stimulation or
even down to ∼5% upon ischemia by redistribution of water

between the extracellular and intracellular space leading to
swelling of neurons and astrocytes (Nicholson, 2005; Syková,
2004). Brain edema also occurs as a result of stroke, trauma,
brain tumors, systemic viral and bacterial infections (Kimelberg,
2004, 2005; Kimelberg et al., 2004). Swollen neurons and
astroglia massively release glutamate, which in turn induces
excitotoxicity – neuronal death caused by overexcitation of
glutamatergic receptors (Kimelberg et al., 1990; Strange et al.,
1996; Liu et al., 2006, 2009; Akita and Okada, 2014; Hyzinski-
García et al., 2014; Planells-Cases et al., 2015; Lutter et al., 2017;
Schober et al., 2017; Okada et al., 2019a). Thus, glutamate exhibits
double-edged functions in the brain.

The putative pathways for glutamate release from swollen
cells include: (i) Ca2+-dependent vesicular exocytosis, (ii) Na+-
dependent glutamate transporters functioning in a reverse mode,
and (iii) ion channel-mediated conductive release through gap
junction hemichannels and/or chloride channels including VSOR
and the maxi-anion channel (Phillis and O’Regan, 2003; Evanko
et al., 2004; Parpura et al., 2004; Mongin, 2007, 2016; Sabirov
et al., 2016; Osei-Owusu et al., 2018; Wilson and Mongin, 2018;
Chen et al., 2019; König and Stauber, 2019; Okada et al., 2019a,b;
Strange et al., 2019).
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First evidence for conductance of VSOR to amino acids such
as glutamate was provided by Banderali and Roy (1992). The
effective radius of the native VSOR is sufficient to pass glutamate
and aspartate (Sabirov and Okada, 2005) (Figure 1). Indeed,
the astrocytic channel was permeable to glutamate (Glu) with
PGlu/PCl = 0.15 (Liu et al., 2006), close to PGlu/PCl = 0.14 found
in C6 glioma cells (Jackson et al., 1994). These values are within
the range of PGlu/PCl ∼ 0.06–0.2 reported for many other cells
(Banderali and Roy, 1992; Chan et al., 1994; Roy and Banderali,
1994; Roy, 1995; Arreola et al., 1996; Basavappa et al., 1996;
Boese et al., 1996; Levitan and Garber, 1998; Schmid et al., 1998;
Carpaneto et al., 1999; Sakai et al., 1999; Schlichter et al., 2011).
A somewhat higher glutamate permeability was recently reported
for cultured primary astrocytes (∼0.3) (Yang et al., 2019b).

Pharmacological studies using VSOR blockers indicated that
osmotic swelling or oxygen-glucose deprivation induces massive
VSOR-mediated release of glutamate (Liu et al., 2006, 2009;
Rudkouskaya et al., 2008; Hyzinski-García et al., 2011; Bowens
et al., 2013) and aspartate (Kimelberg et al., 1990; Mongin
et al., 1999; Mongin and Kimelberg, 2002; Haskew-Layton et al.,
2005, 2008; Mongin and Kimelberg, 2005; Abdullaev et al.,
2006; Bowens et al., 2013; Hyzinski-García et al., 2014) from
primary cultured astrocytes in vitro. Stimulation with hypotonic
solution or zymosan was found to induce release of excitatory
amino acids from rat microglia in a manner sensitive to VSOR
blockers including the most selective blocker DCPIB (Harrigan
et al., 2008). An inflammatory initiator bradykinin, which is
also released upon brain ischemia, triggers ROS production and
thus induces VSOR activation in astrocytes, thereby releasing
glutamate therefrom (Haskew-Layton et al., 2005; Liu et al.,
2009). Osmotic cell swelling and cell swelling associated with
spreading depression also caused massive release of excitatory
amino acids from brain slices in a manner sensitive to VSOR
blockers (Basarsky et al., 1999; Bothwell et al., 2001). Release of
excitatory amino acids, which is inhibited by VSOR blockers, was
observed in vivo in animal models of global and focal ischemia
(Phillis et al., 1997, 1998; Seki et al., 1999; Kimelberg et al., 2000,
2003; Feustel et al., 2004; Zhou J.J. et al., 2020). VSOR blockers
protected neurons from delayed neuronal death after transient
forebrain ischemia (Abdullaev et al., 2006; Inoue et al., 2007).

After a hetero-multimer of LRRC8 family proteins was
identified as the core component of VSOR, a causative
relationship between VSOR and swelling-induced release of
excitatory amino acids was verified by siRNA-mediated LRRC8A
knockdown (Hyzinski-García et al., 2014; Sørensen et al., 2014)
and by LRRC8A knockout (Lutter et al., 2017; Yang et al., 2019b)
and also by LRRC8D knockout (Lutter et al., 2017) and its
knockdown (Schober et al., 2017).

It should be noted that VSOR is not the only anion
channel contributing to the glutamate release. Involvements
of at least two different pathways in osmolyte release were
suggested based on their time courses, Ca2+ dependence, and
pharmacological profiles (Mongin et al., 1999; Franco et al., 2001;
Mongin and Kimelberg, 2002; Pasantes-Morales et al., 2002; Netti
et al., 2018). Astrocytes express high levels of the glutamate-
permeable (PGlu/PCl = 0.21) maxi-anion channel which accounts
for about half of the hypotonicity-induced and one third of

the ischemia-induced glutamate release (Liu et al., 2006). Note
that this channel does not contribute to the bradykinin-induced
glutamate release, which is solely mediated by VSOR activated by
ROS and a Ca2+ nanodomain-related mechanism in astrocytes
(Liu et al., 2009; Akita and Okada, 2011, 2014).

