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Pre-pregnancy obesity and high-fat diet (HFD) during pregnancy and lactation

are associated with neurodevelopmental delay in offspring. This study aimed

to investigate whether milk fat globule membrane (MFGM) supplementation

in obese dams could promote neurodevelopment in offspring. Obese female

rats induced by HFD were supplemented with MFGM during pregnancy and

lactation. Maternal HFD exposure significantly delayed the maturation of

neurological reflexes and inhibited neurogenesis in offspring, which were

significantly recovered by maternal MFGM supplementation. Gut microbiota

analysis revealed that MFGM supplementation modulated the diversity

and composition of gut microbiota in offspring. The abundance of pro-

inflammatory bacteria such as Escherichia shigella and Enterococcus were

down-regulated, and the abundance of bacteria with anti-inflammatory and

anti-obesity functions, such as Akkermansia and Lactobacillus were up-

regulated. Furthermore, MFGM alleviated neuroinflammation by decreasing

the levels of lipopolysaccharides (LPS) and pro-inflammatory cytokines in

the circulation and brain, as well as inhibiting the activation of microglia.

Spearman’s correlation analysis suggested that there existed a correlation

between gut microbiota and inflammation-related indexes. In conclusion,

maternal MFGM supplementation promotes neurodevelopment partly via

modulating gut microbiota in offspring.
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Introduction

Maternal nutrition during the early life affects fetal growth
and development, which programs the health status of offspring
in later life (1). Maternal obesity and high-fat diet (HFD)
intake increase the risk of metabolic syndromes such as obesity,
insulin resistance, and hyperlipidemia in adulthood (2, 3).
Maternal HFD from pre-pregnancy to lactation affects the
neurodevelopment of offspring and exacerbates the occurrence
of behavioral and emotional disorders (4).

The hippocampus is a key brain region responsible
for learning and memory (5). The dentate gyrus (DG)
of the hippocampus has a unique neurogenesis capacity,
which generates new neurons via migration, proliferation and
differentiation. Alterations in neurogenesis are associated with
neurodevelopmental abnormalities and neurological disorders
(6). The long-term and complex features of neurodevelopment
make it highly sensitive to environmental factors, especially
nutritional status in early life. Epidemiological studies revealed
that pre-pregnancy overweight and obesity were correlated
with lower scores for verbal recognition in children. Prenatal
exposure to maternal obesity leads to lower intelligence
quotients, delayed mental development and increased emotional
and behavior problems (7–9). The maturation of neurological
reflex behaviors such as free-fall righting and negative
geotaxis in offspring were delayed by maternal HFD during
lactation (10). Offspring of HFD dams were born obese,
and presented impaired DG neurogenesis and hippocampal-
dependent spatial cognitive function (6, 11). These studies
show that maternal obesity and HFD could adversely affect the
neurodevelopment of offspring.

Neurodevelopment can be substantially affected by the
gut microbiota. Hippocampal neurogenesis was impaired
at weaning in germ-free mice compared with normal mice,
suggesting that neurogenesis could be regulated by gut
microbiota (12). In the absence of gut microbiota, the main
neuroimmune cells microglia were stunted and subsequently
remained immature with limited immune responses to
viruses and infections (13). Therefore, disturbance of the gut
microbiota during development may affect neurodevelopment
and adversely affect brain health in later life (14). The gut
microbiota of infants is highly sensitive to disturbance of
environmental factors such as dietary changes. In cohort
studies, the diversity of gut microbiota altered and the
abundance of Bifidobacterium and Bacteroides were decreased
in the offspring exposed to maternal obesity or HFD, which
had negative effects on energy acquisition and early immune
development (15–17). In rodents, maternal HFD before and
during pregnancy impaired the gut microbiota of both dams
and offspring (18, 19). The α-diversity tended to decrease
and the Firmicutes/Bacteroidetes ratio increased significantly
in the gut microbiota of 2-week-old offspring from HFD
dams (19). Maternal diet may affect the behavior of offspring

via altering the gut microbiota. It was found that offspring
exposed to maternal HFD exhibited severe social deficits,
which was associated with changes in gut microbiota. However,
postnatal supplementation with Lactobacillus reuteri (depleted
due to maternal HFD) in offspring improved social behavior,
indicating a causal link among maternal diet, gut microbiota,
and neurodevelopment (20). Therefore, modulating the gut
microbiota of offspring by intervention of maternal nutrition is
an effective way to affect neurodevelopment of offspring.

