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Recent advances in filtering in drug discovery are reviewed. Filtering is used in a

global broad sense to include exclusionary as well as inclusionary criteria and

encompasses the following topics related to the discovery of drugs: (1)

computational definitions of drug-likeness; (2) positive filters for drug-like activity;

(3) lead-likeness as a concept; (4) oral activity filters; (5) CNS drug filters;

(6) intestinal permeability filters; (7) drug metabolism parameter filters; (8)

promiscuous compound filters; and (9) agrochemical filters. This review does not

cover what could be termed as local parameters such as pharmacophore models,

docking and scoring, etc.

1. DRUG-LIKENESS

To this author there seems to be much more agreement as to what is drug-like

than there is as to what is diverse. Defining what is drug-like and non-drug-like

requires some type of reference point. The property distributions of commercially

available databases have been examined. The available chemicals directory

(ACD) seems to be the most common non-drug-like database. The pesticide

manual has been used as an alternate standard for non-drug-likeness because it
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is composed primarily of compounds designed to cause fatality to the primary

organism. The Comprehensive Medicinal Chemistry (CMC), Derwent Word Drug

Index (WDI) and Modern Drug Data Report (MDDR) are among the more

commonly used drug-like databases [1,2]. In addition, the 10,000 or so Phase II

compounds are used to define drug-like compounds [3]. A compound’s drug-like

index has been calculated based upon the knowledge derived from known drugs

selected from the CMC database [4]. The property distributions in combinatorial

compounds compared to drugs or natural products largely reflect combinatorial

chemistry synthesis constraints such that there are fewer chiral centers and

complex ring systems [5]. The distribution of ring systems across multiple

databases has been described [6] and a program was written and tested on the

MDDR database [7] to identify candidate chemical ring replacements

(bioisosteres). From the study of a database of commercially available drugs it

is clear that the diversity of molecular framework (ring) shapes is extremely low.

The shapes of half of the drugs in the database are described by the 32 most

frequently occurring frameworks [8]. The diversity that side chains provide to drug

molecules is quite low since only 20 side chains account for over 70% of the side

chains [9]. Defining drug-like by what exists in databases leads to the criticism that

most of chemistry space will be undefined and that discovery opportunities in

unexplored chemistry space will be limited. A solution is to populate chemistry

space with non-drug-like markers akin to the way point in a GPS navigation

system [10].

Multiple filters (properties) may be incorporated into a definition of drug-

likeness and this leads to trade-offs among compound properties in

compounds intended for screening [11]. Optimization of compound properties

may require some type of multi-parameter optimization scheme in library

design [12]. Fingerprint algorithms can be used to guide diversity [13]. Filters

also need to be employed in the chemistry synthesis planning process so that

good quality compounds are made [14]. Differences in property ranges

between oral and injectable drugs have been summarized [15]. Oral drugs are

lower in MWT and have fewer H-bond donors, acceptors and rotatable bonds.

Property profiles of oral drugs are independent of the year in which the drug

was approved to market and to some degree independent of target. Polar

surface area (PSA) in one definition is the solvent accessible surface covered

by oxygen, nitrogen and the hydrogens attached to oxygen and nitrogen. As a

compound progresses through clinical trials there is a steady change in

properties, e.g., MWT, Log P and PSA all decline with a MWT of about 340

found for marketed drugs [16,17]. The reason for this pattern is unclear since

properties related to oral absorption would be expected to have reached a

plateau by Phase II and hence selection pressure for properties related to oral

absorption should have disappeared by then [18]. Pulmonary drugs tend to

have higher PSA because pulmonary permeability is less sensitive to polar
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hydrogen-bonding functionality [19]. Anatomically this makes sense since

lungs are a closed compartment and any accumulating fluid and compounds in

terminal alveoli must be cleared. Discrimination between antibacterial and non-

antibacterial activity has been achieved based on 3D molecular descriptors.