Role of VSOR/VRAC in Release of
Natural Antioxidant Glutathione
The tripeptide glutathione (γ-L-glutamyl-L-cysteinylglycine:
GSH) is the most prevalent and ubiquitous constituent of cytosol
and is involved in many cellular processes such as antioxidant
defense, drug detoxificaion, cell signaling, cell metabolism and
proliferation (Meister, 1995; Hammond et al., 2001; Wu et al.,
2004). Over 98% of GSH inside the cells exists in its reduced
monomeric form at the concentrations of 1–10 mM depending
on cell types (Meister and Anderson, 1983; Meister, 1995). GSH
is synthesized inside the cells and degraded exclusively outside in
the process termed γ-glutamyl cycle. Extracellularly, GSH exists
at micromolar levels and protects tissues and cells from oxidative
stress: the lung epithelium upon intensive breathing, heart
and brain cells during ischemia-reperfusion. Transmembrane
delivery of GSH is an important step in the γ-glutamyl cycle;
it is performed through the activity of transporters, such
as ABCC/MRP (Minich et al., 2006; Ballatori et al., 2009),
SLCO/OATP family (Briz et al., 2006; Franco and Cidlowski,
2006), and SLC22A/OAT group transporters (Garcia et al.,
2011). Since the GSH molecule bears one net negative charge, its
release is caused by activation of conductive pathways, such as
CFTR (Linsdell and Hanrahan, 1998; l’Hoste et al., 2010) with
a functional pore radius of ∼0.7 nm (Krasilnikov et al., 2011)
and gap junction hemichannel (Tong et al., 2015). GSH efflux
is known to be a prerequisite to apoptosis induction (Ghibelli
et al., 1998; Franco and Cidlowski, 2006; Circu et al., 2009).
Thus, GSH release exhibits double-edged actions by playing an
anti-oxidant cell-protective role on the extracellular side but a
cell death-inducing role on the intracellular side.

The radius of GSH molecule (0.52-0.56 nm) (Sabirov
et al., 2013) is slightly less than the effective VSOR pore
size (Figure 1, right panel), and, therefore, it is expected
that this channel could serve as a pathway for GSH release.
Immature thymic lymphocytes exhibit robust RVD ability upon
hypotonic stimulation and express high levels of VSOR activity
(Kurbannazarova et al., 2003, 2011). As expected, VSOR in
rat thymocytes was permeable to this anionic tripeptide with
the permeability ratio PGSH/PCl of ∼0.1 for outward (efflux)
and 0.32 for inward (influx) directions, and this permeability
was sufficient to provide the observed GSH release rate of ∼6
attomol/cell/min, which occurred predominantly by a diffusion
mechanism and in a DCPIB-sensitive manner (Sabirov et al.,
2013). Kidney epithelial cells, HEK293 and HK-2, were shown
to express GSH-conductive VSOR with PGSH/PCl ∼0.1 (efflux)
and exhibited massive swelling-induced GSH release, which
was inhibited by DCPIB and not observed LRRC8A-knockout
HEK293 cells (Friard et al., 2019). The VSOR activation and
associated GSH release were observed in HK-2 cells under
isotonic conditions upon exposure to the pleiotropic growth
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factor TGFβ1 and was essential for the epithelial-to-mesenchymal
transition (Friard et al., 2019).

Role of VSOR/VRAC in ATP Release
Release of adenosine triphosphate (ATP) is a key event in
powerful purinergic signaling in most animal tissues (Burnstock,
2012). Released ATP facilitates RVD via stimulation of P2Y
receptors (Dezaki et al., 2000; Braunstein et al., 2001; Varela et al.,
2010; Islam et al., 2012; Espelt et al., 2013). ATP and glutamate
are two major gliotransmitters, which not only modulate synaptic
transmission but also protect and repair neuronal tissues after
damage. In the heart, extracellular ATP is protective in ischemia-
reperfusion damage (Ninomiya et al., 2002; Wee et al., 2007;
Burnstock and Pelleg, 2015). It is also known to be degraded by
ecto-ATPases to adenosine, which is, in turn, a well-established
cardio-protector (Burnstock and Pelleg, 2015). Released ATP
produces not only beneficial effects but also detrimental effects
depending on cell types and situations. For example, ATP is
known to act as a danger signal in a variety of neurological
diseases (Franke et al., 2012), brain trauma, hypoxia/ischemia
and epilepsy-associated seizures (Rodrigues et al., 2015), and
inflammation responses activating apoptosis and autophagy in
oxidative conditions (Linden et al., 2019).

ATP is an anion bearing 2–4 negative charges depending on
binding to Mg2+ and protonation (see Table 1 in Sabirov and
Okada, 2005). Its calculated effective radius (0.56–0.61 nm: see
Table 2 in Sabirov and Okada, 2005) is compatible with the
possible conductive transport via VSOR (Figure 1). Consistent
with this possibility, a voltage-dependent open-channel blockage
of VSOR by ATP added from the extracellular side (Jackson and
Strange, 1995; Tsumura et al., 1996) was found to be relieved
at large positive voltages due to translocation of the blocker to
the opposite side of the membrane by Hisadome et al. (2002)
in accord with the permeating blocker mechanism (Droogmans
et al., 1998, 1999). VSOR inhibitors glibenclamide, verapamil,
tamoxifen, and fluoxetine suppressed the hypotonicity-induced
ATP release in these cells, suggesting that this pathway is used
by the nucleotide to exit the cells. More recently, hypotonicity-
induced ATP release from HEK293 cells and primary cerebellar
granule neurons was observed to be sensitive to treatment with
DCPIB and shRNA for LRRC8A, suggesting an involvement of
VSOR in the ATP release pathway (Dunn et al., 2020).