Milk fat globule membrane (MFGM) composes of a
three-layer membrane surrounding lipid droplets in milk,
rich in glycoproteins and polar lipids. MFGM has shown
the function of promoting infant growth and development,
regulating immunity, and improving glycolipid metabolism.
In a prospective, double-blind and randomized controlled
trial, supplementation with MFGM narrowed the gap in
neurodevelopment between infant formula-fed and breast-fed
infants (21). Growth-restricted suckling mice supplemented
with MFGM from birth to weaning increased cognitive scores
(22). In our previous study, supplementation of milk polar
lipids in obese dams enhanced offspring neurodevelopment
via suppressing brain insulin resistance (23). These studies
suggested that MFGM supplementation during the early life
was beneficial to neurodevelopment. In addition, MFGM could
alleviate endotoxemia by improving the gut microbiota of
obese mice (24). MFGM supplementation during pregnancy
and lactation ameliorated dysbiosis of obese rat dams (25),
indicating that MFGM is favorable for obesity-related gut
microbiota and inflammatory status. Based on these studies,
the effects of MFGM supplementation to HFD-induced obese
dams during pregnancy and lactation on the neurodevelopment
of offspring were measured, and the corresponding changes in
the gut microbiota and inflammatory responses were explored,
which promoted neurodevelopment.

Materials and methods

Animals

Three to four-week-old female Sprague-Dawley rats
were purchased from Beijing Vital River Laboratory Animal
Technology Company Limited (Beijing, China), and were
housed in the animal room of China Agricultural University
under the environment of 22 ± 1◦C with 12 h light-12 h dark
cycle. After 1 week of acclimation, the rats were randomly
divided into two groups: the control group was fed a control
diet (n = 12) (10% calories from fat, D12450J, Research Diets),
and the HFD group was fed a HFD (n = 12) (60% calories
from fat, D12492, Research Diets) for 8 weeks. Body weight
was weighed every week. Then female rats were caged with
10-week-old male rats at a ratio of 2:1 at 8:00 p.m. with free
access to food and water, and the vaginal smears was examined
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at 8:00 a.m. the next day. Once the vaginal smears were found,
it was recorded as the first day of pregnancy. After mating,
the control group of pregnant mice were randomly divided
into 2 groups: one group was fed normal diet (CON, n = 6),
and the other group was fed normal diet supplemented with
400 mg/kg BW MFGM (CON + MFGM, n = 6). Similarly,
pregnant rats in the HFD group were randomly divided into
2 groups: one group was fed HFD (45% calories from fat,
D12451, Research Diets) (HFD, n = 6), and the other group
was fed with HFD supplemented with 400 mg/kg BW MFGM
(HFD + MFGM, n = 6). The caloric information of diets was
shown in Supplementary Table 1. MFGM was provided by
Arla Co. (Sønderhøj, Viby J, Denmark). All groups maintained
on the above diets until the end of lactation. At birth, pups
were weighed and sex-determined, and litters were culled to 8
pups. Offspring were kept with their dams until postnatal day
(PND) 21 (weaning). The animal study was approved by the
Ethics Committee of China Agricultural University (License
No. KY. 180026).

Reflex development

Righting reflex
Righting reflex was performed as previously described (26).

On PND 3-7, the pups were placed on their backs on a rough
wooden board. The day when pups turned over from the supine
position to prone position within 5 s was recorded.

Cliff avoidance
Cliff avoidance was performed as previously reported (26).

On PND 5-8, the pups were placed on the edge of a suspended
plate with their nose and front paws over the edge. The day
pups withdrew their nose and forepaws from the edge within
10 s was recorded.

Negative geotaxis
Negative geotaxis was performed as previously described

(27). On PND 6-11, the pups were placed head down on a flat
and rough wooden board with an inclination angle of 45◦. The
day the pups turned around and climbed up the board within
20 s was recorded.

Tissues collection and blood sampling

For offspring on PND 21, rats were fasted overnight and
anesthetized with ethyl ether, and the trunk blood of the
decapitated rats was rapidly collected. Blood samples were
centrifuged at 1,000 g for 20 min at 4◦C to obtain serum. Serum
was stored at −80◦C until needed. For immunohistochemical
analysis, the brain was rapidly removed and fixed in 4% PFA.
For western blot analysis, the brain was immediately frozen in
liquid nitrogen, and stored at −80◦C until needed.

Immunohistochemical examination

Immunohistochemical examination was performed as
previously described (23). Coronal brain sections were sliced
using a freezing microtome (Leica, Germany) and pretreated
with 3% hydrogen peroxide to block endogenous peroxidase
activity. The sections were incubated with 3% bovine serum
albumin in PBS and were incubated overnight at 4◦C with
primary antibodies anti-doublecortin (Abcam, ab18723) and
anti-Ki67 (Abcam, ab16667). After washing in PBS for three
times, sections were incubated with a biotinylated secondary
antibody (Abcam, ab205718) for 2 h at room temperature.
Following another wash with PBS, sections were subjected
to 3,3’-diaminobenzidine (DAB). Sections were counterstained
with hematoxylin, dehydrated, and cleared in xylene. The
sections were observed under the Olympus IX 73 microscope
(Olympus Corporation Tokyo, Japan) and the average optical
density were quantified using Image-Pro Plus 6.0 software.

