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Abstract

This paper proposes a UAV platform that autonomously detects, hunts, and takes down

other small UAVs in GPS-denied environments. The platform detects, tracks, and follows

another drone within its sensor range using a pre-trained machine learning model. We col-

lect and generate a 58,647-image dataset and use it to train a Tiny YOLO detection algo-

rithm. This algorithm combined with a simple visual-servoing approach was validated on a

physical platform. Our platform was able to successfully track and follow a target drone at

an estimated speed of 1.5 m/s. Performance was limited by the detection algorithm’s 77%

accuracy in cluttered environments and the frame rate of eight frames per second along with

the field of view of the camera.

Introduction

The number of unmanned aerial vehicles (UAVs) is growing rapidly. In the US alone, approxi-

mately 3.55 million small UAVs are expected to be deployed for consumer use by 2020 [1].

Accordingly, the misuse risk of UAVs is also increasing. Reports of drones flying too close to

airports [2–4]; privacy violations of civilians [5,6]; interfering with military or law-enforce-

ment operations [7,8]; or used for other malicious purposes [9,10] are becoming more fre-

quent. Furthermore, as commercially available drone technology evolves, drone-related crimes

can become more sophisticated. While we wait for legislative efforts to catch up with techno-

logical advancements, we anticipate a growing need for technological solutions that can auton-

omously defend against malicious UAVs.

We propose an autonomous hunting drone—a self-contained UAV defense system that can

chase and neutralize another drone in a GPS-denied environment while performing all com-

putations on board. During project conceptualization, we could not find a suitable drone plat-

form with a powerful enough onboard computer, so we decided to custom build our research

platform. Most of the current UAVs operating in GPS-denied environments are vision based,

PLOS ONE | https://doi.org/10.1371/journal.pone.0225092 November 18, 2019 1 / 18

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Wyder PM, Chen Y-S, Lasrado AJ, Pelles

RJ, Kwiatkowski R, Comas EOA, et al. (2019)

Autonomous drone hunter operating by deep

learning and all-onboard computations in GPS-

denied environments. PLoS ONE 14(11):

e0225092. https://doi.org/10.1371/journal.

pone.0225092

Editor: Mohd Nadhir Ab Wahab, Universiti Sains

Malaysia, MALAYSIA

Received: March 1, 2019

Accepted: October 25, 2019

Published: November 18, 2019

Copyright: © 2019 Wyder et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the paper and its Supporting Information

files. These data are also available from the Open

Science Framework at https://osf.io/n9q78/.

Funding: This work was supported by U.S.

National Science Foundation National Robotics

Initiative grant number 1527232 (M. A. Gore, R. J.

Nelson, and H. Lipson) http://www.nsf.org/. The

funders had no role in study design, data collection

http://orcid.org/0000-0003-1878-802X
https://doi.org/10.1371/journal.pone.0225092
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0225092&domain=pdf&date_stamp=2019-11-18
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0225092&domain=pdf&date_stamp=2019-11-18
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0225092&domain=pdf&date_stamp=2019-11-18
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0225092&domain=pdf&date_stamp=2019-11-18
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0225092&domain=pdf&date_stamp=2019-11-18
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0225092&domain=pdf&date_stamp=2019-11-18
https://doi.org/10.1371/journal.pone.0225092
https://doi.org/10.1371/journal.pone.0225092
http://creativecommons.org/licenses/by/4.0/
https://osf.io/n9q78/
http://www.nsf.org/


combining optical flow sensors and visual inertial odometry (VIO) with sonar and/or LIDAR

for distance measurements [11–13]. Following this trend, we adopted a vision-based localiza-

tion system.

Autonomously hunting and neutralizing a rogue drone is a complex task requiring a series

of steps: (1) initialization and preflight checks, (2) takeoff and target search, (3) target tracking

and hunting, and (4) a takedown procedure. The main challenge is the hunting stage since

autonomous takeoff is achievable once basic localization is established. Selecting appropriate

sensors and implementing a search pattern solves the target search. Takedown is trivial in a

close-proximity situation, as most drones are fragile and easily disabled by propeller restriction

or electronic interference. Thus, our research focuses on the hunting stage. The goal is to

approach the target close enough to engage it.