Cultured neonatal cardiac myocytes (Dutta et al., 2004) and
myocytes isolated from mature left ventricles (Dutta et al., 2008)
responded with ATP release to osmotic stress and chemical
ischemia. However, this process had a pharmacological profile
inconsistent with the role of VSOR but closer to the profile
of the maxi-anion channel (Sabirov et al., 2016; Okada et al.,
2019a,b). A similar conclusion was made for the ATP release
from primary cultured astrocytes (Liu et al., 2008a,b) and from
mammary C127 cells (Sabirov et al., 2001). There remains a
possibility, thus, that contribution of the channel to the net ATP
release is different in different cell types depending on the paralog
combinations, since conductive properties of VSOR depends on
subunit composition of the LRRC8 hexamers (Syeda et al., 2016).
Also, it is feasible that LRRC8 may somehow be involved in
regulation of other ATP-releasing pathways, because LRRC8A is

known to interact with other plasmalemmal proteins (Benedetto
et al., 2016; Choi et al., 2016; Fujii et al., 2018) often via their LRR
motifs (Kobe and Kajava, 2001).

Roles of VSOR/VRAC in Release of Other
Signaling Molecules
Taurine (2-aminoethanesulfonic acid) is one of the most
abundant intracellular osmolytes. The cytosolic concentration
of taurine in the brain neurons and astrocytes is usually
10-20 mM (Walz and Allen, 1987) and may reach as high
as 50 mM (Voaden et al., 1977; Huxtable, 1982), and
its release has long been considered as one of the key
molecular events in volume regulation (Oja and Saransaari,
2017). Taurine with its radius of ∼0.31 nm is well-suited
for transport via VSOR (Figure 1), and the process of
osmosensitive taurine release is one of the well-documented
functions of the LRRC8/VSOR (Jentsch et al., 2016; König
and Stauber, 2019; Okada et al., 2019b). Both LRRC8A and
LRRC8D are known to be required for hypotonicity-induced
taurine release (Planells-Cases et al., 2015; Lutter et al.,
2017). Once released, taurine acts on glycine and GABA
receptors as a co-agonist, resulting in reduction of neuronal
firing and protection from over-excitation (Ye et al., 2013;
Oja and Saransaari, 2017).

GABA (gamma-aminobutyric acid) is also released from
HEK293 cells via VSOR in an LRRC8D- and LRRC8E-dependent
manner (Lutter et al., 2017). LRRC8A deletion and silencing
abolished GABA release from mouse and human pancreatic β

cells (Menegaz et al., 2019). Since GABA has strong protective
and regenerative effects on β cells (Fiorina, 2013), it is likely
that an impairment of VSOR-mediated GABA release may
participate in etiology of diabetes mellitus. Actually, Type-1
and -2 diabetic islets of human patients were shown to exhibit
disrupted secretion of GABA (Menegaz et al., 2019).

Cyclic guanosine monophosphate-adenosine monophosphate
(2’3’cGMP-AMP or cGAMP) is synthesized by an enzyme
cyclic cGAMP synthase, which senses double-stranded DNA
in infected and malignant cells; it is then transferred to the
neighboring cells either by gap junctions or by a release-uptake
mechanism to trigger interferon production as the cell/host
defense against DNA viral infection and other malignancies. It
was recently demonstrated that the cGAMP release occurs via
LRRC8A/LRRC8E-containing VSOR (Zhou C. et al., 2020). The
calculated size of cGAMP (R∼ 0.6 nm) is compatible with the size
of VSOR pore (Figure 1). Thus, it is likely that VSOR is involved
in the cell/host defense against DNA virus by releasing cGAMP.

ROLES OF VSOR/VRAC IN CELL
VOLUME REGULATION AND CELL
DEATH INDUCTION/PROTECTION

Cell Volume Regulation in Mammalian
Cells
Cell volume regulation is physiologically essential for the cell
survival with exhibiting normal functions, and an optimal cell
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size is likely to be prerequisite to a particular cell’s function.
CVR dysfunction is also pathophysiologically important,
because sizable changes in the plasma osmolarity are known
to often be coupled to a variety of diseases and iatrogenic
outcomes (see Table 1 in Okada et al., 2019a). Even under
physiological normotonic conditions, the volume of cells is
subjected to alterations because of steady-state physicochemical
osmotic load and of non-steady state physiological cell activity-
dependent fluctuations in intracellular osmolarity (Okada,
2004). The former physicochemical load is caused by the
intracellular presence of large numbers of polyvalently anionic
macromolecules (Xn−) which are membrane-impermeable
(Figure 2A). Such fixed negative charges attract membrane-
permeable inorganic cations (C+) to the cytosol, and then
the cation entry should drive the entry of membrane-
permeable inorganic anions (A−) due to the electroneutral
restraint. However, the inorganic anion entry should be
resisted by fixed macromolecular anions by electrostatic
repulsion. The resultant equilibrium, called the Gibbs–Donnan
equilibrium, brings about increased intracellular osmolarity
under normotonic extracellular conditions. This situation
can be mathematically expressed as follows, on the basis of
Gibbs–Donnan equation: (RT/F) ln ([C+]i/[C+]o) = (RT/F) ln
([A−]o/[A−]i) where i and o stand for the intracellular and
extracellular side, respectively. This equation can be transformed
to [C+]i × [A−]i = [A−]o

