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T Institute of Artificial Background: Via counting the different kinds of white blood cells (WBCs), a good
Intelligence, School of Computer quantitative description of a person’s health status is obtained, thus forming the criti-
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2 Landing Artificial Intelligence of WBCs is crucial. Unfortunately, the manual microscopic evaluation is complicated,
Center for Pathological time-consuming, and subjective, so its statistical reliability becomes limited. Hence, the

Diagnosis, Wuhan 430072, China automatic and accurate identification of WBCs is of great benefit. However, the similar-

ity between WBC samples and the imbalance and insufficiency of samples in the field
of medical computer vision bring challenges to intelligent and accurate classification
of WBCs. To tackle these challenges, this study proposes a deep learning framework by
coupling the pre-trained ResNet and DenseNet with SCAM (spatial and channel atten-
tion module) for accurately classifying WBCs.

Results: In the proposed network, ResNet and DenseNet enables information reusage
and new information exploration, respectively, which are both important and com-
patible for learning good representations. Meanwhile, the SCAM module sequentially
infers attention maps from two separate dimensions of space and channel to empha-
size important information or suppress unnecessary information, further enhancing
the representation power of our model for WBCs to overcome the limitation of sample
similarity. Moreover, the data augmentation and transfer learning techniques are used
to handle the data of imbalance and insufficiency. In addition, the mixup approach is
adopted for modeling the vicinity relation across training samples of different catego-
ries to increase the generalizability of the model. By comparing with five representa-
tive networks on our developed LDWBC dataset and the publicly available LISC, BCCD,
and Raabin WBC datasets, our model achieves the best overall performance. We also
implement the occlusion testing by the gradient-weighted class activation mapping
(Grad-CAM) algorithm to improve the interpretability of our model.

Conclusion: The proposed method has great potential for application in intelligent
and accurate classification of WBCs.
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Background

WBCs, also called leukocytes, are created in the bone marrow and lymphoid masses in
the human immune system. These cells protect the human body from infections such as
bacteria, viruses, and fungi [1-3]. Traditionally, WBCs are mainly divided into granulo-
cytes and agranulocytes [4, 5]. The granulocytes contain basophils (0—1%), eosinophils
(1-5%), and neutrophils (50—70%), while the agranulocytes include monocytes (2—-10%)
and lymphocytes (20-45%) [4, 6]. Figure 1 exhibits some examples of WBC images.
If the number of WBCs in a human body is higher or lower than the reference values,
which may lead to many kinds of diseases [7, 8]. Hence, to accurately classify different
types of WBCs is necessary.

The classification technology of WBCs can be divided into three types: manual
examination method, automated hematology analyzer detection method, and machine
learning method. The manual examination method is considered the gold standard for
discriminating WBCs [9, 10]. However, this approach is inefficient and its results rely on
the experience and knowledge of the hematologists.

By comparison, the automated hematology analyzer detection method has the ability
to address the above issues [11, 12]. The method is mainly based on different technolo-
gies, such as electrical impedance, radiofrequency conductivity, light scatter, fluorescent
scatter, cytochemistry, etc. [13, 14], to automatically differentiate the WBC types, and
can achieve high accuracy and efficiency. However, this method can not use the mor-
phology of WBCs in blood smears for classification. Furthermore, it can not digitally
preserve blood smears, so the retrospective study is not available. This means that once
there is any abnormality in the detection device, hematologists have to re-collect blood
smears and distinguish WBCs by manual examination.

Of late, the digital images of blood smears can be easily obtained due to the rapid
development of digital microscope and information technology [15, 16]. Therefore,
many computer-aided methods based on machine learning techniques including tra-
ditional machine learning based methods and deep learning based methods have been
developed for automatically distinguishing different types of WBCs in blood cell images.
The traditional machine learning based methods input the extracted discriminative fea-
tures for representing WBCs into the classifier to implement the classification task. For
instance, Alqudah et al. [17] investigated the feature extraction and classification of WBC
based on using the combination of principal component analysis and three classifiers
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Fig. 1 Examples of five types of WBC images
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[probabilistic neural network, support vector machine (SVM), and random forest (RF)].
Duan et al. [18] extracted features such as texture, shape, and spectrum features from
the segmented cells, and applied SVM to recognize the types of the WBCs. Sharma et al.
[19] used the bio-inspired optimized grey wolf algorithm to find the optimal features,
and then combined with SVM, decision tree, RF, and k-nearest neighbor classifiers to
detect WBCs. Dong et al. [20] first extracted geometry, color, and texture features based
on segmented WBCs, then used the feature selection algorithm based on classification
and regression trees to remove irrelevant and redundant features, and finally analyzed
the performance of the particle swarm optimization SVM. Although these classification
approaches can yield good results, they highly rely on the selection of feature engineer-
ing. However, determining which features are selected for constructing a classification
model is generally difficult.