Related work

The technologies involved in building a successful drone hunter have been subject to research

for years: vision-based localization and tracking, object detection, GPS-denied navigation,

obstacle avoidance, friend or foe classification, and UAV dynamics and control. We will focus

on two kinds of related works. First, we will address the commercial anti-drone solutions avail-

able today. Second, we address selected papers that show interesting approaches to UAV

tracking.

The state-of-the-art technologies that remove drones from airspaces can be classified into

three groups: signal jamming [14]; propeller restriction (for example, by means of a net)

[15,16]; and aerial takedown [17,18]. However, none of these existing systems are an optimal

solution for drone hunting in GPS-denied environments. For example, protecting a military

convoy from an attack by autonomous drones that do not rely on GPS is likely to fail with cur-

rent tools. Modules such as PX4Flow and sophisticated companion computers have improved

the accessibility of GPS-denied localization and navigation on customized drone platforms

[19–21], allowing advanced UAVs to operate even when the GPS and radio signals are

jammed. In the presence of these new modules, jamming-based solutions such as the Battelle

Drone Defender are rendered ineffective. Although still effective in the absence of a downlink,

net guns such as NetGun X1 and Skywall 100 require a skilled operator and are limited in

range. A solution most similar to our approach is the Airspace Interceptor, a large hexacopter

equipped with a net gun that apprehends a previously selected target[18]. However, instead of

being self-contained and agile, the Airspace Interceptor is the part of a holistic drone defense

system that is operated from a ground-station trailer and relies on both onboard and off-board

sensors. A very unique approach, using eagles to hunt and apprehend UAVs, was explored by

the Dutch police and later adopted by the French army[22,23]. Although this approach is inno-

vative, the operator can lose control, endangering birds and bystanders.

UAV detection and tracking is not a new research topic. For example, Opromolla et al. pro-

posed a UAV detection and tracking approach for cooperative flying applications[24]. In their

paper, they present a tracker drone that tracks the target drone and provides it with position

updates in case it has little-to-no Global Navigation Satellite System (GNSS) reception. The

tracker uses the target’s relative GNSS location to identify regions of interest in the camera

frame and optimize its tracking precision. The authors take full advantage of the benefits of

cooperative flight. The complexity of their implementation, even without the challenges added

by adversarial UAV flight and a GPS-denied environment, highlights just how complex imple-

menting an autonomous hunting drone can be.

In “UAV Based Tracking and Recognition,” Xiang et al. present a UAV-based tracking

method that leverages a gimbal to improve target tracking [25]. Their system relies on
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offloading the Geographic Information System database and neural network-based target

knowledgebase to a linked ground station, as well as sharing features between the deeper neu-

ral network running on the ground station and the simpler neural network onboard the UAV.

In addition, responsibility for operating the gimbal is offloaded to a Field Programmable Gate

Array (FPGA) chip, helping to ease the load on the onboard Jetson TX1 module. Although

their solution is not designed for GPS-denied environments and requires a ground station, it

does introduce unique design ideas, such as their use of FPGA technology to operate the gim-

bal, that could help improve drone hunting in the future.

Contributions

We present a simple drone hunting platform that self-localizes using VIO via the ZED stereo

camera, and runs a visual tracking algorithm on an onboard Jetson TX2 [26]. The algorithm

then sends control commands to the PX4-based flight controller [27]. We also generate an

annotated dataset of 58,647 images, on which we trained a modified black and white version of

the Tiny YOLO detection system [28]. The target drone in a GPS-denied environment was

chased by visual servoing without the use of external localization systems, e.g., a motion-cap-

turing system. Our system was implemented on a customized drone platform and tested on a

manually piloted target drone in an indoor environment. To the best of our knowledge, no

prior research exists on autonomous drone hunting in a GPS-denied environment using a

quadcopter platform that performs all computations onboard. Therefore, we aim to bridge this

research gap and create a baseline approach for future exploration.

Structure of the paper

The remainder of this article is organized as follows. In materials and methods section, we

describe the data collection and generation process for our drone hunting dataset, discusses

our adaptation of the drone-detection algorithm, and finally address our navigation approach

for chasing the target drone. The experiments section then presents the experimental results,

including our platform design, our hardware and software choices, our classifier tests using

both RGB and gray-scale images, and the tests operating our custom drone platform in an

indoor environment. In the results section, we present the findings from our experiments, fol-

lowed by a discussion and a conclusion.