The overall classification rate was around 90% on a data set of 661 compounds

using 2–3 variables selected from log P, charged-weighted negative surface area,

positive surface area of heavy atoms and maximum donor delocalizability. Three-

dimensional geometry variations had little impact on the discriminatory

performance [20].

2. DRUG-LIKENESS AND CHEMISTRY QUALITY

Descriptors for drug-like are most effective if they have physical meaning so as to

facilitate chemists designing in drug-likeness [21]. Drug-likeness in the design of

combinatorial libraries [22,23] involves the use of rule-based filters like the rule of 5

[24], the use of exclusionary filters to remove undesired chemistry functionality

[25] and the capture of privileged structure information, e.g., from natural product

collections [26] or from retro synthetic analysis of collections of bioactive

molecules [27]. Natural product structural features are particularly well

represented in the cancer chemotherapy and infectious disease areas [28].

Exclusionary filters have been described that remove reactive chemical

functionality based on the premise that compounds having covalent chemistry

possibilities have no place in drug discovery [29]. Filters are also necessary to

remove cross reactivity in pooled compounds [30]. Pooling is a procedure in which

single well-characterized compounds are deliberately mixed to speed screening.

Components of the mixture must neither contain structural features causing assay

false positives nor must they contain common substructural elements that would

confuse the deconvolution of activities of the individual components. The

magnitude of the number of poor quality screening compounds is emphasized by

the report that only 37% of 1.6 million unique commercially available compounds

are drug-like [31]. A very similar result was found in a virtual screen for SARS-CoV

protease against commercially available and academic compounds. Of the 0.07%

virtual hits against 3.6 million compounds, 47% failed three or more of 13

druggability criteria [32]. The criteria were based on physical, chemical and

structural properties. Providing high-quality chemistry subject matter is now

supported under the NIH molecular library small molecule repository initiative

which aims to collect one million drug-like molecules from commercial, industry

and government sources [33]. Emphasizing the point that drugs must contain

adequate functionality to achieve acceptable receptor interactions, a single filter

separates drug-like from non-drug-like compounds based on the observation that

non-drugs are often under-functionalized [34].
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3. POSITIVE DESIRABLE CHEMISTRY FILTERS

Privileged structures, e.g., benzodiazepines are recurring structures active

against targets unrelated by target family. They can be viewed as molecular filters

selecting for desirable chemistry subject matter. As such they are rich sources for

screening libraries and have recently been reviewed [35]. Privileged structure

features have been employed in the combinatorial design of GPCR libraries [36],

in the combinatorial synthesis of privileged bicyclic structures [37] and in the

combinatorial synthesis of cyclic peptides [38]. Homology modeling suggests a

parallelism between common privileged GPCR ligand features and complemen-

tary deeply buried protein features in class A GPCRs [39]. Grouping by target

family is also another method helping focus on particular target-directed privileged

structures [40]. The idea is that structurally similar target family members will bind

structurally similar small molecule ligands [41]. NMR screening helps identify

privileged protein binding elements albeit of smaller size [42]. Although not strictly

speaking a privileged structure, privileged structural elements such as the

hydroxamate moiety found in many metalloprotease inhibitors can be identified

[43]. Discernment of privileged structures has historically largely been a data

mining exercise. However, very similar recurring structural motifs, so-called

‘molecular anchors’ have been described based on structure-based ligand binding

considerations [44,45]. Rigid small molecule ligands (the molecular anchors) are

incapable of hydrophobic collapse and a single non-collapsible ligand conformer

binds at a protein cavity site which is also often incapable of hydrophobic collapse.