2 because of [A−]o = [C+]o. Thus,
[C+]i + [A−]i > [C+]o + [A−]o, because a + b > 2c when
a × b = c2 in general. Coping with such oncotic osmotic
pressure, steady-state volume regulation is attained by the
pump-leak balance (P-LB) mechanism (Tosteson and Hoffman,
1960), in which net Na+ extrusion is persistently produced
by active operation of Na+-K+ pump with simultaneous
operation of K+ channels for recycling of K+. Electrogenic
operation of Na+-K+ pump and electrogenic K+ channel
opening produce a negative membrane potential, thereby
driving the passive extrusion of intracellular Cl− through
some anion channels (Figure 2A, left panel). The resultant
reduction of intracellular Cl− concentration compensates
for the existence of polyvalently anionic macromolecules.
In addition to the steady-state oncotic load, cell activities
themselves produce non-steady state osmotic load as above
stated. Cell volume changes are thus induced by fluctuations
of the cellular osmolarity caused by fundamental physiological
cell activities such as transport and metabolism of biological
substances (see Table 1 in Okada, 2004). Thus, cells need to
quickly readjust their volume, in a non-stationary manner,
through volume-regulatory transports of osmolyte and
water. Under such anisotonic conditions, animal cells cope
with osmotic cell swelling and shrinkage by RVD and RVI
mechanisms, respectively. The RVD and RVI events are attained
by water efflux and influx driven by the exit of KCl and
entry of NaCl, respectively. A variety of volume-regulatory
KCl and NaCl transport pathways including ion channels
and transporters for both symport and antiport have been
listed to be involved in CVR mechanisms in the early 1980s
(Grinstein et al., 1984; Hoffmann et al., 1984; Sarkadi et al.,
1984a; Lauf, 1985).

Role of VSOR/VRAC in RVD
Conductive K+ and Cl− pathways have been suggested to play
predominant roles in RVD mechanisms in animal cells by
measuring cell volume changes and ionic fluxes in the 1980s
(Grinstein et al., 1982, 1983; Sarkadi et al., 1984b, 1985; Hoffmann
et al., 1986; Abdullaev et al., 2006). Direct electrophysiological
evidence for parallel activation of K+ and Cl− channels was
first provided in 1988 in human epithelial cells by applying
two-microelectrode voltage/current-clamp tecniques (Hazama
and Okada, 1988). A large variety of K+ channels preinstalled
in the plasma membrane are known to serve as volume-
regulatory K+ channels in most mammalian cells (Wehner
et al., 2003a; Hoffmann et al., 2009). The volume-regulatory
Cl− channel activated by osmotic cell swelling was thereafter
well characterized by applying patch-clamp techniques and is
called VSOR or VRAC (Nilius et al., 1997; Okada, 1997). The
fact that VSOR is prerequisitely involved in RVD was shown
by observations of RVD inhibition by VSOR blockers in a
wide variety of cell types (Hazama and Okada, 1988; Kubo
and Okada, 1992; Chan et al., 1994; Fatherazi et al., 1994;
Robson and Hunter, 1994; Gschwentner et al., 1995a,b; Nilius
et al., 1995; Best et al., 1996; Gosling et al., 1996; Shen et al.,
1996; Zhang and Jacob, 1996; Leaney et al., 1997; Pasantes-
Morales et al., 1997; Bond et al., 1998; Patel et al., 1998;
Walker et al., 1999; Mitchell et al., 2002; Al-Nakkash et al.,
2004; Parkerson and Sontheimer, 2004; Inoue et al., 2005;
Ducharme et al., 2007; Okumura et al., 2009; Chen et al., 2010;
Inoue et al., 2010; Cao et al., 2011; Sato et al., 2011; Ponce
et al., 2012; Hernández-Benítez et al., 2014; Friard et al., 2017;
Trothe et al., 2018). Molecular evidence for the involvement of
VSOR in RVD was recently provided by observing inhibition
of RVD by LRRC8A knockdown in human HeLa cells (Qiu
et al., 2014) and rat astrocytes (Formaggio et al., 2019) as
well as by LRRC8A knockout in human HEK293 cells (Voss
et al., 2014) and keratinocytes (Trothe et al., 2018). Thus, it
is now established that VSOR activity is essentially involved
in RVD by cooperating with the activity of K+ channels
(Figure 2B, left panel).

Roles of VSOR/VRAC in Apoptosis
Induction and Protection
Apoptosis is a physiological type of cell death, by which
unnecessary or damaged cells are eliminated, and is classified
into two types. One is the intrinsic apoptosis, which is mediated
by mitochondria and induced by growth factor withdrawal,
oxidative stress, ER stress or DNA damage, and another is
the extrinsic apoptosis, which is mediated by stimulation of
death receptors such as Fas, TNFR1 and TRAILR1∼4 (Sauler
et al., 2019). Normotonic cell shrinkage is a major hallmark
of apoptotic cell death (Wyllie et al., 1980) and was termed
AVD (Maeno et al., 2000). The AVD induction preceded
cytochrome c release, caspase-3 activation, DNA laddering and
cell death, and all these apoptotic events were prevented by
blocking K+ and Cl− channels (Maeno et al., 2000). These
findings were also reproduced in the process of Fas-induced
apoptosis not only in HeLa cells but also lymphoblastoid SKW6.4
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FIGURE 2 | VSOR/VRAC involvements in cell volume regulation/dysregulation. (A) The pump-leak balance (P-LB) mechanism coping with steady-state oncotic cell
swelling (left panel) and its dysfunction leading to NVI (right panel). The Cl− channel involved in this mechanism is not identified as yet. (B) The RVD mechanism
coping with non-steady state osmotic cell swelling (left panel) and its dysfunction leading to necrosis (right panel). VSOR plays a key role in this mechanism by
sensing cell swelling (See the text for details).