Materials and methods

Dataset

To form our drone hunting dataset, we synthetically generated 10,000 images from autono-

mous drone flying sequences in the AirSim Simulator [29]. We then recorded and manually

annotated videos of our target drone while static, moving, and in-flight in multiple environ-

ments. The dataset consisted almost exclusively of images of our target drone (with the excep-

tion of the synthetic data generated using the Parrot AR drone model in AirSim). In our

testing environment, the target drone was chased by an ImmersionRC Vortex 250 Umma-

Gawd drone equipped with a GoPro Hero5 action camera: collecting authentic drone-to-

drone footage. To avoid skewing our dataset by capturing too many identical images at the

high frame rate (240 fps) of the GoPro camera, we split the recordings into short sequences,

and reduced the frame rate on less erratic flying sequences.

All images were labeled manually using a labeling script. To minimize the labeling time, we

skipped the labeling of 10 to 30 frames based on the moving intensity of the drone and the
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video frame rate and then linearly interpolated the bounding box size and location of the

skipped images between any two labeled images.

To improve the robustness of our model against motion false positives and motion blur, we

included images in different settings with complicated backgrounds (including chairs, fences,

and handrails) because our classifier occasionally misinterpreted bars or truss structures as a

drone. Moreover, we added motion blur of varying degrees and direction to some of the

images. Images were taken in our laboratory, the hallway, a squash court, and outdoors. The

drone was captured from all angles. Some sample images are shown in Fig 1. Among the

58,647 images in the current dataset, we randomly selected 90% for the training dataset and

retained the remaining 10% as the testing dataset.

Detection algorithm

Drone-tracking approach. Our goal was to detect and track the target drone in the input

images captured by the ZED camera and to output the bounding box location and size of the

detected drone to the navigation-control system. Although semantic segmentation improves

the detection accuracy, it proved to be too resource intensive for our platform. We decided

against using a direct, feature-based tracking/detection approach in favor of machine learning

methods, since we wanted to create a system that could be retrained on new drone datasets,

and that took advantage of the Jetson TX2 GPU cores. In addition, a Haar-like feature-based

algorithm has been shown to only run at five frames per second on the Jetson TX2 [30].

Finally, we decided to rely on a bounding box object detection algorithm. To achieve real-time

tracking without over-compromising the accuracy, we adopted the Tiny YOLO algorithm.

Real-time object detection. Current real-time neural network-based object detectors can

be classified into two categories. The first category includes two-stage proposal-driven algo-

rithms such as regional convolutional neural network (R-CNN) [31], Faster-RCNN [32] and

FPN [33]. The first stage of these algorithms generates a sparse set of candidate object loca-

tions. In the second stage, the CNN classifies each candidate location as one of the foreground

classes or as background. The second category embraces one-stage detectors, which are applied

over a regular, dense sampling of object locations, scales, and aspect ratios. Single-stage detec-

tors include YOLO [28,34–36]; SSD [37,38]; and RetinaNet [39]. As our network operates on

Fig 1. Sample images from our drone detection dataset.

https://doi.org/10.1371/journal.pone.0225092.g001
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the Jetson TX2 rather than a more powerful graphics processing unit (GPU), we cannot fully

exploit the advantages of computationally intensive algorithms. Moreover, as drones can

change direction erratically, we sacrificed the detection accuracy to ensure a high frame rate.

Although YOLO is not the most accurate among state-of-the art algorithms, it runs signifi-

cantly faster than other detection methods with comparable accuracy. Among the provided

YOLO networks, Tiny YOLO is five times faster than the full-size YOLO network while main-

taining an acceptable level of accuracy. Hence, we chose Tiny YOLO as our network

architecture.

Network architecture. The Tiny YOLO network recognizes 80 classes. We modified the

network to detect only the drone class. The modified network has nine convolutional layers

with 3 × 3 kernel layers and six pooling layers with 2 × 2 kernel layers. The final output of our

network is a 13 × 13 × 30 tensor of predictions.

Training. Tiny YOLO was trained on a Google Cloud Server equipped with a NVIDIA

Tesla P100 GPU. As the pre-trained network, we used YOLO’s Darknet-53 as described in

YOLOv3 [36]. The training and testing neural networks were implemented in Darknet, an

open source neural network framework written in C and CUDA [40].