Different from the traditional machine learning based methods, the deep learning
based methods are able to automatically learn the features from images and simultane-
ously carry out classification. Thus, many deep learning based approaches have been
developed and successfully applied to WBC classification. For instance, Ridoy et al. [21]
verified the performance of the convolutional neural network (CNN)-based model they
presented for automatically classifying WBCs on the BCCD (blood cell count and detec-
tion) dataset [22]. Mohamed et al. [23] proposed the deep learning + traditional learning
hybrid framework for WBC classification. The deep learning is to yield the feature vec-
tor and the traditional machine learning is for WBC classification. They experimented
several combinations on the BCCD dataset and found that the hybrid of a pre-trained
1.0 MobileNet-224 model and a logistic regression classifier reached the highest clas-
sification accuracy. In order to investigate the classification performance of different net-
work structures, Habibzadeh et al. [24] transferred a variety of pre-trained Inception and
ResNet models to the public BCCD dataset of WBCs and found that the 4-class classifi-
cation results of fine-tuning all layers were better than those of just fine-tuning the last
layers, and the ResNet models performed better than the Inception models. Kutlu et al.
[25] obtained the similar results after experimenting various deep learning networks on
the combination of the BCCD and the LISC (leukocyte images for segmentation and
classifcation) datasets [26]. We think that the good performance of ResNet models may
be attributed to the adoption of the skip connection mechanism, which creates a path
propagating information from a lower layer directly to a higher layer, thus effectively
alleviating the gradient vanishing problem and easing the model optimization. Recently,
some fusion models have been proposed to improve the accuracy of classifying WBCs
by combining several CNNSs, e.g., CNN-RNN (recurrent neural network) [27], AlexNet-
GoogleNet-DenseNet [28], etc. However, whether these models can inherit the advan-
tages of each CNN needs to be further explored.

Nevertheless, the work of Chen et al. [29] has shown that ResNet and DenseNet
respectively are good at reusing features and exploring new features, which helps to
enhance the representation power of model. Based on their study, we develop a paral-
lel CNN by combining ResNet and DenseNet modules to integrate the advantages of
both. Besides, we add the SCAM attention module [30] to our network for adaptive
feature refinement to further motivate the model to learn discriminative information
from WBC images to address the problem of sample similarity. In addition, to deal
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with the imbalanced and insufficient data, data augmentation and transfer learning
(TL) strategies are adopted in the training process of model. Meanwhile, the mixup
method is used for modeling the vicinity relation between different kinds of train-
ing samples to improve the generalization ability of the proposed method. Finally, the
Grad-CAM algorithm [31] is used for the occlusion testing to understand the deci-
sion-making process of the model.

The remainder of this paper is organized as follows: “Materials and methods” sec-
tion introduces the data collection and processing and the proposed methods.
“Experiments and results” section presents the experimental results and analysis.
Finally, “Conclusion” section concludes this work.

Materials and methods

Data collection

We have collected four WBC datasets in this paper from several data sources. We
intend to use these data to evaluate the performance of our method.

From our cooperative medical institutions, we acquired 150 blood samples from 150
subjects. All samples are anonymized, so there is no concern about privacy. These sam-
ples were smeared, stained with Wright-Gimsa [32, 33], and scanned by the micro-scan-
ning imaging device with high resolution to obtain the digital images. For each image,
the WBC images with the size of 1280 x 1280 pixels were extracted by utilizing our own
developed cell segmentation method. Our approach consists of color deconvolution [34],
marker extraction, and watershed algorithm [35]. Marker extraction is to locate nucleus
and then locate cells. The specific process of locating nucleus includes image binariza-
tion, hole filling, morphology opening operation, dilate operation, distance transforma-
tion, and morphology reconstruction. Figure 2 illustrates the generation process of WBC
images. All images were definitively labeled by the team of hematologists. Consequently,
we collected 22645 WBC images, including 224 basophils, 968 monocytes, 539 eosino-
phils, 10469 neutrophils, and 10445 lymphocytes.

Considering that the quantity and diversity of data is of great importance for train-
ing a model with excellent performance [36], this study releases the largest freely
available WBC image dataset (called the LDWBC dataset) we have known so far to
help facilitate the development of clinical hematology.