cells (Maeno et al., 2012). Since SKW6.4 cells undergo Fas-
induced apoptosis without involving mitochondria (Eguchi et al.,
1999), we concluded that the AVD induction is an early event
independent of the mitochondrial apoptotic signaling pathway
(Maeno et al., 2012). In addition, the AVD induction in HeLa cells
treated with an intrinsic apoptosis inducer, staurosporine (STS),
was found to precede activation of caspase-8 and caspase-9, and
overexpression of Bcl-2 failed to inhibit the STS-induced AVD in
mouse B lymphoma WEHI-231 cells (Maeno et al., 2012). Also,
the AVD induction occurred earlier than apoptotic activation of
MAP kinase (Hasegawa et al., 2012). These facts indicate that
the AVD induction is an early event independent of activation
of initiator caspases and MAP kinases. However, the AVD
event further proceeds after activation of caspase-3, as clearly
demonstrated by parallel observations of the time courses of AVD
and caspase-3 activation (Maeno et al., 2012) (also see Figure 4
in Okada et al., 2019a). Thus, the AVD process is divided by the
early phase cell shrinkage independent of caspase activation but
dependent on K+ and Cl− channels and the late-phase shrinkage

dependent on caspase activation. We also demonstrated that
apoptotic cells failed to exhibit RVI, and therefore persistence
of apoptotic cell shrinkage requires not only AVD induction but
also RVI dysfunction (Maeno et al., 2006b). Furthermore, it must
be noted that persistent osmotic cell shrinkage experimentally
induced per se causes induction of apoptotic cell death (Maeno
et al., 2006a; Nukui et al., 2006). Taken together, it appears that
AVD is the early prerequisite event, which triggers the following
executive biochemical processes, for apoptotic cell death.

Multiple types of K+ channels serve as the AVD-inducing
K+ release pathway depending on cell types (Burg et al., 2006).
On the other hand, we identified, for the first time, that VSOR
is responsible for the AVD-inducing Cl− channel in HeLa
cells under apoptotic stimulation with STS, Fas ligand (FasL),
TNFα+CHX, and ROS directly by patch-clamping (Shimizu
et al., 2004). It is noted that increased expression of LRRC8A
was recently found to be coupled to FasL-induced apoptosis
in smooth muscle cells (Kenagy et al., 2011). Also, caspase
activation induced by exposure to STS was found to be strongly
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reduced in HCT116 cells in which LRRC8A or all LRRC8 genes
were disrupted (Planells-Cases et al., 2015). Opening of VSOR
channels leads to Cl− efflux driven by hyperpolarization induced
by K+ channel activation (Figure 3A). Furthermore, we showed
the involvement of VSOR in induction of AVD and apoptosis
in cardiac myocytes stimulated with STS (Takahashi et al., 2005;
Tanabe et al., 2005; Okada et al., 2006) and ROS (Wang et al.,
2005). Also, evidence for the involvement of VSOR in ischemia-
reperfusion-induced apoptosis was provided in cardiac myocytes
(Wang et al., 2005) and for that in delayed neuronal death
(DND) of CA1 pyramidal neurons in the hippocampus in vivo
(Inoue et al., 2007), which is largely due to apoptosis with
exhibiting AVD (Okada et al., 2019a) and occurs several days
after starting reperfusion following transient forebrain ischemia.
Neuronal LRRC8A was judged to contribute to ischemia-induced
brain injury, because middle cerebral artery occlusion induced
upregulation of LRRC8A expression and augmentation of VSOR
currents in hippocampal CA1 neurons derived from control
mice but never in those from LRRC8A-knockout mice (Zhou
J.J. et al., 2020). Actually, VSOR was found to be involved in
induction of AVD and apoptosis in many other cell types by
other laboratories (Souktani et al., 2000; Porcelli et al., 2003;
d’Anglemont de Tassigny et al., 2004; Liu et al., 2008a, 2013; He
et al., 2010; l’Hoste et al., 2010; Shen et al., 2014a,b; Shimizu et al.,
2015; Yang et al., 2015; Kumagai et al., 2016; Wang et al., 2017).
Thus, it is concluded that VSOR represents the AVD-inducing
Cl− channel independent of cell types and apoptotic stimuli.

Cellular GSH depletion or decreased GSH/GSSH
(glutathione-disulfide) ratio is known to be a common early event
in apoptotic cell death induced by death receptor activation,
mitochondrial apoptotic signaling and oxidative stress (Circu
and Aw, 2008). For example, GSH depletion sensitizes to
TNFα-induced apoptosis in hepatocytes (Matsumaru et al.,
2003). GSH depletion and post-translational modifications of
proteins through glutathionylation (protein-SSG formation) are
critical regulators of apoptosis (Franco and Cidlowski, 2009).
Actually, GSH efflux leading to its depletion was shown to be a
prerequisite to apoptosis induction (Ghibelli et al., 1998; Franco
and Cidlowski, 2006; Circu et al., 2009). The candidates for GSH
efflux pathways so far reported were the multidrug resistant
protein (MRP), the organic anion transporting polypeptide
(OATP), and CFTR (Circu and Aw, 2012). Our study, as noted
above, demonstrated that VSOR can serve as a pathway for GSH
release (Sabirov et al., 2013). Thus, VSOR activity is likely to be
doubly involved in apoptosis induction first by inducing AVD
and second by releasing antioxidant GSH (Figure 3A).