Navigation

The output of our Tiny YOLO detector is the index of the bounding box in the frame. The cen-

ter of the bounding box relative to the center of the camera frame was used for visual servoing.

The visual servoing algorithm operates as follows.

• Step 1: Request the location of the target (represented by the bounding box). If a target is

detected, move to step 2.

• Step 2: Calculate the direction and step size based on the location of the bounding

box relative to the center of the frame.

• Step 3: Stabilize the drone by compensating the roll and pitch angle of the current pose, as

shown in Fig 2.

• Step 4: Publish the next set point for the flight controller.

During the hunting process, we adjusted only the xyz location and the yaw angle of the

hunter approaching the target. To track the target, the flight controller adjusts the roll and

pitch angle automatically, moving the hunter drone to the next set point. Unless the drone is

moving forward, the roll and pitch remain zero and the drone holds its position.

We explored two step policies: constant step size and proportional step size. Fig 3 shows the

step sizes for both approaches, expressed as a color-coded graph over the image frame where

brighter and darker colors denote larger and smaller step sizes respectively, in the direction of

the detected target. Green and blue denote horizontal and vertical motion respectively, with

intermediate colors denoting proportional mixtures of the two. In our indoor testing environ-

ment, we limited the drone’s maximum step size for safety reasons.

Consequently, when the target drone passed the hunter drone in close proximity or moved

erratically, it was lost from the hunter’s camera view. To tackle this problem, we predicted the

next location of the target by a linear regression model. The input of the regression model was

the centers and sizes of the bounding boxes in the previous n steps (size of the history), and the

output was the center of the next bounding box. For visualization, Fig 4 shows the x and y
pixel indices on the test dataset predicted with a history size of five. The fitted model was line-

arly interpolated over the past n target locations. The drone’s dynamics limit its acceleration
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and deceleration rates, so its power constraints limit its ability to change direction. Hence, we

assume that the targets trajectory is approximately linear during the observed time interval.

Faster, more powerful targets would require higher control-loop frequencies and/or a shorter

time intervals for this linear movement assumption to remain valid.

Experiments

Tracking algorithm. We trained two models with different numbers of channels: a three-

channel RGB model and a single-channel gray-scale model. To improve the frame rate on Jet-

son TX2, we trained Tiny YOLO on gray-scale images. Our Tiny YOLO returns a bounding

box and confidence rating for each detected drone. However, in our test program, we only

present the algorithm with one drone at the time and test the bounding box with the highest

confidence. In the evaluations, we compared the speed and accuracy of the two models, as pre-

sented in Section IX.

Fig 2. Procedure used to project the current coordinate frame onto the x-y plane for pitch and roll angle

compensation. (A) The target (red) is located on the right-hand side of the drone (blue), which is facing in the x-

direction. (B) Pitch and roll angle compensation ensures that the command does not flip the drone. (C) The

compensated frame is adjusted so that the command is directed toward the target.

https://doi.org/10.1371/journal.pone.0225092.g002
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Experimental platform. Two drone platforms were designed and built for this project: a

hunter drone (Fig 5) and a target drone (Fig 6). The hunter drone is built on the Cinetank

MK2 frame and carries an HKPilot32 flight controller running the PX4 LPE firmware, a Jetson

TX2 companion computer, and a ZED stereo camera[26,27,41]. It is powered by four Black

Fig 3. Color representations of the hunter’s next-step responses based on the target’s location in the image frame. Both illustrations are overlaid on the image frames

the hunter drone uses to determine its next move. For both methods, the resulting steps combine yaw rotations in radians and ascent or descent in meters. Left: fixed-step

hunter response behavior. The center of the bounding box around the target in the camera frame must be located in one of the nine image segments of the 3 x 3 grid.