16S rRNA gene sequence analysis

Fresh feces from weaned offspring were collected in dry
sterile centrifuge tubes, and stored at −80◦C. 16S rDNA high-
throughput sequencing was conducted by Majorbio BioPharm
Technology Co., Ltd. (Shanghai, China). Samples were thawed
on ice, and total DNA was extracted with an E.Z.N.A. soil DNA
kit (Omega Bio-Tek, Norcross, GA, United States). The DNA
quality was detected by 1% agarose gel electrophoresis. The
V3-V4 regions of the bacterial 16S rRNA gene was amplified
with primers 338F (5’-ACTCCTACGGGAGGCAGCAG-3’) and
806 R (5’-GGACTACHVGGGTWTCTAAT-3’). PCR reactions
were performed under the following program: pre-denaturation
at 95◦C for 3 min, 30 cycles (denaturation at 95◦C for 30 s,
annealing at 55◦C for 30 s, extension at 72◦C for 45 s), extension
at 72◦C for 10 min, and then maintained at 10◦C until use. The
PCR products were detected by 2% agarose gel electrophoresis,
and the purified and amplified fragments were used to construct
a PE 2∗300 library. After the library was verified, the Illumina
MiSeq PE300 platform was used for sequencing according
to the standard procedure. Raw fastq files were filtered and
quality controlled by Trimmomatic, and spliced by FLASH. The
sequences were clustered into OTUs according to the similarity
of 97%, and the OTUs sequences were compared with the
Silva database using RDP Classifier algorithm to analyze the
taxonomic classification of gut microbiota.

Inflammatory factors analysis

Levels of LPS, IL-1β, IL-6, and TNF-α in the serum
and brain were determined using ELISA assay kits according
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to the manufacturer’s instructions (Cusabio Life science,
Wuhan, Hubei, China).

Western blot

Western blot was performed as previously described
(28). Brains were weighed and homogenized in ice cold
RIPA buffer (Beyotime, Shanghai, China) containing 1%
protease phosphatase inhibitor (Beyotime, Shanghai, China),
followed by centrifugation at 10,000 g for 15 min at 4◦C
to collect the supernatant. The protein concentration was
determined by the BCA protein assay reagent (Tiangen
Biotech, Beijing, China). The samples were stored at
−20◦C. After separation by 10% sodium dodecyl sulfate
polyacrylamide gel electrophoresis (SDS-PAGE), the proteins
were transferred to activated polyvinylidene difluoride
(PVDF) membranes (Millipore, Bedford, MA, United States).
Membranes were blocked in 5% skim milk for 1 h at room
temperature, and then incubated with primary antibodies
targeting Iba1 (Abcam, ab178846, 1:1,000) and β-actin
(Bioss, #bs-0061R, 1:1,000) overnight at 4◦C. After being
washed with TBST solution for 5 times, membranes were
incubated with the horseradish-peroxidase-conjugated
secondary antibody for 1 h at room temperature. The bands
were visualized by enhanced chemiluminescence reagent
(Millipore, Bedford, MA, United States) and quantified using
ImageJ software.

Statistical analysis

Values are expressed as means ± standard error of the
mean (SEM). Significant differences were determined using
SPSS software (version 23.0, IBM Corp., United States). One-
way analysis of variance (ANOVA) followed by post hoc Tukey’s
multiple comparison test was used for parametric analysis
of variance between groups, and Student’s t-test was used
for comparing two groups. Mann-Whitney non-parametric
tests were performed to determine the differences in reflex
experiments. Significance was set at P < 0.05.

Results

Maternal milk fat globule membrane
supplementation decreased body
weight and promoted neurobehavioral
development in high-fat diet offspring

Food intake of dams during pregnancy and lactation
was shown in Supplementary Figure 1, and MFGM
supplementation didn’t influence food intake of HFD dams.

The body weight of the offspring at birth and weaning
was measured. As shown in Figure 1A, maternal HFD
significantly increased the body weight of male offspring
compared with that of CON offspring on PND 0 and 21.
Maternal MFGM supplementation substantially decreased
the body weight of offspring. Similar results were observed
in the body weight of female offspring (Figure 1B). The
body weight of female offspring born from HFD dams
was higher than that of the CON offspring on PND 0
and 21 (P < 0.01), which was suppressed due to MFGM
intervention in obese dams.