This concept explains the frequent occurrence of non-collapsible spiro structures

in privileged structures/molecular anchors. Chemistry design principles directed to

the very difficult goal of small molecule interference with protein–protein

interactions via an allosteric interaction have been described [46]. An intriguing

aspect is the hypothesis that chemistry emphasis should be placed on compound

cores capable of interacting with relatively fixed protein hinge regions rather than

on elaboration of lipophilic side chains attached to the core. The thermodynamic

penalty attendant to ligand binding to a non-lowest energy protein conformer

suggests that screening should allow for slow binding with adequate assay

equilibration time. An implication is that for this type of target it is better to make

larger numbers of smaller libraries than fewer numbers of large libraries. This

trend to smaller libraries is now well documented [47]. Taken to its extreme this

approach takes the typical dense chemistry space coverage of the traditional

combinatorial library (target-oriented synthesis) towards the direction of the

diversity-oriented synthesis approach to chemistry lead generation which

populates diverse single molecules broadly through chemistry space [48]. This

direction is of course in the direction of less efficient, more difficult chemistry. The

focus on biological information content richness suggests natural products as

combinatorial library starting points [49]. Chemical content richness is found in
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compounds produced by multicomponent reactions (MCR) which are chemical

transformations in which as many as four components form a new compound in a

single chemistry reaction step. The Ugi reaction of a carboxylic acid, amine,

aldehyde and isonitrile is a classic example. In theory while offering an efficient

approach to synthesis of diverse compounds, MCR in high-throughput mode

currently suffers from significant chemistry limitations [50].

4. LEAD-LIKENESS

The difference between drug-like and lead-like has been described [51]. Leads are

less complex in most parameters than drugs, which is understandable in that

medicinal chemistry optimization almost invariably increases MWT and Log P

[52]. However, the structural resemblance between a starting lead and a drug is

marked [53]. The implication is that a quality lead as opposed to a flawed lead is far

likely to lead to a real drug [54]. Lead-like discovery also refers to the screening of

small molecule libraries with detection of weak affinities in the high micromolar to

millimolar range. The process usually by itself does not lead to an acceptable

chemistry starting point. Something else has to be added after the primary screen.

Generally, multiple small molecules do not bind to non-adjacent target sites [55],

so the screening is that of small MWT singletons. However, binding of two

components to the same receptor site is possible as attested by the discovery of

sub-nanomolar ligands in what is termed click chemistry [56]. In this process an

acetylene and azide terminus from two receptor site independently bound

molecules cyclize to a single compound with the two components linked via a 1,2,3

triazole ring. Filtering in the context of lead-like small molecule screening implies

control of the properties of drug starting points that eventually result from this

process. A rule of three [57] has been coined for small molecule fragment

screening libraries; MWT , 300; Log P , 3; H-bond donors and acceptors , 3

and rotatable bonds , 3. Small fragment screening can be by NMR [58–60], by

X-ray [61,62], or in theory by any method capable of detecting weak interactions.

5. ORAL DRUG ACTIVITY

The topic of filtering in human therapeutic drug discovery has received numerous

frequent reviews [23,63–65] as well as criticism if fundamental medicinal

chemistry principles are neglected [66]. The ‘rule of 5’ describes four simple

parameters associated with improved prospects for oral activity. Poor solubility or

poor permeability are more likely if there are .5 H-bond donors (expressed as

sum of OH and NH); .10 H-bond acceptors (expressed as sum of O þ N);

MWT . 500 and Log P . 5. There are only four rules. The 5 in rule of 5 arises
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from the frequent appearance of a 5 in the cutoff parameters. Compounds classes

such as natural products, infectious disease drugs, etc. where transporter affinity

is prevalent are exceptions [24]. Rotatable bond count is now a widely used filter

following the finding that greater than 10 rotatable bonds correlates with

decreased rat oral bioavailability [67]. The mechanistic basis for the rotatable bond

filter is unclear since the rotatable bond count does not correlate with in vivo

clearance rate in the rat but the filter is reasonable from an in vitro screening