The platinum-based drug cisplatin (CDDP) is a widely used
anti-cancer drug, which induces apoptotic death in cancer cells
after invading the cells. We demonstrated that VSOR activity
is involved in induction of AVD and apoptosis in human
cancer KB cells stimulated with cisplatin (Ise et al., 2005). In
agreement with this observation, LRRC8A expression was found
to be increased in human cancer A549 cells exposed to cisplatin
(Thorsteinsdottir et al., 2016). Overexpression of LRRC8A was
also observed to augment apoptosis induced by another anti-
cancer drug, temozolomide, in glioma cells (Yang et al., 2019).
Furthermore, cisplatin-induced apoptosis in human HCT116

cells was prevented by gene knockout of LRRC8A, LRRC8D and
all members of LRRC8 (Planells-Cases et al., 2015). CDDP is
not much lipid-soluble but largely water-soluble (see Figure 5 in
Okada et al., 2019a), and therefore its entry needs to be mediated
by some channels or transporters. Recently, the cisplatin entry
pathway was demonstrated to be provided by the VSOR channel
composed of both LRRC8A and LRRC8D (Planells-Cases et al.,
2015). In fact, the VSOR pore size was found to be large enough
to be permeated by CDDP (see Figure 5 in Okada et al., 2019a).

The acquisition of resistance to cisplatin by cancer cells is
the major limitation for cancer chemotherapy with cisplatin.
Our study (Lee et al., 2007) demonstrated, for the first time,
that protection from cisplatin-induced apoptosis, called cisplatin
resistance, is coupled to downregulation of VSOR channel
activity in a cisplatin-resistant cancer cell line, KCP-4, which is
derived from cisplatin-sensitive parental KB cells (Fujii et al.,
1994), suggesting VSOR is an essential factor in cisplatin
sensitivity and resistance of the cancer cells. This inference was
proven by the observations that cisplatin sensitivity of KCP-
4 cells was restored when the VSOR activity was restored by
treatment of two different histone deacetylase (HDAC) inhibitors
(Lee et al., 2007; Shimizu et al., 2008). An essential role of
VSOR in anti-cancer drug resistance was thereafter shown in
numbers of other cell types (Poulsen et al., 2010; Min et al., 2011;
Yang et al., 2015). This conclusion was molecularly confirmed
by recent observations that cisplatin resistance is correlated with
reduced expression of LRRC8A in human cancer cells (Planells-
Cases et al., 2015; Sørensen et al., 2016a,b; Thorsteinsdottir
et al., 2016). Also, temozolomide resistance was found to be
associated with downregulation of LRRC8A in glioma cells (Yang
et al., 2019). In contrast, cisplatin resistance in KCP-4 cells
was recently found to be coupled to VSOR dysfunction due to
disruption of actin filaments but not due to decreased expression
of LRRC8A (Shimizu et al., 2020). Taken together, it is clear
that VSOR is involved in AVD induction and CDDP uptake and
that downregulation of VSOR activity causes cisplatin resistance
in cancer cells by reducing both AVD-inducing and cisplatin-
permeating activities of VSOR (Figure 3A).

Roles of VSOR/VRAC in Necrosis
Induction and Protection
Necrosis is induced by a variety of insults and starts with
normotonic cell swelling, called NVI (Okada et al., 2001).
Persistence of necrotic cell swelling requires not only NVI
induction but also RVD dysfunction (Okada et al., 2004).
Necrosis is classified into accidental necrosis, which is induced by
injury, ischemia/hypoxia, DNA strand break, hyperammonemia,
acidosis, lactacidosis and excitotoxicity, and programmed
or regulated necrosis, including necroptosis, pyroptosis and
ferroptosis, which is induced by lipopolysaccharide, viral
infection, Toll-like receptor activation, and TNF receptor
activation in the absence of caspase-8 activity.

Intracellular ATP depletion by ≥80% is a characteristic of
necrosis (Simard et al., 2012). This is in contrast to the fact that
apoptosis requires ATP generation and is associated with a rise
of the intracellular ATP level (Zamaraeva et al., 2005, 2007).
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FIGURE 3 | VSOR/VRAC involvements in cell death induction/protection. (A) The mechanisms for AVD induction and cisplatin resistance acquisition. VSOR
contributes to AVD induction by mediating Cl− efflux, GSH release and cisplatin (CDDP−) uptake, whereas VSOR downregulation contributes to cisplatin resistance
acquisition. (B) The mechanism for lactacidosis-induced NVI in neuronal and glial cells in which VSOR activity is abolished. (C) The mechanism for
excitotoxicity-induced NVI in neuronal cells in which VSOR rather mediates Cl− influx under depolarization induced by activation of ionotropic glutamate receptor
(iGluR) by glutamate released via VSOR from nearby glial cells (See the text for details).

Thus, depletion of cellular ATP even switches the form of cell
death from apoptosis to necrosis (Eguchi et al., 1997; Leist et al.,
1997). Ischemia/hypoxia insults and accidental injury cause NVI
induction due to ATP depletion, because resultant inhibition of
Na+-K+ pump impairs the P-LB mechanism which contributes
to steady-state CVR (Figure 2A, right panel). In addition,
ATP depletion directly and indirectly, via a rise of intracellular
free Mg2+ liberated from Mg-ATP, inhibits VSOR activity
(Oiki et al., 1994; Okada et al., 2019b), thereby causing RVD
dysfunction (Figure 2B, right panel). Arachidonic acid, which is
produced in the ischemic/hypoxic tissues, was shown to be a very

potent blocker for VSOR and thereby abolish RVD (Kubo and
Okada, 1992). In the ischemic/hypoxic brain, the extracellular
K+ concentration is known to largely elevate (Hansen, 1985).
Also, extracellular K+ accumulation is induced by excessive
neuronal activity during epileptic episodes (Heinemann et al.,
1986; Walz, 2000; Carmignoto and Haydon, 2012). Elevation of
the extracellular K+ level results in membrane depolarization
which drives Cl− inflow, but not outflow, thereby disrupting
the P-LB mechanism and then leading to NVI (Figure 2A, right
panel). Hyperammonemia, which is caused by liver diseases,
also brings about NVI by impairing the P-LB mechanism, as
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summarized by Wilson and Mongin (2018), because the K+
channel-mediated NH4

+ conductance impairs the K+ channel
role in this steady-state CVR mechanism not only by provoking
depolarization and thus reducing Cl− efflux but also by shunting
K+ recycling and thus retarding the Na+-K+ pump operation
(Figure 2A, right panel).