To evaluate the effect of MFGM on the development
of neurological reflexes in offspring, righting reflex, cliff
avoidance and negative geotaxis were performed. As shown
in Figures 1C,D, there was no significant difference in the
average age of finishing reflexes of the male and female offspring
between the CON group and the CON + MFGM group, while
HFD offspring had a significantly delayed time to finish righting
reflex and cliff avoidance. Maternal MFGM intervention
significantly promoted righting reflex development in female
offspring, meanwhile there was no significant difference
between the HFD + MFGM group and the CON group in
male offspring. Besides, cliff avoidance occurred obviously
earlier in HFD + MFGM male offspring than that in HFD
male offspring, while no significant difference was observed
in female offspring between HFD + MFGM group and CON
group. The average age of finishing negative geotaxis displayed
no differences among the four groups (Figure 1E). These
results indicated that MFGM supplementation in obese dams
during pregnancy and lactation could promote neurobehavioral
development in offspring.

Maternal milk fat globule membrane
supplementation promoted
neurogenesis in high-fat diet offspring

To evaluate the effect of maternal MFGM supplementation
on the hippocampal neurogenesis of the offspring at weaning,
the positive cells of Ki-67, a marker of cell proliferation
and doublecortin (DCX), a marker of newborn neurons,
were determined. As shown in Figure 2, compared with
the CON group, the optical density of hippocampal Ki-
67 in the offspring of the HFD group was dramatically
decreased (P < 0.001). MFGM supplementation in obese
dams notably recovered the expression of Ki-67 (P < 0.05).
Similarly, the optical density of the hippocampal DCX
of the HFD offspring was notably decreased compared
with the CON group, while this reduction was markedly
prevented by maternal MFGM supplementation (P < 0.01).
These results suggest that maternal MFGM supplementation
attenuated the impairment of neurogenesis in weaned offspring
from obese dams.
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FIGURE 1

Maternal supplementation with milk fat globule membrane during pregnancy and lactation promoted neurobehavioral development in offspring
from HFD dams before weaning. (A) Body weight of male offspring. (B) Body weight of female offspring, n = 12. The average age of reaching the
criterion of right reflex (C) cliff avoidance (D) and negative geotaxis (E), n = 20. Values are mean ± SEM. *P < 0.05 vs. CON group. #P < 0.05 vs.
HFD group. **P < 0.01 vs. CON group. ##P < 0.01 vs. HFD group. ***P < 0.001 vs. CON group.
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FIGURE 2

Maternal supplementation with milk fat globule membrane during pregnancy and lactation promoted neurogenesis in weaned offspring from
HFD dams. (A) Immunohistochemical staining and average optical density value of Ki-67 and DCX in the dentate gyrus of the offspring. (B)
Average optical density value of Ki-67 and DCX, n = 6. Values are mean ± SEM. #P < 0.05 vs. HFD group. **P < 0.01 vs. CON group. ##P < 0.01
vs. HFD group. ***P < 0.001 vs. CON group.

Maternal milk fat globule membrane
supplementation modulated the
diversity of gut microbiota in high-fat
diet offspring

According to the PLS-DA (Figure 3A), there was a clear
separation between the CON group and the HFD group,
indicating that maternal HFD induced differences in the
bacterial community structure of weaned offspring. Reduced
gap and an overlap between HFD + MFGM and CON
groups was observed, demonstrating that maternal MFGM
supplementation restored the gut microbiota structure of
offspring. The biological diversity within the sample was
reflected by α-diversity, and the Ace index and the Simpson
index were used to evaluate the community richness and
diversity of the gut microbiota. Compared with the CON
offspring, the Ace index of the gut microbiota in the HFD
offspring did not change significantly but had a lower value,
while HFD + MFGM offspring presented an increase in the
Ace index (P < 0.05) (Figure 3B). The Simpson index in the
HFD offspring was higher than that in the CON offspring
(P < 0.01) (Figure 3C), indicating that maternal HFD reduced

the species diversity of gut microbiota in weaned offspring.
MFGM supplementation to HFD dams did not significantly
change the Simpson index in offspring. These results indicate
that maternal MFGM administration modulated the diversity of
gut microbiota in HFD offspring.