From LISC database, we obtained 242 WBC images. The size of each WBC image
is 720 x 576 pixels. All the images were manually segmented and classified into five
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Fig. 2 The process of WBC images generation. a Blood smear. b Microscopic image. ¢ Color deconvolution
to separate nucleus from background. d Marker extraction to locate WBCs. The white regions refer to the
location of the nucleus. e Watershed algorithm to segment WBCs. f Crop to extract WBC images
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types by hematologists, consisting of 53 basophils, 48 monocytes, 39 eosinophils, 50
neutrophils, and 52 lymphocytes.

From BCCD database, we collected 12444 WBC images, which were divided into four
categories: 3098 monocytes, 3120 eosinophils, 3123 neutrophils, and 3103 lymphocytes.
The images in the dataset were cropped images of size 320 x 240 pixels.

From Raabin database [37], we downloaded 14514 WBC images, comprising 301 baso-
phils, 795 monocytes, 1066 eosinophils, 8891 neutrophils, and 3461 lymphocytes at res-
olutions of 575 x 575.

Table 1 summarizes the four publicly available WBC datasets. It is noticed that the
images in the LISC and BCCD datasets have low signal-to-noise ratio due to the inclu-
sion of a large number of irrelevant background elements, which may have a negative
impact on the performance of the model. Thereby, we cropped the WBC images in the
LISC dataset based on the provided mask images of WBC. Meanwhile, we also extracted
WBC images from the BCCD dataset by using our cell segmentation method. A total
of 12336 WBC images were obtained, and another 108 images were excluded from this
study since they did not contain WBC or contained only a small fraction of WBC. As a
note, most of WBCs are located at the edges of the images in the BCCD dataset so the

cropped WBC images still contain a lot of noise.

Classification model

Figure 3a depicts the architecture of our model. In the parallel network, ResNet and
DenseNet are selected to share their respective advantages: the former encourages
the features reuse while the latter is able to explore new features, which are both
significant for learning good representations. To fuse their extracted features, we
respectively selected the middle layers and removed the last fully-connected (FC)
layers of them (named ResNet and DenseNet modules), and then we used a con-
volutional layer (kernel size: 1 x 1, number of filters: 512, size step: 1) to adjust the
number of channels of the feature maps output by these two modules to ensure
that the feature maps have the same size. Given the important role of attention in
human perception, i.e., humans do not attempt to handle the whole scene but selec-
tively concentrate on the prominent parts to better capture the visual structure [38].
Inspired by this, since the nucleus of WBC contains a large amount of discriminative
information about the cell, we implanted a self-attention module into the model to
improve the representation power of our network for the nucleus and thus overcome
the limitation of sample similarity. The SCAM block shown in Fig. 3b is adopted,

Table 1 The image information in the four datasets

Dataset Image number Total Pixel size

B M E N L
LDWBC 224 968 539 10469 10445 22645 1280 % 1280
LISC 53 48 39 50 52 242 720x 576
BCCD - 3098 3120 3123 3103 12444 320 x 240
Raabin 301 795 1066 8891 3461 14514 575%x 575

B basophi, M monocyte, E eosinophi, N neutrophil, L lymphocyte
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Fig. 3 a.The architecture of our model. b. The structure diagram of the SCAM block used in a. Conv:
convolutional; FC: fully-connected; GAP: global average pooling; GMP: global max pooling

with the aim that the module includes both the spatial attention module (SAM) and
channel attention module (CAM), where the SAM emphasizes where the important
features are while CAM emphasizes what are the meaningful features in the feature
maps. Finally, we sequentially stacked two FC layers to perform our WBC classifica-
tion task. To alleviate the overfitting of the model, the dropout method was used
before the last FC layer.

Although CNNs are highly effective in many applications, especially in image
classification, training CNNs with high accuracy usually relies on massive data to
help them understand the underlying patterns of data [39, 40]. Unfortunately, build-
ing large-scale WBC image data is extremely difficult clinically since the collection
and annotation of WBC data are complex and expensive. However, TL relaxes the
assumption that the training and test data must be independent and identically dis-
tributed [39], which means that it can use the knowledge learned from a similar
domain to tackle a given domain task thus addressing the problem of limited data
in the target domain. Some recent studies have fruitfully exploited TL in fields such
as biomedicine [41-43], motivating us to also utilize TL to deal with insufficient
WBC data. In addition, the low-level features extracted by CNNs are standard and
regardless of the dataset utilized while the top-level features extracted are abstract
and heavily rely on the dataset and task selected [44]. However, ResNet50 [45] and
DenseNet121 [46] pre-trained on the ImageNet dataset have learned enough low-
level features such as color, geometry, texture, etc., and features similar to these are
also present in WBC images. Also based on this consideration, we implanted the
parameters of the middle layers of these two pre-trained models into our model to
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enable our network to better concentrate on learning top-level features from WBC

images to accomplish our classification task.