Cerebral ischemia/hypoxia, trauma, seizure and spreading
depression often result in not only acidosis due to proton
liberation from hydrolysis of ATP greater than its synthesis but
also lactate accumulation due to enhanced anaerobic glycolysis-
fermentation reactions (Siesjö, 1988; Marmarou, 1992). Acidosis
coupled to lactate accumulation, that is lactacidosis, causes
glial and neuronal cell swelling, cytotoxic brain edema and
necrotic death of these brain cells (Kraig et al., 1987; Siesjö,
1988; Staub et al., 1990, 1993). Anionic lactate is taken up
with H+ by the monocarboxylate transporter (MCT), thereby
causing intracellular accumulation of lactate and proton which
stimulates the Na+/H+ antiporter (NHE) and leads to Na+
accumulation, thereby causing NVI induction. Accumulated
protons, on the other hand, inhibit VSOR activity (Gérard et al.,
1998; Sabirov et al., 2000; Kittl et al., 2019), thereby resulting
in RVD dysfunction. Lactacidosis-induced NVI induction and
RVD dysfunction were actually observed in both neuronal cells
(Mori et al., 2002) and glial cells (Nabekura et al., 2003).
Persistent cell swelling caused by the NVI induction and RVD
dysfunction should finally lead to necrotic cell death, here called
lactacidotoxic necrosis, in neuronal and glial cells (Okada et al.,
2019a), as depicted in Figure 3B.

Cerebral ischemia, ischemia-reperfusion, stroke, brain
trauma, brain inflammation and a number of neurodegenerative
disorders or neurogenic diseases often cause massive release
of glutamate (Glu−) from astrocytes (Olney et al., 1971), and
neuronal and glial cell swelling and death, coined excitotoxicity
(Olney, 1969), are produced due to exposure to excessive
glutamate (Hasbani et al., 1998). Glial glutamate release is
mediated by VSOR, as depicted in Figure 3C (left panel).
Hypoxia/ischemia-induced swelling in astrocytes releases
glutamate largely via VSOR (Abdullaev et al., 2006; Liu et al.,
2006; Zhang et al., 2008; Bowens et al., 2013) and also glutamate
and ATP via Maxi-Cl channels (Liu et al., 2006). Anoxia-
induced glutamate release was inhibited by gene silencing
of LRRC8A in astrocytes (Wilson et al., 2019). Astroglial
LRRC8A is also required for stroke-induced brain damage,
because conditional knockout of LRRC8A protected from
ischemic stroke (Yang et al., 2019b). Ischemia causes release
of bradykinin (BK), an initial mediator of brain inflammation
(Gröger et al., 2005). BK was shown to activate VSOR via
stimulation of BK type 2 receptor (BK2) in mouse astrocytes,
thereby releasing glutamate (Liu et al., 2009). Since astrocytic
VSOR is activated by ATP (Akita et al., 2011) and glutamate
(Akita and Okada, 2014) through stimulation of their GPCRs
via a signal here called Ca2+

·ROS which represents ROS
production mediated by Ca2+ nanodomains, glutamate release
may also be induced from astrocytes exposed to extracellular
ATP and glutamate. Glial glutamate release was also shown
to be induced by ROS by activating VSOR in rat astrocytes

(Haskew-Layton et al., 2005) and microglia (Harrigan et al.,
2008). These activation mechanisms of glutamate-releasing
VSOR channels are also summarized in Figure 3C (left panel).

Chronic excitotoxicity may play a role in pathogenesis of
a variety of neurodegenerative diseases including amyotrophic
lateral sclerosis, Altzheimer’s disease, and Huntington’s disease
(Lewerenz and Maher, 2015). Excessive glutamate release from
glial cells causes neuronal cell swelling (NVI) and necrotic death
by the excitotoxic mechanism. Such acute excitotoxicity is known
to be dependent on the entry of Na+ and Cl− rather than Ca2+

entry into neurons (Rothman, 1985; Olney et al., 1986; Chen
et al., 1998; Inglefield and Schwartz-Bloom, 1998). Glutamate-
induced stimulation of ionotropic glutamate receptor (iGluR)
cation channels causes Na+ influx and depolarization in neuronal
cells. Ischemia induces release of gamma-aminobutyric acid
(GABA) from neurons and astrocytes (Inglefield and Schwartz-
Bloom, 1998). Glutamate also induces GABA release from
GABAergic neurons (Weiss, 1988; Harris and Miller, 1989;
Pin and Bockaert, 1989). Released GABA stimulates GABAA
receptor (GABAAR) anion channels leading to Cl− inflow driven
by iGluR-induced depolarization. Resultant NaCl inflow brings
about neuronal swelling (Inoue et al., 2007; Tymianski, 2011) and
activation of VSOR (Inoue et al., 2007). Glutamate released from
astrocytes activates neuronal metabotropic glutamate receptor
(mGluR) and then neuronal VSOR by Ca2+ nanodomain-
mediated ROS production (Akita and Okada, 2014) (also see
Figure 4 in Okada et al., 2019b). VSOR channels thus activated
under excitotoxic conditions serve as a swelling-exaggerating,
instead of volume-regulatory, Cl− influx pathway, because of
depolarization induced by activation of iGluR, thereby causing
NVI induction and RVD dysfunction, and then eventually
leading to necrotic cell death (Inoue et al., 2007), as summarized
in Figure 3C (right panel). Thus, VSOR doubly contributes to
excitotoxic neuronal NVI and necrosis by mediating glutamate
release from astrocytes and by enhancing Cl− inflow into
neurons (Figure 3C).