Maternal milk fat globule membrane
supplementation modulated the
composition of gut microbiota in
high-fat diet offspring

As shown in Figure 4A, Firmicutes, Bacteroidetes,
Proteobacteria, and Verrucomicrobia were the main dominant
phyla in the gut microbiota of weaned offspring at the phylum
level. Compared with the CON group, the relative abundance
of Proteobacteria increased significantly in the HFD group
(P < 0.001), while the HFD + MFGM offspring presented lower
abundance of Proteobacteria (Figure 4B). At the genus level
(Figures 4C,D), compared with the CON group, the relative
abundance of Lactobacillus in the CON + MFGM group was
significantly increased (P < 0.05). The relative abundance of
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FIGURE 3

Maternal supplementation with milk fat globule membrane during pregnancy and lactation modulated the overall structure of gut microbiota in
weaned offspring from HFD dams. (A) Principal component analysis plot of the gut microbiota at the OTU level. The α-diversity of gut
microbiota depicted according to Ace index (B) and Simpson index (C) at the OTU level. Values are mean ± SEM, n = 5–6. *P < 0.05 vs. CON
group. #P < 0.05 vs. HFD group. ##P < 0.01 vs. HFD group.

Lactobacillus was also higher in the HFD + MFGM offspring
compared with HFD offspring (P < 0.05). Meanwhile, the
relative abundance of Akkermansia was reduced by 78% in HFD
offspring compared with CON offspring, while HFD + MFGM
offspring presented an increase in the relative abundance of
Akkermansia. Compared with the CON group, the relative
abundance of Escherichia shigella and Enterococcus in the HFD
offspring were upregulated by 181 and 154%, respectively,
which was recovered by MFGM supplementation. These results
suggest that maternal MFGM administration improved the
composition of gut microbiota in offspring born to HFD dams.

Maternal milk fat globule membrane
supplementation decreased serum
pro-inflammatory factors in high-fat
diet offspring

To determine whether the effects of MFGM on the gut
microbiota could improve inflammation in HFD offspring,
the levels of serum pro-inflammatory factors of the weaned
offspring were measured firstly. As shown in Table 1, compared

with the CON group, the serum levels of IL-1β, IL-6, TNF-
α, and LPS were up-regulated by 50, 33, 11, and 46%,
respectively, in HFD offspring, which were markedly reversed
by MFGM intervention.

Correlation between gut microbiota
and serum pro-inflammatory factors

To examine the correlation between gut microbiota
and inflammatory responses, Spearman’s correlation
analysis was used to calculate the correlations of the
top 30 most abundant bacteria at the genus level with
serum inflammation-related parameters (Figure 5). The
heatmap reflected significant negative correlations between
serum pro-inflammatory factors (LPS, IL-1β, IL-6, and
TNF-α) and Lactobacillus, Blautia, Akkermansia, and
norank_f_Muribaculaceae, indicating that these bacteria
may be beneficial for the alleviation of inflammatory
response in offspring. Serum pro-inflammatory factors were
positively correlated with Escherichia-Shigella, Enterococcus,
Parabacteroides, Tyzzerella_4, Ruminococcus_gnavus_group,
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FIGURE 4

Maternal supplementation with milk fat globule membrane during pregnancy and lactation regulated the composition of gut microbiota in
weaned offspring from HFD dams. (A) Relative abundance of gut microbiota at the phylum level. (B) Relative abundance of Proteobacteria. (C,D)
Relative abundance of gut microbiota at the genus level. Values are mean ± SEM, n = 5–6. *P < 0.05 vs. CON group. #P < 0.05 vs. HFD group.
**P < 0.01 vs. CON group. ##P < 0.01 vs. HFD group. ***P < 0.001 vs. CON group.

TABLE 1 Maternal supplementation with milk fat globule membrane during pregnancy and lactation alleviated serum levels of inflammatory
factors in weaned offspring from HFD dams.

IL-1β (pg/mL) IL-6 (pg/mL) TNF-α (pg/mL) LPS (EU/L)

CON 15.64 ± 1.54 79.86 ± 3.72 86.42 ± 3.62 355.45 ± 18.98

CON + MFGM 15.82 ± 1.70 82.33 ± 3.19 87.92 ± 2.27 328.69 ± 30.32

HFD 31.15 ± 0.95*** 106.51 ± 2.31*** 95.73 ± 2.84** 519.09 ± 40.99***

HFD + MFGM 23.06 ± 1.27***### 86.99 ± 3.58### 90.52 ± 1.55# 422.63 ± 12.89***##

Values are mean ± SEM, n = 6.
#P < 0.05 vs. HFD group. **P < 0.01 vs. CON group. ##P < 0.01 vs. HFD group. ***P < 0.001 vs. CON group. ###P < 0.001 vs. HFD group.

and unclassified_f_Enterobacteriaceae, indicating that
these bacteria may be involved in the inflammatory state
of HFD offspring.