During each control cycle, the hunter responds by taking a fixed step in the direction of the arrow in that image section. Right: proportional hunter response. With this

method, the step size and movement direction are determined based on the center of the detected target’s bounding box in the camera image. Here the shades of green

and blue represent the left/right and up/down step sizes respectively, with brighter colors denoting larger step sizes and darker colors denoting smaller ones.

https://doi.org/10.1371/journal.pone.0225092.g003

Fig 4. Linearly predicted target location vs. actual target location. Here we compare the trajectory predicted by our

regression model (red) with the actual trajectory (blue).

https://doi.org/10.1371/journal.pone.0225092.g004
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Widow 2212 1000-kV motors with integrated ESCs, four APC 8x4.5MR propellers, and a

2400-mAh four-cell LiHV battery. The hunter drone weighs 1.3 kg, exerts a maximum thrust

of 3.4 kg, and achieves a power-to-weight ratio of 2.6. The target drone uses the same motori-

zation as the hunter drone, but is powered by a 2800-mAh three-cell LiPo battery on a

YoCoo1 F330 frame, and runs the ArduPilot Copter firmware on a NAVIO2 flight controller.

While the hunter drone was built to be autonomous in a GPS-denied environment, the target

drone was designed to be manually piloted or deployed in predetermined autonomous mis-

sions using either GPS or indoor GPS [42].

The hunter drone runs the Robot Operating System (ROS) on the Jetson TX2 and commu-

nicates via the MavLink protocol over a UART connection with HKPilot32 [43]. It uses the fol-

lowing five ROS nodes for operation: (1) a mavros node that communicates the set points,

local position, orientation, and other flight controller parameters between the PX4 flight con-

troller firmware and the ROS environment; (2) a stereo camera node that publishes the RGB

frames, depth images, point cloud, and pose using the ZED API [41]; (3) a vision pose con-

verter node to transform between the camera’s pose representation and the flight controller’s

pose representation; (4) an AI node that extracts the bounding box information in the current

RGB image; and (5) a navigation node that computes the next set point for the flight controller

from the depth image, point cloud, pose, and bounding box information. This high-level con-

trol loop runs on top of the low-level control loops inside the flight controller, which stabilize

Fig 5. Hunter drone prototype.

https://doi.org/10.1371/journal.pone.0225092.g005
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the drone platform based on the inertial measurement unit, barometer, and pose information.

Fig 7 shows the information flow diagram of the system.

Before conducting an autonomous mission, all ROS nodes on the drone were initiated via a

secure-shell (ssh) connection to the onboard companion computer. During each mission, we

Fig 6. Target drone prototype.

https://doi.org/10.1371/journal.pone.0225092.g006

Fig 7. Information flow diagram for the hunter drone.

https://doi.org/10.1371/journal.pone.0225092.g007
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streamed the camera frames and the bounding boxes of the detection algorithm to a ground-

station computer. A remote pilot oversaw each experimental flight and overwrote the compan-

ion computer’s commands to control the vehicle.

Results

Detection algorithm

On the Jetson TX2 with (256 × 256)-pixel resolution, the RGB model achieved 77% accuracy

in mAP measured at 0.5 IOU with an average frame rate of 5.22 fps. Herein, intersection over

union (IOU) is defined as the intersection area between the ground-truth and predicted

bounding box divided by the union area of the two bounding boxes. Sample result images are

shown in Fig 8, and the training loss and validation accuracy graphs are shown in Fig 9.

Fig 8. Sample images with bounding boxes obtained by the RGB model.

https://doi.org/10.1371/journal.pone.0225092.g008

Fig 9. Training loss and validation accuracy graph of the RGB model. The horizontal axis represents the number of

epochs in the training process. The vertical axis in the left graph shows the training/testing loss, and the vertical axis in

the right graph indicates the percentage accuracy achieved on the testing data set.

https://doi.org/10.1371/journal.pone.0225092.g009
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Our gray-scale model preserved the network architecture, but the number of input channels

was reduced from three to one. On the Jetson TX2 with (256 × 256)-pixel resolution, this

model obtained 76% accuracy in mAP measured at 0.5 IOU with an average frame rate of 8.55

fps: a 63% speed increase over the RGB model. Sample result images are shown in Fig 10, and

the training loss and validation accuracy graphs are shown in Fig 11.