Regulated or programmed necrosis, which occurs in
genetically controlled, but not accidental, manner, includes
necroptosis, pyroptosis, and ferroptosis. Necroptosis is
dependent on receptor-interacting protein kinase 3 (RIPK3),
triggered by activation of death receptors or Toll-like-receptor
(TLR) in the presence of caspase-8 inhibition (Green, 2019;
Sauler et al., 2019), and regulated by activation of RIPK3 (Kaiser
et al., 2013) which induces phosphorylation of mixed lineage
kinase domain-like protein (MLKL). Phosphorylated MLKL
oligomerizes and translocates to the plasma membrane to form
a pore of ∼4 nm diameter (Ros et al., 2017) leading to rapid
rupture of the plasma membrane. Necroptosis exhibits marked
cell swelling (Chen et al., 2016), but the ionic mechanism of
this NVI event remains unexplored. Necroptosis is known to be
characterized by intracellular ATP depletion (Henriquez et al.,
2008; Vandenabeele et al., 2010) which is possibly induced by ATP
consuming process of activation of poly(ADP-ribose)polymerase
1 (PARP1) (Jouan-Lanhouet et al., 2012). Thus, it is likely that
ATP depletion is responsible for induction of NVI associated
with necroptosis (see Figures 2A,B, right panels).
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On the other hand, pyroptosis is inflammatory caspase-
dependent programmed necrosis. Pyroptosis is triggered by
exposure of cells to bacteria, virus and toxins, called pathogen-
associated or danger-associated molecular patterns (PAMPs or
DAMPs), which induce formation of multiprotein complexes
called inflammasomes in inflammatory cells (Broz and Dixit,
2016). Pyroptosis is regulated by inflammatory caspases (caspase-
1, -4, -5, and -11) which mediate cleavage of gasdermin D
(GSDMD) into the NH2-terminal of GSDMD (GSDMD-N),
the oligomer of which forms the non-selective membrane pore
(Ding et al., 2016; Sborgi et al., 2016; Ruan et al., 2018).
Pyroptosis exhibits discernible, though less markedly compared
to necroptosis, cell swelling (NVI) (Fink and Cookson, 2006;
Chen et al., 2016). Since pyroptotic inflammasome activation
involves K+ efflux, TRPM2/V2-mediated Ca2+ influx and Cl−
channel activation (Tang et al., 2017; Green et al., 2018), it is
possible that ionic fluxes are also implicated in the pyroptotic
NVI induction. Especially, it is noted that the Cl− channel was
shown to be sensitive to VSOR blockers including DCPIB and
NPPB (Green et al., 2018) and that flufenamic acid (FFA), which
is a known inhibitor of cyclooxygenase (COX), was shown to
inhibit inflammasome via blocking VSOR but not via COX-
1/COX-2 inhibition (Daniels et al., 2016).

The third type of programmed necrosis is ferroptosis
dependent on lipid peroxide. Ferroptosis is triggered by GSH
depletion induced by small molecule ferroptosis inducers such
as erastin, sorafenib, sulfasalazine bothonine sulphoximine (BSO)
and RSL3 (Cao and Dixon, 2016; Sun et al., 2018). This process is
regulated by inhibition of GSH-dependent antioxidant enzyme,
glutathione peroxidase 4 (GPX4) (Cao and Dixon, 2016; Lei
et al., 2019). Ferroptotic cell death is caused by iron-dependent
accumulation of lipid peroxides (L-ROS) which give rise to
oxidative damage to the cell membrane (Del Re et al., 2019; Lei
et al., 2019). No study has been reported as to whether ferroptosis
also exhibits cell swelling. It is also warranted to examine whether
VSOR is involved in ferroptosis-associated GSH depletion.

CONCLUSION AND PERSPECTIVE

In conclusion, VSOR/VRAC activity is essentially involved
not only in CVR and protection from cell injury/death
but also in induction of apoptotic/necrotic cell death by
inducing Cl− outflow or inflow and releasing organic signal

molecules. However, their detailed molecular mechanisms
remain unexplored.

Urgent issues to be clarified are to provide firm evidence
for pore formation by the LRRC8 heteromer, information about
the 3-D structure of LRRC8 heterohexamer by cryo-EM studies,
and actual roles of VSOR/VRAC in programmed necrosis such
as necroptosis, pyroptosis, and ferroptosis. Also, a question to
be soon unraveled is what are missing molecular components
actually involved in activation and regulation of VSOR/VRAC.

Recently, an essential involvement of VSOR/VRAC in stroke-
induced brain damage was clearly demonstrated by in vivo studies
using conditional LRRC8A-knockout mice (Yang et al., 2019b).
In this context, it is noted that accumulating evidence has been
provided for neuroprotective effects of VSOR/VRAC blockers on
ischemic neuronal damage/death in the brain by ex vivo slice
experiments (Zhang et al., 2011) and by in vivo experiments
(Phillis et al., 1997, 1998; Seki et al., 1999; Kimelberg et al., 2000;
Feustel et al., 2004; Kimelberg, 2005; Inoue et al., 2007; Zhang
et al., 2008; Alibrahim et al., 2013). Thus, more specific, less
toxic, and blood-brain barrier-permeable VSOR/VRAC blocking
agents are awaited to be developed for clinical use hopefully
within the next decade.
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