Maternal milk fat globule membrane
supplementation alleviated
neuroinflammation in high-fat diet
offspring

Circulating inflammatory factors could impair and cross the
blood-brain barrier to induce neuroinflammation. To further

investigate the effects of MFGM on the neuroinflammation
in HFD offspring, the levels of brain pro-inflammatory
factors and the protein expression of microglia marker Iba1
were analyzed. As shown in Figures 6A–D, compared with
the CON offspring, the brain levels of IL-1β, IL-6, TNF-
α, and LPS were notably increased in HFD offspring. The
brain levels of IL-6, TNF-α and LPS were obviously down-
regulated by MFGM intervention, and the value of IL-1β was
lower than HFD group in HFD + MFGM group, suggesting
that MFGM administration to HFD dams could attenuate
cerebral inflammatory response. Furthermore, microglia
activation is a marker of neuroinflammation. In order to
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FIGURE 5

Heatmap of Spearman’s correlation between gut microbiota (the 30 most abundant species at the genus level) and serum inflammatory factors.
Red color represents a positive correlation, while green color represents a negative correlation. n = 6. *0.01 < P ≤ 0.05, **0.001 < P ≤ 0.01.

explore the effects of maternal MFGM supplementation
on microglia activation of weaned offspring, the protein
expression of Iba1 was measured (Figure 6E). Compared
with the CON group, the protein content of Iba1 in the
brain of HFD offspring was significantly increased, which
was recovered by maternal MFGM intervention. These data
showed that MFGM can alleviate neuroinflammation in HFD
offspring. The correlation analysis identified significant negative
correlations between Lactobacillus, Blautia, Akkermansia, and
norank_f_Muribaculaceae and Iba1, and positive correlations
between Escherichia-Shigella, Enterococcus, Parabacteroides,
Tyzzerella_4, and unclassified_f_Enterobacteriaceae and
Iba1, indicating that gut microbiota could modulate
neuroinflammation of HFD offspring (Figure 6F).

Discussion

The development of neurological reflexes is an efficacious
and reliable indicator of the neurodevelopment of pups.
Different reflex behaviors during development can reflect the
maturity of the nervous system and physical development.
For example, righting reflex measures the development of
muscle and motor function, cliff avoidance reflects the sensory-
motor function, and negative geotaxis evaluates the maturation

of cranio-caudal coordination (29, 30). Nutritional status
in early life is a major determinant of neurodevelopment.
Maternal HFD during pregnancy and lactation adversely
affect the neurodevelopment of offspring, as evidenced by
delayed maturation of physiological reflexes (31). Dietary
supplementation of velvet antler in dams improved the
acquisition of righting reflex, cliff avoidance and negative
geotaxis in offspring (32). Supplementation with MFGM in
infant formula-fed pups narrowed the gap in the maturation age
of cliff avoidance and negative geotaxis compared with breast-
fed pups (33). Consistent with these findings, the present study
proved that exposure to maternal HFD delayed the maturation
of righting reflex and cliff avoidance, while maternal MFGM
administration during pregnancy and lactation could restore the
development of neurological reflexes in the offspring, suggesting
that MFGM is beneficial to neurodevelopment.

Neurogenesis in the hippocampus, including cell
proliferation and cell survival, is critical for neurodevelopment.
New neurons in the subgranular layer of the DG continuously
generate, maturate, and integrate functionally into existing
neural circuits, thereby promoting neurodevelopment and
behavioral reflexes. Maternal nutrition affects hippocampal
neurogenesis in offspring during early development. Maternal
HFD impaired neurogenesis during offspring hippocampal
development (6). Maternal choline supplementation partially
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FIGURE 6

Maternal supplementation with milk fat globule membrane during pregnancy and lactation alleviated neuroinflammation in weaned offspring
from HFD dams. IL-1β (A), IL-6 (B), TNF-α (C) and LPS (D) levels in the brain. (E) Representative image and relative quantitative analysis of Iba1 in
the brain by Western blot. (F) Heatmap of Spearman’s correlation between gut microbiota (the 30 most abundant species at the genus level)
and Iba1. Values are mean ± SEM, n = 6. *P < 0.05 vs. CON group. #P < 0.05 vs. HFD group. **P < 0.01 vs. CON group. ##P < 0.01 vs. HFD
group. ***P < 0.001 vs. CON group.
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FIGURE 7

Possible mechanism for the beneficial effect of maternal MFGM supplementation on the neurodevelopment of offspring.

normalized neurogenesis in the offspring with Down syndrome
(34). In the present study, maternal MFGM supplementation
restored maternal HFD-induced reduction in the neurogenesis
of weaned offspring, as evidenced by elevation of Ki-67
and DCX positive neurons, contributing to improved
neurodevelopment. MFGM contains abundant polar lipids
including phosphatidylcholine (PC), phosphatidylethanolamine
(PE), sphingomyelin (SM), and gangliosides. Polar lipids and
their metabolites such as long-chain unsaturated fatty acids
and choline can be transmitted to offspring through placenta
and breast milk and promote neurodevelopment (35–37).
Maternal LC-PUFAs and choline supplementation were
related to better memory and intelligence quotient in children
(38, 39). Maternal supplementation with complex milk
lipid during pregnancy and lactation increased ganglioside
level in the brain of offspring, which was important for
neurogenesis (40). Therefore, abundant polar lipids in

MFGM contributed a lot to the beneficial effects of MFGM
on neurodevelopment.

