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The microvasculature is a heterogeneous, dynamic and versatile component

of the systemic circulation, with a unique ability to locally self-regulate and

to respond to organ demand and environmental stimuli. Endothelial cells

from different organs display considerable variation, but it is currently

unclear to what extent functional properties of organ-specific endothelial

cells are intrinsic, acquired and/or reprogrammable. Vascular function is a

fundamental pillar of homeostasis, and dysfunction results in systemic con-

sequences for the organism. Additionally, vascular failure can occur down-

stream of organ disease or environmental stress, often driving an

exacerbation of symptoms and pathologies originally independent of the

local circulation. The understanding of the molecular mechanisms underly-

ing endothelial physiology and metabolism holds the promise to inform and

improve diagnosis, prognosis and treatment options for a myriad of condi-

tions as unrelated as cancer, neurodegeneration or pulmonary hypertension,

and likely everything in between, if we consider that also treatments for

such conditions are primarily distributed via the bloodstream. However,

studying endothelial function has its challenges: the origin, isolation, culture

conditions and preconditioning stimuli make this an extremely variable cell

type to study and difficult to source. Animal models exist but are neither

trivial to generate, nor necessarily adequately translatable to human disease.

In this article, we aim to illustrate the breadth of microvascular functions in

different environments, highlighting current and pioneering studies that

have advanced our insight into the importance of the integrity of this tissue,

as well as the limitations posed by its heterogeneity and plasticity.

Background

The microvascular system is arguably the largest organ

in the human body, covering a surface area of 1–7 m2,

and only rivalled in mass by the liver and skin [1]. It is

also likely the most heterogeneous [2]. What can be in

basic terms defined a continuous single cell layer of

endothelial cells (EC), for the most part, is known for

its importance as a vehicle for transport of substances,

signals and other cells throughout the organism and

between tissues. This essential function is at the heart

of homeostasis [2,3], as it facilitates the adjustments

needed to meet the demands of individual tissue types

in specific circumstances. This includes normal
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physiological conditions, such as during exercise, and

exposure to altitude or temperature oscillations [4], or

in pathologies such as inflammation [5,6], cancer [7–9],

ageing [10], degeneration [11,12] or wound healing/tis-

sue remodelling [13–16]. Another point for considera-

tion is the EC response during systemic therapy for

chronic or acute conditions [17,18]. Simply, this system

keeps the organism connected and functioning as such.

The transport function of blood vessels is mostly

centrally regulated. Blood flow is controlled autonomi-

cally through regulation of heart rate and peripheral

resistance. However, within organs and tissues, local

control of perfusion [10,19–22] in specialized capillary

networks often bypasses autonomic control [20,22–24]

and the flow rate is adjusted to the tissue environment.

Importantly, local adjustments in blood flow in specific

organs, as a result of changes in EC activation, can

result in systemic effects [19,25]. One could consider

that local control in those instances indeed overtakes

autonomic influence.

The delivery function of the microvasculature, or

the movement across EC monolayers, is a complex

process that, again in an organ-specific manner, can

occur in diverse forms, either para- or transcellularly,

in a tightly regulated manner, as discussed and

reviewed elsewhere [26,27].

In the majority of healthy tissues, the endothelium is

thought to be mostly quiescent and the movement of

cells and compounds across this barrier results from a

dynamic and integrated response of EC to compounds

and cells in circulation, combined with local tissue

microenvironment and metabolites at any given time.

The importance of local regulation of vascular func-

tions is underscored by the heterogeneity of EC [2,3,24]

in terms of morphology [28,29], structure [30] and bar-

rier function [2]. The morphological and functional

diversity along the vascular tree is in great part due to

the endothelial glycocalyx, a dense grid of proteogly-

cans, glycosaminoglycans, glycoproteins and glycol-

ipids, found on the luminal side of EC. The glycocalyx

is present in vessels of all types and sizes, but organ-

specific differences are increasingly being discovered: in

the sinusoidal capillaries of the liver, the glycocalyx is

thin [31], whereas in the glomerular endothelium fenes-

trae, it provides an additional filtration barrier [32].