Both models were tested at different image resolutions. Larger frame sizes slow the frame

rate significantly to<5 fps and increase the risk of losing the target during the hunting process

(Figs 12 and 13). The models struggled to detect drones that were more than three meters

away at the system resolution of 256 × 256 pixels. Fig 14 shows the effective detection range of

our perception system. The field of view of the ZED camera is dependent on the resolution

and is calculated using the below formula:

FOV degrees½ � ¼ 2� tan� 1 number of pixels
2� focal length in pixels

� �

�
180

pi

� �

ð1Þ

Fig 10. Sample images with bounding boxes obtained by the gray-scale model.

https://doi.org/10.1371/journal.pone.0225092.g010

Fig 11. Training loss and validation accuracy graphs of the gray-scale model. The horizontal axis represents the

number of epochs in the training process. The vertical axes represent the training/testing loss (left), and the percentage

accuracy achieved on the testing dataset (right).

https://doi.org/10.1371/journal.pone.0225092.g011
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where the number of pixels represents the pixel count in the image’s height or width direction

as applicable. The camera manufacturer, Stereolabs provides the focal length in pixels for each

resolution setting.

Furthermore, the classification speed on the Jetson TX2 was observed to be unstable, fluctu-

ating from 5 to 10 fps. To ensure that our streaming script was not causing the slowdown, we

computed the fps by averaging the classification speeds of 100 images both with and without

the script running. Streaming the video did not significantly influence the classification speed

of our method as shown in Figs 12 and 13. As the Jetson TX2 runs Ubuntu 16.04 (which is not

a real-time operating system), the unstable detection frame rate may arise from various pro-

cesses competing for computing time on both the CPU and the GPU, such as the resource-

hungry ZED API.

Fig 12. Detection speeds for the RGB model at different resolutions. Frames per second (fps) results for different

image sizes produced by our trained Tiny YOLO model running on a Jetson TX2 with Darknet, with (orange) and

without (blue) streaming the images to a computer. The fps was computed based on the average the classification

speeds of 100 images.

https://doi.org/10.1371/journal.pone.0225092.g012

Fig 13. Detection speeds for the gray-scale model at different resolutions. Frames per second (fps) results for

different image sizes produced by our trained Tiny YOLO model running on a Jetson TX2 with Darknet, with (orange)

and without (blue) streaming the images to a computer. The fps was computed based on the average the classification

speeds of 100 images.

https://doi.org/10.1371/journal.pone.0225092.g013
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Flight performance

In two hunting attempts using the RGB detection model, the platform autonomously detected

and chased the target drone. The goal was to follow the target drone. Our platform effectively

tracked and engaged with the manually piloted target, as seen in S1 Video, which shows the

second hunting attempt in full length. The hunter drone autonomously reoriented itself in the

target’s direction, approaching it directly along the line of sight. Additionally, it adjusted its

altitude to match that of the target, and landed autonomously near the landed target drone.

To protect our hunter platform, we limited the speed and step sizes in all directions,

enabling the pilot in command to abort the mission before a crash. Because of these restric-

tions, the hunter drone was limited to an ascent of 40 cm, a maximal rotation of 30˚, and a for-

ward motion of 10 cm per navigation-control cycle. The rate of the control cycle is limited by

the speed of the classifier at ~5 cycles per second. As a result, when the target drone moved

erratically, the hunter could not keep up and would return to scanning for the target.

We determined three reasons for the hunter losing its target: erratic movement by the target

drone and false positives and false-negatives by the detection algorithm. From our flight foot-

age, we can conclude that the detection algorithm performs worse when the black target drone

has poor contrast with its background or when other complex shapes are present in the frame.

Over the two missions, for 25.5 s out of a total of 113 s the hunter either did not recognize the

target or misclassified another object as the target; this is in alignment with our detection accu-

racy of 77% of the RGB algorithm used. In the case of a false-positive, the hunter drone

approaches the object falsely classified as a drone. However, the hunter can recover the target

drone if it remains in its field of view. In case of a false-negative, the drone will resume its

search pattern to look for the target.

Both the VIO localization and the tracking algorithm were sensitive to poor lighting condi-

tions. Experiments conducted in poor lighting conditions were twice as likely to lead to insta-

bility, drifting, or crash. Similarly, the walls in our testing environment would lead to large

error accumulation in the VIO localization algorithm. In the first of the two hunting attempts,

Fig 14. Detection range. The space between the two blue rectangles illustrates the region in which our system can

detect the target drone. If the target is closer than 0.5 m to the camera or further than 3 m from the camera, the

detection system fails to detect the target drone reliably.

https://doi.org/10.1371/journal.pone.0225092.g014
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error accumulation lead to severe instability and forced an early abortion after only 25 s of

flight time.