The mechanism of neurodevelopment is complex and
can be regulated by multiple pathways. In recent years,
communications between gut microbiota and brain have
attracted a lot of attention. Based on the role of gut microbiota
in neurogenesis and microglia maturation demonstrated in
germ-free animals, disturbances of gut microbiota during
development may affect neurodevelopment (14). Human
studies showed that the composition of gut microbiota in
infants was related to the diet and weight of mothers
during pregnancy, and the β-diversity and α-diversity of gut
microbiota in children were altered by maternal obesity (15).
Meanwhile, the concentrations of pathogenic bacteria were
elevated in infants of overweight mothers (16), which were
associated with the occurrence of necrotizing enterocolitis in
infants (41). Therefore, maternal obesity may have a negative
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impact on early immune development. Akkermansia, novel
beneficial bacteria, was higher in lean children compared
with overweight/obese children. Lactobacillus abundance is
positively correlated with memory (42), and supplementation of
omega-3 fatty acids in pregnant mice increased fecal levels of
Lactobacillus, thereby enhancing social and cognitive function
(43). Escherichia shigella was a leading cause of diarrhea in
children and was inversely associated with cognitive scores
(44). Preterm newborns with gut microbiota dominated by
Enterococcus were significantly associated with death after
4 weeks of age or the neurodevelopment at 2 years of age
(45). In this study, the overall structure of gut microbiota in
offspring was changed due to maternal HFD. The abundance
of Escherichia shigella and Enterococcus were up-regulated, and
Akkermansia was down-regulated in the weaned offspring of
obese dams. However, maternal MFGM intervention could
significantly reverse these changes. Of note, there was no
significant change in the Lactobacillus abundance of HFD
offspring, which was increased by MFGM intervention in both
control and obese dams in the present study. Therefore, the
modulation of MFGM on gut microbiota might promote the
development of immune and cognition in offspring.

Maternal diet could affect the gut microbiota of offspring
through vertically transmitted to the offspring during delivery,
thus diet-induced changes in the gut microbiota of the
mothers can directly affect the colonization of the gut
microbiota of offspring (46). A previous study has found
that administration of polar lipids-enriched MFGM in obese
dams during pregnancy and lactation could restore the ratio
of Firmicutes to Bacteroides, reduce the relative abundance of
Ruminococcaceae and Enterococcus, and increase the relative
abundance of Akkermansia (25), which were similar to the
changes in the gut microbiota of offspring observed in the
present study. Therefore, the beneficial effect of MFGM on
the gut microbiota of offspring may be attributed to the
improvement of the gut microbiota of dams. The benefits of
MFGM in regulating gut microbiota may be attributed to its
components and their metabolites. Dietary milk SM altered
gut microbiota composition in HFD mice, with significantly
reduced relative abundance of Gram-negative phyla, such as
Bacteroidetes and Tenericutes, and the major digestion products
of SM, sphingosine, exhibited strong antimicrobial properties
against pathogenic bacteria in vitro (47, 48). Ethanolamine,
which is the base constituent of PE, was found to be helpful
for the development of infant intestine by improving intestinal
antioxidant capacity, promoting intestinal cell differentiation
and altering gut microbiota (49). Gangliosides reduced the
relative content of Escherichia coli in preterm newborn infants
and increased fecal Bifidobacteria counts (50). Therefore, the
regulatory effect of MFGM on the gut microbiota of offspring
may be due to simultaneous effects on both dams and offspring.

Microbiota shifts are well known to be associated with
inflammation. LPS from the cell wall of Gram-negative bacteria