Amongst continuous endothelia, the glycocalyx in the

brain microvasculature is especially dense and resistant

to lipopolysaccharide-induced vascular injury [33]; the

authors speculate that this may contribute to blood–
brain barrier function. Its size correlates to vessel diame-

ter and ranges from several 100 nm in capillaries up to

10 lm in the carotid artery [34,35], and thus, this struc-

ture directly affects organ perfusion.

Other microvascular properties that are unique to

certain microenvironments include angiogenic potential

[7,19,23,24,36], angiocrine/endocrine profile [20,37–39]

and metabolic rates [24,36,40,41]; all are essential func-

tional parameters, and all are tissue-specific.

Acknowledging this complexity, as well as the dis-

tinction between intrinsic EC properties and those that

are programmed by their surrounding environment, is

fundamental to understand and build on the potential

for applications of (micro)vascular health in organ and

organism performance.

A large body of work has been dedicated to EC in

very unique pathologies, such as in the tumour vascu-

lature [36,41,42] and diabetic retinopathy [13,43–45],

which have provided valuable breakthroughs in vascu-

lar biology and metabolism. Yet, this knowledge is

limited in the representation of the impact of EC dys-

function as both cause and effect of other conditions,

including lifestyle and ageing, which can neither be

generalized and applied to all EC populations, nor

seamlessly translated between model organisms.

This viewpoint article will not review detailed molec-

ular aspects of current knowledge of EC biology;

instead, it will emphasize general aspects of local con-

trol of vascular function and the challenges of ade-

quately modelling these studies, while providing an

overview of existing new and exciting developments in

the field, to highlight the potential applications and

implications of harnessing microvascular properties to

improve human health.

Regulation and regulators of EC
function in different tissues

Microvascular function is currently too loose a term to

reflect the functional heterogeneity observed along the

vascular tree, not only in terms of vessel type but also

location within specialized tissues. Recent studies have

underscored the unique and essential traits of EC, and

how they are often the guardians of organ perfor-

mance, as well as the initiators of tissue adaptation

and regeneration; conversely, many pathologies are

exacerbated as a result of effects on microcirculation

or caused by inadequate vascular responses in the ini-

tial stages of disease. An overview of the range of

stimuli affecting EC is illustrated in Fig. 1.

Systemic stimuli are presented to EC before any

other cells in the organism (e.g. circulatory factors,

environmental oxygen, hormones), and though the

downstream responses are unique to the tissue con-

text, all EC are equipped to identify changes in essen-

tial circulating factors, such as oxygen or energetic

nutrient load, as well as the mechanical stimulus of
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laminar flow. The combination of hormone receptors,

adhesion molecules, junction type and density and

secretory patterns allows and conditions each

endothelial network response while protecting the tis-

sue it supplies; these responses can result in organ-

ism-wide effects in blood flow and distribution (as

summarized in Fig. 2).

Endothelial Hypoxia-inducible Factors – beyond O2

Oxygen sensing is essential for homeostasis and man-

agement of cellular energy, and one of the most

important roles of the vasculature. It has been exten-

sively described in the lung endothelium [5,14,38,46],

which distinctly responds with vasoconstriction to

drops in atmospheric oxygen, instead of the vasodila-

tion observed in every other capillary network; The

effect of O2 availability has also been thoroughly

studied in tumours, where the environment is hypox-

ic, perfusion is deficient, and angiogenic factors are

abundant [9,41,42]. The sensing and response to

atmospheric oxygen levels are vital to mammalian

energetic strategy, and the skin is a known key

peripheral sensor that can alone modulate systemic

blood flow [47].