Data processing

Data augmentation

Despite applying TL method to deep learning model can effectively address the issue of
insufficient WBC data to a certain extent, deep learning model is also generally very sen-
sitive to category imbalance [47]. However, there is a natural imbalance in the number of
each type of WBCs in the human body. Hence, to tackle this problem, the data augmen-
tation strategies are employed [48]. Meanwhile, data augmentation also increases the
amount of training data, improving the generalization ability of model. In this work, for
the LDWBC, LISC, and Raabin datasets, data augmentation was respectively performed
on the training sets by randomly combining several transformation operations including
rotation, flipping, translation, etc. Noted that, for the BCCD dataset, the training set has
been augmented. For the four datasets, the number of images in each augmented train-
ing set is displayed in Fig. 4.

On the basis of the recommended computational requirements of ResNet model or
DenseNet model, the uniform size of 224 x 224 dimension for all WBC images in these
four datasets needs to be established. Then, we randomly split the LDWBC and LISC
datasets into training, validation, and test sets respectively in a 3:1:1 ratio. Considering
that the BCCD and Raabin datasets have included test sets, we randomly divided the
training data in these two datasets into training and validation sets respectively with a
ratio of 3:1. The training set is used to fit and update the model parameters, the valida-
tion set is for model selection and parameter adjustment, and the test set aims to objec-
tively assess the performance of the trained model. Table 2 presents the number of WBC

images for different sets.
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Table 2 The number of images in different sets in the four datasets

Dataset Total number Training set Validation set Test set
LDWBC 22645 13587 4529 4529
LISC 242 145 48 49
BCCD 12336 7404 2467 2465
Raabin 14514 7631 2544 4339

Eosinophil

Neutrophil

Fig. 5 An example of the mixup operation for constructing a virtual training sample

Mixup operation

Data augmentation assumes that the samples in the vicinity share the same category
while ignoring the vicinity relation between samples of different categories. How-
ever, the study of Zhang et al. [49] has demonstrated that the mixup method models
this vicinity relation by training the model on convex combinations of paired sam-
ples and their labels, acting as a regularizer to suppress overfitting of the model.
Inspired by their work, we combine data augmentation and mixup operation for the
training data to further improve the generalization of the model.

The details of the mixup operation are as follows: Suppose (x4, y,) and (xy,y,) are
two samples randomly selected from the training data, where x, and x, denote the
pixel matrix respectively, and y, and y, refer to the corresponding label, represented
by one-hot encoding. The virtual instance (x, y) is constructed by mixup operation:

x=Akx,+ (1 —2)*xx, (1)
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y=Axy,+ 1 —=7) %y ()

where 4 € [0, 1] represents the weight factor that satisfies the distribution of Beta («, o)
and « € (0, +00) is one parameter. To help understand the generation of virtual samples
via mixup operation, an example is provided in Fig. 5.

Model training

All the models were trained, validated, and tested on a 64-bit ubuntu 16.04 operating
system with Intel E5-2650 v4 2.20 GHz CPU, 256 Gb RAM, NVIDIA TITAN Xp 12 Gb
GPU. For training, the RAdam optimizer [50] is utilized to minimize the categorical

cross-entropy loss in Eq. (3). The parameter configuration is revealed in Table 3.
loss = —[ylog(3) + (1 — y)log(1 — 3)] (3)

where y and 7 respectively denote true label and predicted label.

Experiments and results

We started by evaluating the impact of the mixup operation on model performance. The
effects of several different attention methods were then compared. After that, the con-
tribution of the ResNet and DenseNet modules and the attention module in our model,
and the effort of TL for the model were verified by ablation studies. Then, the proposed
model was compared with five representative networks on the four WBC datasets. We
finally applied the Grad-CAM algorithm for the occlusion testing to help explain the
decision-making process of our model.