in the gut microbiota is an important cause of systemic low-
grade inflammation. LPS can activate the immune system
through toll-like receptor 4 and downstream inflammatory
signaling molecules, thereby promoting the production of
inflammatory factors including IL-1β, IL-6, TNF-α (51).
Exposure to maternal chronic low-grade inflammation induced
by long-term HFD during pregnancy and lactation could also
negatively affect the serum cytokine levels of offspring (52).
In this study, offspring of obese dams had high levels of
serum LPS and inflammatory factors at weaning, while MFGM
intervention suppressed the inflammatory state of the offspring.
Gut microbiome profile was linked to the inflammatory state of
the host. For example, Lactobacillus could repair the intestinal
mucosal barrier and prevent LPS and harmful bacteria from
entering the circulation through the intestinal epithelium (53).
Muribaculaceae, which produce butyrate, is associated with the
degradation of complex carbohydrates, the formation of mucus
layer in the colon and the improvement of barrier function (54).
Moutan cortex polysaccharides up-regulated the abundance of
Lactobacillus and Muribaculaceae_unclassified, thus improving
intestinal barrier and inflammatory response in diabetic rats
(55). In addition, overweight during pregnancy reduced the
abundance of Blautia in the gut microbiota of newborns
(56), which was associated with the deterioration of intestinal
inflammation and metabolic phenotype in obese children (57).
Except for the reduction in anti-inflammatory bacteria, the
increase in pro-inflammatory bacteria also contributes to the
inflammation. Enterococcus in infants fed with infant formula
was significantly higher than that in breast-fed infants, which
was a leading cause of sepsis in infants (58). Through correlation
analysis in the present study, we found that Lactobacillus,
norank_f_Muribaculaceae, Akkermansia, Blautia, Escherichia-
Shigella, and Enterococcus were significantly correlated with
the change of inflammation in offspring, demonstrating that
maternal MFGM supplementation improved the inflammation
of offspring via regulating gut microbiota.

Cytokines in circulation induced by LPS could damage the
blood-brain barrier via binding to the endothelial receptors
and releasing pro-inflammatory mediators (59). Subsequently,
LPS and pro-inflammatory cytokines enter the brain, inhibit
the phagocytosis of microglia and stimulate the production of
pro-inflammatory cytokines, thereby contributing to microglia
activation and the occurrence of neuroinflammation (60).
In the present study, since the changes in inflammation-
related bacteria and the improvement of gut microbiota
in systemic inflammation have been verified, the effect of
MFGM on neuroinflammation was further analyzed. Rats fed
HFD from 4 weeks before mating to the end of lactation
increased the expression of hippocampal microglial activation
marker Iba1 in offspring at birth, and hippocampal IL-1β

levels at weaning and adulthood were significantly higher
than those in the control offspring (61). Consistent with
this study, in our study, elevated inflammatory mediators
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and microglial activation were observed in HFD offspring,
which were alleviated by maternal MFGM supplementation.
According to previous reports, gut microbiota could regulate
the maturation and immune response of microglia through
metabolites such as short-chain fatty acids, thus modulating
neurodevelopment (62). Meanwhile, changes in some bacteria
have been proved to be associated with neuroinflammation and
cognition. Lactobacillus plantarum supplementation improved
memory impairment in Alzheimer’s disease mice via decreasing
Enterobacter abundance and increasing Lactobacillus and
Bifidobacterium abundance, reducing LPS levels in blood
and feces, and inhibiting microglial activation (63). Early
life HFD could damage neurodevelopment of mice and
significantly reduce the abundance of Akkermansia, while
supplementation of Akkermansia significantly reduced the
activation of microglia and the expression of pro-inflammatory
cytokines, thereby improving learning and memory ability
(64). Increased Escherichia Shigella abundance was associated
with peripheral inflammatory states in patients with cognitive
impairment and brain amyloidosis (65). In the present study,
the correlation between gut microbiota and neuroinflammation
was further confirmed by Spearman’s correlation analysis,
and bacteria including Lactobacillus, Akkermansia, Escherichia-
Shigella, and Enterococcus were significantly correlated with the
change of microglial activation in offspring, suggesting that
MFGM could improve neuroinflammation at least partially via
modulating gut microbiota.

Conclusion

In summary, supplementation of MFGM to HFD-induced
obese dams during pregnancy and lactation reduced postnatal
body weight of offspring, promoted the maturation of
neurological reflexes and hippocampal neurogenesis in the
offspring. MFGM modulated the diversity of gut microbiota,
downregulating the abundance of pro-inflammatory bacteria
such as Escherichia shigella and Enterococcus, and upregulating
the abundance of bacteria with anti-inflammatory and anti-
obesity functions, such as Akkermansia and Lactobacillus.
MFGM also reduced the levels of LPS and pro-inflammatory
cytokines (IL-1β, IL-6, TNF-α) in the serum and brain
tissue of the offspring, and inhibited the expression of
microglial activation marker Iba1, which were beneficial
to reducing the neuroinflammation of offspring. The
correlation between the changes in the gut microbiota
and inflammation was further verified. Therefore, gut
microbiota-mediated reduction of inflammatory response
was the potential mechanism by which MFGM stimulated
neurodevelopment (Figure 7). These findings provide new
evidence of the MFGM as an effective functional component
for neurodevelopment in early life.
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