viewpoint since ligand affinity on average decreases 0.5 kcal for each two

rotatable bonds [68]. Compounds indexed in medicinal chemistry journals show

the recent trend towards poor properties. Over 50% of medicinal chemistry

compounds with activities above 1 nM have MW . 425, Log P . 4.25 and

Log Sw , 24.75, indicating that these compounds are larger, more hydrophobic

and less soluble when compared to time-tested quality leads [52]. The concept of

the importance of compound properties (e.g., rule of 5 compliance) beyond

potency is widely accepted [69]. although there are notable occasional exceptions

where an orally bioavailable compound is found that lies well outside the rule of 5

limits [70]. Can the rule of 5 be bypassed by delivering drug by a non-oral route,

e.g., pulmonary, intra-nasal or dermal? The answer depends very much on the

dose. If the total dose is 20 mg or less then alternative delivery routes begin to be

feasible. However, a limitation is that only about 10% of current clinical candidates

have sufficient potency in the 0.1 mg/kg range to result in such a low dose and

finding such very potent compounds seems to be mostly a matter of luck [71].

Beyond chemistry-based features, oral drugs can also be defined by their

biological target. It is striking that the 100 best selling (mostly oral) drugs are

ligands for proteins encoded by only a very small subset of genes and that a very

considerable portion of the targets for orally active drugs may have already been

discovered [72]. The term ‘druggable genome’ has been coined to describe the

severe restriction that chemistry considerations related to oral activity super-

impose on possible biology target space [73].

6. CNS DRUGS

A scheme for separating CNS from non-CNS active drugs in the WDI allowed

discovery of simple parameters relating to passive blood brain barrier (BBB)

permeability and prediction of p-glycoprotein (PGP) affinity [74]. The PGP

transporter is a major barrier to the entry of compounds to the CNS [75].

Appropriately determined PGP efflux ratios can be used as a measure of

compound affinity to PGP. However, the value of filters based on PGP efflux ratios

from the commonly used high-throughput mode Caco-2 colonic cell permeability

cell culture assay have been questioned as efflux ratios do not correlate with in vivo

rat brain penetration [76]. A PSA value of less than 60–70 Å2 tends to identify
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CNS active compounds [77]. A very simple set of two rules predicts CNS activity: If

N þ O (the number of nitrogen and oxygen atoms) in a molecule is less than or

equal to 5, it has a high chance of entering the brain. The second rule predicts that

if log P 2 (N þ O) is positive then the compound is CNS active [78]. More complex

commercially available software programs have been compared as to their ability

to predict CNS log BBB ratio [79]. Experimental and theoretical reasons support

the belief that surface tension measurements can be predictors for blood brain

permeability [80]. Predictors for absorption, distribution, metabolism and excretion

(ADME) currently appear most useful in global models. Limitations in local models

likely reflect a lack of quality experimental data sets [81] and user dissatisfaction

may result from unrealistic expectations given the magnitude of experimental

ADME errors [82]. An additional limitation to schemes for separating CNS from

non-CNS compounds is the complexity of the BBB. Compounds with affinity to

transporters are exceptions to physicochemically based filters like the rule of 5.

This is a problem for the CNS since it is estimated that about 15% of all genes

selectively expressed at the BBB encode for transporter proteins and that only

about 50% of BBB transporters are currently known [83].

7. INTESTINAL PERMEABILITY

PSA in rather simple models is a commonly used parameter to predict intestinal

permeability [84]. Its rule-based calculation (TPSA) is very fast and does not

require 3D structure [85]. A better prediction of intestinal permeability has been

reported when PSA is partitioned into smaller molecularly based components [86].