As in all mammalian cells, the master regulators of

the hypoxia response in EC are the hypoxia-inducible

transcription factors (HIF). These factors coordinate

transcriptional programs downstream of their activa-

tion, following stabilization of their regulatory sub-

units with the most important being HIF-1a and HIF-

2a [48–51]. In EC, these are not only stress response

factors, but act also, and primarily, as physiological

regulators [14,46,52].

Fig. 1. Overview of biological, chemical and physical influences on EC behaviour. Endothelial cells in capillary networks are exposed to

tissue-specific cues, which include signals from resident parenchymal and other stromal cells, the composition and stiffness of the ECM

and the metabolic activity of the organ at any given time, which in turn affects the metabolite and gas composition, and extracellular pH.

From the luminal side, EC perceive and respond to compounds and cells transported in circulation, such as nutrient status, circulating cells

and oxygen levels (systemic influences); tissue-specific influences include temperature and shear stress, which is altered as a function of

vessel diameter, flow and branching; additionally, resident cells and metabolic, physiological and pathological status of specific organs in

specific circumstances will provide the endothelium cues with very localized (tissue-specific) relevance, but which can, too, provide

systemic signals (e.g. angiocrine/endocrine). The activation status of the EC dictates its permeability, angiogenic potential, surface receptors

and transporters, secretory profile and metabolism, and thus organ function.
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HIF-2a is thought to be constitutively expressed in

EC and essential for the maintenance of monolayer

stability and barrier function [46,53], through the regu-

lation of vascular endothelial (VE)-cadherin expression

and localization at the cell surface. VE-cadherin is the

adhesion molecule found in endothelial adherens junc-

tions and essential for reversible vascular permeability

[54,55]. Furthermore, it is an important regulator of

cytoskeleton structure and cell architecture, as well as

intracellular signalling via initiation of transduction

cascades, and it is thought to be determinant in the

establishment of EC polarity [46,56]. Even though

HIF-2a in EC is vital for vascular integrity, stability

and recovery [38,46,52], it is also required for the onset

and exacerbation of pulmonary hypertension [14,57],

and deletion of lung EC HIF-2a resulted in amelio-

rated hypertension phenotypes in mice [14]. In general,

HIF-2a is seen as the gatekeeper of EC quiescence,

but depending on the tissue or the combined parame-

ters within certain conditions, stabilization of endothe-

lial HIF-2a is not advantageous.

HIF-1a can be seen as the disruptor of EC quies-

cence. This isoform is more ubiquitously expressed in

mammalian cells [58], and its role in EC function, like

in most other cells, is usually of a transient nature,

occurring as a result of demand, change or insult [59].

HIF-1a causes EC activation, which is a procoagulant

[60], pro-inflammatory [38,61,62] and pro-angiogenic

state [3,51]. This function is essential for new vessel

formation to accompany growth and development, as

well as for EC reshaping and migration, metabolic

reprogramming [36,41,62] and recruitment of other

cells to sites of injury and inflammation [38,51,61].

Activated EC are prothrombotic [63], due to the sur-

face expression of intercellular adhesion molecules that

promote platelet interaction and binding of circulating

myeloid cells [3,64]. Essential as this function is for

control of blood flow and tissue remodelling, it needs

to be reversible. As such, activation of the coagulation

cascade also and concomitantly stimulates fibrinolytic

function, in an intricately choreographed and critically

timed series of events [3]. Constitutively high levels of

endothelial HIF-1a are known to potentiate a number

of pathologies, including hypertension [62,65] and can-

cer, when HIF-1a permanence as a result of hypoxia

incurs a vicious cycle of angiogenesis and inflamma-

tion, with consequences in tumour cell migration and

aggressiveness [2,36].