Performance metrics

The overall accuracy (OA), average precision (AP), average recall (AR), and average
F1-score (AF1) are utilized to evaluate the ability of the model to identify WBC images.
OA is calculated by dividing the number of correctly classified samples by the total num-
ber of samples. The other three evaluation criteria are stated as:

NZ TP(c) .
gt TP(c) + FP(c) (4)
N-1
1 TP(c)
AR=—> " (5)
N pr TP(c) + FN(c)
Table 3 The parameter configuration of models
Parameters Value
Dropout ratio 0.5
Initial learning rate 0.00001
Batch size 16

Epoch 100
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Table 4 The classification results (%) under different a settings on our LDWBC test set

o OA AP AR AF1

0 9742 93.51 9235 92.66
0.2 97.84 91.61 96.38 93.82
04 97.70 90.48 95.64 9292
0.6 97.79 91.07 94.51 92.56
0.8 97.42 90.58 92.75 91.40
1.0 97.79 91.97 94.04 92.86

Best results are in bold

1.00 -
I~ 's‘
0.95 R W L L B
0.90 A
0.85 A
0.80 A
—— Training(Raw)
0.75 1 === Validation(Raw)
—— Training(Virtual)
0.70 + ——- Validation(Virtual)
T T T T T T
0 20 40 60 80 100
Epochs

Fig. 6 Effect of mixup operation on train and validation sets

AF1="""""+ (6)

where N is the number of classes, and ¢ represents that a class takes it as positive class
and the other classes as negative class. TP (true positive): number of correctly classified
positive samples; FP (false positive): number of misclassified negative samples; TN (true
negative): number of correctly classified negative samples; FN (false negative): number
of misclassified positive samples.

Investigation on effect of mixup operation on model
According to Egs. (1) and (2), the degree of linear interpolations of training samples
depends on the value of the parameter «. Therefore, we assessed the effect of setting the
parameter between 0 and 1 with step 0.2 on the classification performance of our model.
Table 4 displays the classification results of our model on the LDWBC test set. It can
be seen from this table that the model trained with the virtual samples can yield higher
scores than that trained with the raw samples (¢ = 0). And, we also find that our model
acquires the best performance when o« = 0.2. So, the value of « is set to 0.2 for generat-
ing the virtual training samples to construct our model.

We also respectively plotted the curves (¢ = 0 and o = 0.2) of the training and valida-
tion accuracies along with training epochs in Fig. 6, which shows that the model trained
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Table 5 The performances (%) of models with different attention methods on our LDWBC test set

Attention method OA AP AR AF1
No 97.55 92.15 93.36 9261
D SE[51,52] 97.75 91.87 96.21 93.92
ECA [53] 9737 90.29 93.05 91.24
CAM [30] 98.06 93.51 95.06 9417
SD SAM [30] 97.75 91.78 95.49 93.56
D CAM // SAM [30] 97.73 91.73 94.27 92.90
CAM + SAM (CSAM) [30] 97.68 89.49 9743 93.11
SAM + CAM (SCAM) [30] 97.84 9161 96.38 93.82

Best results are in bold; CD channel dimension, SD spatial dimension, TD two dimensions, // parallel, + sequential

with the raw data is overfitting. The accuracy on the training set reaches 100% after sev-
eral epochs, whereas the highest accuracy on the validation set is only 97.37%. On the
contrary, the training and validation accuracies of the model trained with the virtual
data are very close (98.53% and 97.62%), which illustrates that using the virtual samples
instead of the raw ones can get more robust models. After using virtual data, although
the accuracy rate on the validation set has some fluctuations, it has been improved to a
certain extent. In addition, since the accuracy of the training set without using virtual
data has approached 100%, the update of the network has become slow. We considered
that the network has fallen into a stopping process at this time, so the accuracy of the
validation set has not changed much, which seems more stable.

Comparison of different attention methods

Table 5 lists the effects of several common attention modules and their arrangement
methods on the performance of model. From this table, it can be found that whether
using channel attention or spatial attention or their combination can enhance the
representation ability of network. However, we also find that the model seems to
perform better when utilizing only channel attention. For further insight into the
classification results, Table 6 exhibits the accuracy of model in identifying different
types of WBCs. We can see that compared to using only channel or spatial atten-
tion, the parallel arrangement (CAM // SAM) does not improve the performance of
model while the sequential arrangement (CSAM and SCAM) significantly raise the
ability of model to recognize monocytes. This shows that the attention maps gener-
ated by the latter are finer than those generated by the former. To reveal the clas-
sification effect of the model using CAM, CSAM, and SCAM in more detail, Fig. 7
provides the corresponding confusion matrices. From Fig. 7 we can clearly see that
the model performs best on lymphocytes but worst on monocytes by using CAM.
In contrast, the model used CSAM or SCAM performs more balanced on these two
types of WBCs. This indicates that the spatial attention method indeed enhances the
representation ability of model to the nucleus. Finally, the further comparison shows
that SCAM performs more balanced on all categories of WBCs compared to CSAM.
This is due to the fact that CAM and SAM have different functions and therefore the
order of combination impacts the performance of model.
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Table 6 The accuracies (%) of models with different attention methods for each category on our