Using molecular surface properties compounds selected from the World Health

Organization’s (WHO) list of essential drugs could be classified with 87% accuracy

as to permeability and solubility using a six bin scheme similar to that in the FDA

biopharmaceutical classification system [87]. Pharmacokinetic parameters

including permeability can also be generated for filtering or ligand affinity

prediction through the Volsurf software [88]. An analysis of small drug-like

molecules suggests a filter of log D . 0 and ,3 enhances the probability of good

permeability [89]. A collection of 222 commercially available drugs was used to

determine the exclusion criteria that differentiate poorly absorbed drugs from

well-absorbed drugs. Similar to the rule of 5, MWT , 500 and log P , 5 were

associated with better absorbed compounds. Exceptions to the MWT criteria were

compounds with a sugar moiety, high atomic weight and large cyclic structure [90]

suggesting the involvement of absorptive biological transporter systems. Based

on the intestinal absorption of 158 drug and drug-like compounds in rats there is a

significant relationship between rat intestinal absorption, and by extrapolation

human absorption, to drug hydrogen-bond acidity and basicity [91].
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8. AQUEOUS SOLUBILITY

Poor aqueous solubility is a wide spread problem in combinatorial libraries as

opposed to poor intestinal permeability which is much less of a problem. About

one-half of poor solubility is due to large size/lipophilicity. Log P . 5 identifies 75%

of these compounds. The other 50% of poor aqueous solubility is due to crystal

packing considerations for which there is no computational filter [92]. Melting point

is an experimental indicator of crystal packing. Aqueous solubility decreases

about 10 £ for each 100 8C rise in melting point and so melting point, if available,

is a valuable parameter in solubility prediction [93]. Progress toward a

computational melting point is suggested by the 63% success in qualitative

ranking of compounds into low-medium and high-solubility bins. Descriptors for

hydrophilicity, polarity, partial atom charge and molecular rigidity were found to be

positively correlated with melting point whereas non-polar atoms and high

flexibility within the molecule were negatively correlated [94].

9. DRUG METABOLISM

Volume of distribution (VD) is a key pharmacokinetic parameter. A low VD of less

than 1 l/kg identifies drugs residing in the plasma compartment. A VD greater than

1 l/kg identifies compounds accessing tissue compartments outside the plasma

compartment, e.g., many CNS drugs have VD values in the tens or higher. A

recently developed computational approach to predict VD for neutral and basic

drugs works as well as the in vivo experimental measurement provided that

accurate experimental compound log D and pKa are available. Predictivity is

retained if computed log D and pKa are used but accuracy declines somewhat

[95,96]. Approximately 80% of drugs are oxidized by the cytochrome P450 (CYP)

family of enzymes; hence a decision tree for CYP substrate affinity is important.

This has been described in that characteristics of CYP substrates, such as

lipophilicity, MWT and hydrogen-bonding potential, govern selectivity towards

individual CYPs [97].

10. PROMISCUOUS COMPOUNDS

Compounds with a marked propensity to bind to multiple targets, so-called

nuisance compounds, are of little value in drug discovery. Such compounds can

be experimentally identified by their binding to fetal calf serum [98]. It has long

been known that compounds could be identified as reproducible actives in HTS

screens that could not be optimized in chemistry. Such compounds often appear

active in multiple screens that have no biological relationship. An analysis of such
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promiscuous compounds from HTS hits led to the conclusion that colloidal

aggregates in the 50–1000 nm size range were responsible. The apparent HTS

screen activity was due to a biophysical effect rather than due to a normal ligand

receptor affinity and hence the hits were unoptimizable in chemistry [99]. This

promiscuous aggregation effect was found among 8 of 15 kinase inhibitors widely

used in biology screening [100] emphasizing the importance of exclusionary filters

to prevent wasting of biology research time by testing compounds with flawed

properties. The aggregation phenomenon has been found among known drugs,

albeit only when tested at high non-physiological concentrations and a predictive

model was developed [101].

11. AGROCHEMICALS

Filtering has also been applied to agrochemicals. Compared to drugs intended for

human use, agrochemicals tend to have fewer hydrogen-bond donors [102]. For

agrochemical screening computationally intensive surface area parameters

offered no advantage over the rule of 5 [103]. Analogous to drug-likeness,

agrochem-likeness for large compound collections has been explored using

support vector machines (SVM). In this study SVM performed better than neural

networks [104].
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