Many HIF-derived functions are implemented via

accumulation of vascular endothelial growth factor

(VEGF) and downstream receptors and effectors

[28,49,51,66,67]. The levels and source of VEGF, as

Fig. 2. Summary of local and systemic effects of specific EC parameters. Endothelial cells possess diverse combinations in surface

receptors and transporters, as well as diffusible secretory compounds, which include growth factors (such as VEGF) and metabolites, which

will be determined by intrinsic endothelial properties and tissue microenvironment/substrate availability; receptors, transporters and

signalling molecules such as reactive oxygen species (ROS) or nitric oxide (NO), downstream of endothelial or inducible nitric oxide

synthases (NOS), are also variables contributing to EC heterogeneity and plasticity. All these parameters are specific to individual capillary

networks, but oscillate, in a more or less transient fashion, in response to local and systemic pressures. These alterations in endothelial

behaviour, signalling and metabolic activity subsequently modulate local tissue microenvironment as well as systemic circulation patterns.
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well as what isoforms are present, dictate the beha-

viour of both EC and their relation to the surrounding

tissue.

However essential the HIF-regulated pathways are

in adequate adaptation to oscillations in oxygen levels,

it has become increasingly evident that their stabiliza-

tion and activity in EC are graded and complemen-

tary, and occur in response to a myriad of other

parameters, frequently independent of oxygen levels.

HIF and VEGF signalling are also involved in the reg-

ulation and the responses to signals affecting EC func-

tion, including reactive oxygen and nitrogen species,

cell proliferation, cell death and shear stress resulting

from oscillations in laminar flow.

ROS, NOX and other regulators of EC behaviour

EC function is all but static and effective as a summa-

tion and processing of multiple stimuli by individual

cells, often within close proximity along the same ves-

sel segment. Signalling affecting EC behaviour often

involves generating and responding to reactive oxygen

species (ROS) [68], which can be generated by the EC

themselves or by neighbouring cells, as a result of

metabolic shifts, injury or damage, or an immune

response [25,68–70]. It has been shown that the ROS-

associated antioxidant machinery expressed in EC is

unique to vessel type and location within the vascular

tree and organ of origin [69], suggesting that tolerance

to oxidative stress is tissue-specific, and some EC are

more responsive/susceptible to oxidative damage than

others.

Nitric oxide (NO) is intrinsically generated by EC

primarily via eNOS [16]. NO effectively modulates

microvessel permeability and vasomotion by mediating

changes in vessel calibre through relaxation of smooth

muscle [19,37,71]. However, this effect is, too, context-

specific: in adipose tissue of patients with metabolic

syndrome, the hypoxia-derived NO is an ineffective

vasodilator [19], possibly because the endothelium

senses hypoxia as a lesser threat than that of energetic

nutrient overload, and bypasses that signal in favour

of vasoconstriction instead, with hypertension as a sys-

temic consequence. It has also been shown that dam-

age to the EC glycocalyx abolishes subsequent changes

in EC gene expression and NO production [72,73].

EC are the only cells continuously exposed to lami-

nar flow, to which vessel diameter and blood fluidity

need to be adjusted in order to maintain perfusion.

Their ability to endure and resist shear stress relies on

ROS and NOX signals, as well as epigenetic control

[25,30,72,73]. Versatility and flexibility are essential EC

properties, such that periods of altered cardiac output

are not mirrored by altered organ function. Dysfunc-

tional, disproportionate or irreversible responses result

in conditions such as renal failure [74], exacerbation of

COPD [5,75] and hypertension [10,61,65]. Neurodegen-

erative conditions and deficient muscle blood flow in

the elderly can also occur or deteriorate downstream

of failing NO signalling (and ROS scavenging)

[11,12,37].

Additionally, specialized vascular beds are also regu-

larly remodelled under hormonal control, such as

mammary glands during pregnancy, lactation and

involution [15], or the recurrent transformation of the

uterine lining, downstream of cyclical periods of quies-

cence and angiogenesis [76]. Recent studies in hUVEC

have suggested EC can behave as peripheral circadian

clocks, as cycles of cytokine expression and compo-

nents of the coagulation cascade appear to be

expressed in circadian patterns [77].