LDWBC test set

Attention method B M E N L

No 97.62 71.63 100 99.30 9823

(@b SE[51,52] 100 85.58 98.95 99.67 96.86
ECA[53] 100 67.79 100 99.49 97.99
CAM [30] 100 7837 98.95 99.49 98.48

SD SAM [30] 97.62 84.13 98.95 99.30 9745

D CAM // SAM [30] 97.62 77.40 98.95 99.39 97.99
CAM + SAM (CSAM) [30] 100 91.35 100 99.02 96.76
SAM + CAM (SCAM) [30] 95.24 90.38 100 99.44 96.86

Best results are in bold; CD channel dimension, SD spatial dimension, TD two dimensions, // parallel, 4+ sequential, B
basophil, M monocyte, E eosinophil, N neutrophi, L lymphocyte
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Ablation study on model
Since we have evaluated the role of SCAM module in our model in the previous sec-
tion, here we only assessed the contribution of the ResNet and DenseNet modules to
the model by performing an ablation study. Table 7 lists the comparison results on
different performance metrics. It can be seen from this table that the performance of
the model decreases regardless of which branch is removed from the model, which
shows that the advantages of the ResNet and DenseNet modules are compatible,
enhancing the ability of our model to exploit the information in WBC images.
Further, the effect of TL method on our model was also validated via ablation
study. Tables 8 and 9 show the overall classification results of the model and the
classification accuracy for each category, respectively. As can be seen from Tables 8
and 9, the use of TL method in any branch significantly enhances the ability of the
model to identify basophils and monocytes. And the simultaneous use of TL method

Table 7 The classification results (%) of the proposed components on our LDWBC test set

Our model OA AP AR AF1
RM DM SCAM

v v 97.11 89.69 92.88 91.15
v v 97.75 90.52 9445 92.25
v v v 97.84 9161 96.38 93.82

Best results are in bold; RM ResNet module, DM DenseNet module
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Table 8 The classification results (%) of the TL method on our LDWBC test set

Our model OA AP AR AF1

RM DM

TL NoTL TL No TL

v v’ 97.84 91.30 95.35 93.21
v v 97.46 92.30 93.04 92.45
v v 96.20 9234 82.64 85.88

v v 97.84 91.61 96.38 93.82

Best results are in bold; RM ResNet module, DM DenseNet module

Table 9 The accuracies (%) of the TL method for each category on our LDWBC test set

Our model B M E N L

RM DM

TL NoTL TL NoTL

v v 95.24 84.62 100 99.11 97.79
v v 100 69.71 97.89 99.25 98.33
v v 7857 3942 96.84 99.49 98.87

v v 95.24 90.38 100 99.44 96.86

Best results are in bold; RM ResNet module, DM DenseNet module, B basophil, M monocyte, E eosinophil, N neutrophil, L
lymphocyte

in both branches further effectively raises the classification ability of model on
monocytes. This implies that TL enables the model to better learn the abstract fea-
tures in WBC images and thus improves the representation ability of model. This
also shows that TL in WBC classification task is an effective method for the limited
training data.

Comparison with other methods

To evaluate the classification performance, we compared our model with five state-of-
the-art methods on the four WBC datasets. All methods have the same parameter con-
figuration. The models were trained on the training sets both on raw data and virtual
data for the LDWBC dataset, and the one with the highest accuracy on the validation
set for each method was selected as the final model. We evaluated the final models on
the test sets, and the comparison results are shown in Table 10. As can be seen from
Table 10, the performances of most models are improved by using mixup operation.
Meanwhile, our model yields the best classification results. Moreover, we also compared
the details of the training process of the proposed model with the five models on the
LDWBC dataset, and the results are shown in Figs. 8 and 9 respectively. As can be seen
from the figures, not only does our model obtains the highest accuracies in both train-
ing and validation sets, but also its performance fluctuates very slightly along the epochs
of training. The results once again demonstrate that our model is robust and has strong
adaptability for data. In addition, the performances of these models based on mixup
operation were also compared on the other three datasets (See Table 11). In Table 11,
the performance of our model ranks first on the BCCD and Raabin datasets and tied for
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Table 10 The comparing results (%) of different methods for raw data and virtual data on our