Discussion

Drone hunting in GPS deprived environments is a robotic challenge that integrates high-speed

autonomous navigation, object detection and tracking, obstacle avoidance, friend or foe iden-

tification, and new sensor technologies to achieve a single goal. Advancements in drone hunt-

ing technology benefit other fields, such as search and rescue. Thus, in this study, we present a

first approach to drone hunting.

Our current hunter drone prototype is too heavy for aggressive flight maneuvers, and it

lacks the computational resources for faster tracking. Further improvements in camera tech-

nology and compute modules should increase the computational power of our platform while

reducing its weight. For example, the Jetson AGX Xavier compute module promises multiple

times better performance than our currently used Jetson TX2[44]. Additionally, switching

from the ZED camera to the Intel RealSense R435 camera would reduce weight and provide

more reliable depth information.

Building a viable real-world solution is a complex proposition that will require more than

just the above-mentioned additions. First, significantly larger datasets will be needed to enable

hunters to detect different types of drones. The detection algorithm will also need to be able to

cope with detecting targets in cluttered environments and be resilient to occlusion and lighting

changes. Further, it will need to be paired with a robust tracking algorithm that can learn the

targets signature and thereby recognize it among other drones to avoid false positives. Addi-

tional sensors, such as directional microphones, could also be added to allow the hunter to

identify the direction in which the target escaped after leaving its camera’s field of vision.

Finally, a suitable takedown mechanism must be selected that does not endanger bystanders.

Creating a self-sufficient platform drone platform that satisfies all these requirements will be

difficult.

Unsurprisingly, state-of-the-art commercial solutions, such as the Airspace Interceptor,

rely on sophisticated ground stations for computation and large UAVs with a net guns for tar-

get apprehension [17]. For this study, we chose a particularly challenging scenario that

demands GPS-denied operation and onboard computation without relying on a downlink.

Common real-world drone hunting applications, such as preventing espionage on corporate

properties, countering smuggling operations, or policing airspace violations around airports,

do not typically take place in GPS-denied environments or prohibit the use of ground-station

downlinks. In these and similar scenarios, being able to rely on GPS and offload computation-

ally intensive tasks to a ground station to take advantage of high-performance computational

resources eases the drone hunting task. A downlink would also allow the operator to make a

friend-or-foe decisions on-the-fly if the hunter detects multiple drones and is uncertain which

to target, a task that is very challenging to automate.

Potential future drone hunting advances are not limited to the above improvements, but

could also include exploring alternative sensor combinations. For example, the hunter plat-

form could be made more effective by adding sensors that track the target’s RF signal or using

directional microphones to determine its direction. Fast object localization and tracking algo-

rithms, such as that proposed by Wu et al. have the potential to improve hunting performance

[45]. Their CPU-optimized algorithm was able to achieve an average frame rate of 141 fps on a

desktop CPU. In addition, since hunting drones have limited onboard computational

resources, offloading repetitive tasks, such as VIO or Simultaneous Localization and Mapping
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(SLAM) to a dedicated FPGA chip could ease the load on their primary CPUs and free up

resources for the tracking algorithm[46,47].

We also believe that these technological developments will make drone hunting more chal-

lenging, as targets will attain higher levels of autonomy on smaller, faster, and more agile plat-

forms. This means hunter drones will also have to improve to remain dominant. Further, we

believe that drone hunting’s long-term future does not lie with large platforms, such as the Air-

space Interceptor, but rather with small, agile, autonomous platforms that can collaborate in

counter-UAV operations.

Conclusion

We applied a deep-learning-based approach to autonomous drone hunting by a small UAV in

a GPS-denied environment. Our approach was developed without a motion-capturing system

and introduced a baseline approach for autonomous drone hunting in a GPS-denied environ-

ment. The detection accuracy of our present system is 77%. The detection speed, 8.33 fps, is

bottlenecked by the limited computing power. Advanced compute modules are expected to

improve the frame rates and response times of such systems. Our approach creates a baseline

for further development in drone hunting by the research community. In this vain, we share

not only our findings, but also the code and data needed to reproduce them in OSF project

repository here https://osf.io/n9q78/. Improving the tracking speed and accuracy, inferring the

location of the target when occluded, and adding a tracking algorithm that can discriminate

between multiple possible targets are future design challenges.

Supporting information

S1 Video. Full length drone hunting video.
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