LDWBC test set
Model Training set OA AP AR AF1
ResNet [45] Raw 96.47 89.24 87.71 8843
Virtual 96.60 86.29 91.35 88.63
DenseNet [46] Raw 96.53 89.07 90.28 8941
Virtual 96.82 88.09 93.25 90.49
Inception v3 [54] Raw 89.40 70.57 68.17 69.06
Virtual 88.67 7327 63.59 67.23
Jiang [55] Raw 97.11 90.85 90.68 90.75
Virtual 9737 91.08 9231 91.61
Sharma [56] Raw 95.72 85.62 82.08 83.16
Virtual 95.78 89.01 79.84 83.46
Our model Raw 9742 93.51 9235 92.66
Virtual 97.84 9161 96.38 93.82

Best results are in bold

ResNet
0.6 DenseNet
—— Inception v3
05 —— lJiang
——— Sharma
0.4 - —— Our Model
0 20 40 60 80 100
Epochs
Fig. 8 Train accuracy of all models on our LDWBC dataset
1.0 1
o Aot AR ALt
05 /__,.,.—-—-7;
0.6
ResNet(THA = 96.53%)
0.4 4 DenseNet(THA = 96.53%)
—— Inception v3(THA = 88.56%)
02 - —— Jiang(THA = 97.26%)
' —— Sharma(THA = 95.87%)
—— Our Model(THA = 97.62%)
0.0 T T T T T

Fig. 9 Validation accuracy of all models on our LDWBC dataset. THA refers to the highest accuracy

20 40 60 80 100

Epochs
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Table 11 The comparing results (%) of different methods on the LISC, BCCD, and Raabin test sets

Dataset Model OA AP AR AF1
LISC ResNet [45] 93.88 95.48 92.50 9298
DenseNet [46] 97.96 98.33 97.50 97.80
Inception v3 [54] 7551 74.88 7457 73.74
Jiang [55] 97.96 98.46 97.50 97.87
Sharma [56] 95.92 96.79 95.00 9547
Our model 97.96 9833 97.50 97.80
BCCD ResNet [45] 84.71 87.06 84.73 85.15
DenseNet [46] 87.14 89.36 87.16 8748
Inception v3 [54] 62.80 67.71 62.79 63.52
Jiang [55] 86.77 89.28 86.79 87.10
Sharma [56] 87.02 89.15 87.03 87.31
Our model 88.44 90.84 8845 88.73
Raabin ResNet [45] 96.36 92.87 96.15 94.28
DenseNet [46] 97.12 94.02 97.07 9542
Inception v3 [54] 89.56 78.39 88.31 8247
Jiang [55] 96.13 91.69 97.00 93.97
Sharma [56] 95.99 92.62 95.08 93.50
Our model 98.71 97.18 98.42 97.78
Best results are in bold
Table 12 The accuracies (%) of models for each category on the test sets of the four datasets
Dataset Model B M E N L
LDWBC ResNet [45] 80.95 83.17 97.89 9851 96.22
DenseNet [46] 9048 81.73 98.95 99.21 95.88
Inception v3 [54] 42.86 37.50 5263 9348 91.46
Jiang [55] 90.48 74.04 100 99.44 97.60
Sharma [56] 64.29 5048 87.37 99.21 97.84
Our model 95.24 90.38 100 99.44 96.86
LISC ResNet [45] 100 62.50 100 100 100
DenseNet [46] 100 87.50 100 100 100
Inception v3 [54] 91.67 50.00 63.64 85.71 81.82
Jiang [55] 100 87.50 100 100 100
Sharma [56] 100 75.00 100 100 100
Our model 100 87.50 100 100 100
BCCD ResNet [45] - 75.00 79.55 84.38 100
DenseNet [46] - 75.00 84.42 89.21 100
Inception v3 [54] - 51.95 65.58 69.24 64.38
Jiang [55] - 7273 84.58 89.86 100
Sharma [56] - 73.86 85.23 89.21 99.84
Our model - 74.84 85.23 93.72 100
Raabin ResNet [45] 100 88.03 98.14 95.83 98.74
DenseNet [46] 100 9231 97.83 96.88 98.36
Inception v3 [54] 92.13 81.62 86.96 90.00 90.81
Jiang [55] 100 92.74 98.76 95.08 9845
Sharma [56] 100 85.04 96.27 95.94 98.16
Our model 100 94.87 99.07 98.65 99.52

Best results are in bold; B basophil, M monocyte, E eosinophil, N neutrophil, L lymphocyte
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second on the LISC dataset. These results collectively demonstrate that our model has
excellent overall classification performance.

We also present the classification accuracy of all models on these four datasets for
each category of WBCs in Table 12. We find that our method displays excellent perfor-
mance for almost all types of WBC on each dataset compared to other methods, espe-
cially on monocytes, which again shows the promising performance of our method. We
also find that almost all methods are able to identify each type of WBC well on the LISC
and Raabin datasets. However, all methods perform worse on the BCCD dataset than on
the other datasets, which is likely attributable to the cropped WBC images in the dataset
still having a low signal-to-noise ratio.

Interpretability of model

In order to investigate the interpretability of our model, the occlusion testing was per-
formed via utilizing the Grad-CAM algorithm to visualize the regions which had the
greatest impact on model decisions. In our model, the output of the SCAM module was
made transparent to the prediction of each type of WBC image, as shown in Fig. 10.
In Fig. 10, the red regions on the occlusion map represent the areas where the model
pays the most attention during the classification, while the blue regions receive the least
attention, which can be decoded by the color bar on the right. We find that the salient
areas of the occlusion maps are located on the nucleus, which indicates that the model
uses features extracted from specific regions in the input WBC images and draws corre-

sponding classification conclusions.

LDWBC LISC BCCD Raabin
Occlusion Raw Occlusion Raw Occlusion Raw Occlusion
Q
o
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o
1.0
Q
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z| 0w &
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.®
2 d
[}
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€
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Fig. 10 Several visualization examples are selected from the test sets of the four datasets. For each set, the
left column is the raw input image, and the right column is the occlusion map generated by superimposing
heatmap on the raw input image
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Conclusion

In the present study, a novel deep learning method is developed to automatically and
accurately differentiate WBCs. Our proposed method is able to learn better feature
representation by integrating the advantages of ResNet and DenseNet. Moreover, the
method also benefits from the guidance of the SCAM mechanism, further enhanc-
ing the representation ability of the model via emphasizing the meaningful features
in WBC images in two independent dimensions of space and channel, which helps
to tackle the issue of sample similarity. Since spatial attention and channel attention
have different functions, different arrangement methods will yield different classifica-
tion results. Considering that the imbalanced or insufficient training data may nega-
tively affect the performance of the deep learning model, we adopt data augmentation
and TL methods respectively. Furthermore, we use mixup method in addition to the
dropout technique to model the vicinity relation between training samples of differ-
ent classes to form a strong regularizer to further improve the generalization ability of
the model. On the four WBC datasets, our method not only achieves superior overall
classification performance but also performs well on each class of WBCs compared
to other state-of-the-art methods. Finally, the occlusion testing is implemented using
the Grad-CAM algorithm to visualize the discriminative areas of our model, thereby
improving the explainability of the classification results.

Although the results of our method are promising, there also exist several limita-
tions. We should improve the loss function to decrease the intra-class variations and
increase the inter-class differences simultaneously to further raise the representation
power of our method as part of future work. This is because the cross-entropy loss
function penalizes the misclassified samples to separate the features of different cat-
egories, but ignores the differences between these samples. Apart from this, the cur-
rent classification is based on five major subtypes of WBCs. However, more subtype
classification is also a challenge for future study.

Abbreviations

WBC White blood cell

SCAM Spatial and channel attention module
TL Transfer learning

LISC Leukocyte images for segmentation and classifcation
BCCD Blood cell count and detection
Grad-CAM  Gradient-weighted class activation mapping
SVM Support vector machine

RF Random forest

CNN Convolutional neural network

RNN Recurrent neural network

B Basophil

M Monocyte

E Eosinophil

N Neutrophil

L Lymphocyte

FC Fully-connected

SAM Spatial attention module

CAM Channel attention module

OA Overall accuracy

AP Average precision

AR Average recall

AF1 Average F1-score

TP True positive

FP False positive

N True negative



Chen et al. BMC Bioinformatics (2022) 23:282 Page 18 of 20

FN False negative

CSAM Channel and spatial attention module
GAP Global average pooling
GMP Global max pooling

THA The highest accuracy

cD Channel dimension

SD Spatial dimension

D Two dimensions

SE Squeeze and excitation
ECA Efficient channel attention
RM ResNet module

DM DenseNet module
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