The collective function of a microvascular network

requires adequate individual EC responses, but also

appropriate and rigorous assembly. This involves the

right cell shape and size, which directly affect vessel

calibre and perfusion [29,30,72], alignment [62,78] and,

no less important, cell number. The proliferative stage

of the angiogenic process is followed by a maturation

phase, and EC number is therefore tightly controlled,

by ongoing removal of accessory or interfering cells.

Thus, EC apoptosis is essential to allow appropriate

regression, to improve network functionality and to

allow selective removal of superfluous EC during ves-

sel maturation [15]. It has also been shown to precede

the apoptosis of myocytes to allow recovery from

ischaemia/reperfusion injury, in a eNOS/VEGF-depen-

dent manner [79].

Recently, autophagy was revealed to be vital in

microvascular health [80], identified as cytoprotective

and fundamental for appropriate cell alignment [81];

inefficient EC autophagy was shown to lead to EC

senescence and lipid retention, inflammation and pla-

que burden, and thus fostering atherosclerotic lesions

[78,82].

Interestingly, and illustrating the importance of con-

trol of EC number, human pulmonary hypertension

pathology includes EC accumulation in precapillary

arterioles, a parameter that is not reproduced in

rodent models [83].

Metabolic shifts as mediators of EC form and

function

In recent years, the interest in EC metabolism has

grown. Pioneering studies in the unique tumour

microenvironment demonstrated that metabolic
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switches are not mere bystanders but play active roles

in shaping EC behaviours, such as angiogenic sprout-

ing [84].

A crucial feature of EC metabolism is their reliance

on aerobic glycolysis in favour of mitochondrial respi-

ration. EC display markedly higher glycolytic rates

than other cell types [85], while containing fewer mito-

chondria [86]. Indeed, at least 75% of the ATP gener-

ated by porcine aortic EC derives from glycolysis [87].

It has been postulated that this allows more oxygen to

diffuse into tissues, while limiting the exposure of EC

to potentially harmful reactive oxygen species [88].

Furthermore, glucose supply to EC is generally abun-

dant due to their direct exposure to blood. Therefore,

glycolysis actually provides a faster means of energy

production than oxidative phosphorylation. In condi-

tions of increased or decreased glucose availability, EC

can accordingly modulate the rate of mitochondrial

respiration versus glycolysis [89,90].

The glycolytic phenotype is exaggerated in tumour

vasculature through upregulation of PFKFB3 (which

mediates the conversion of fructose-6-phosphate to

fructose-2,6-bisP) and glucose transporter 1 (GLUT1)

[91,92]. Inhibition of these factors induces vessel nor-

malization, thus reducing the risk of metastasis.

PFKFB3 activity in this context is regulated by a wide

variety of signals, including hypoxia, cytokines and

hormonal stimuli [91,93]. Conversely, EC in estab-

lished and mature vessels downregulate glycolysis in

response to laminar flow [94].

Although these paradigms hold generally true, com-

parative studies between EC from different regions of

the vascular tree, as well as between EC from different

organs, have found substantial divergences in their

metabolic phenotypes. For example, pulmonary

venous EC rely more on aerobic glycolysis than their

arterial counterparts in vitro [95]. Heart microvascular

EC show higher metabolic rates than those found in

lung, liver and kidney, both in glycolysis and in mito-

chondrial respiration [24], whereas brain EC have a

higher mitochondrial volume than other EC [96]. In all

cases, there has been little effort to investigate the

underlying reasons or functional consequences of these

differences in vivo, although it has been shown that

mitochondrial inhibitors increase the permeability of

the blood–brain barrier [97].

It is tempting to speculate that these various meta-

bolic phenotypes represent an adaptation of EC to

their individual niche, reflecting the specific needs of

the underlying organ. For example, brain microvascu-

lar EC form part of the blood–brain barrier, transport

across which is highly regulated through a host of

influx and efflux pumps. It has been hypothesized that

the higher mitochondrial density in brain microvascu-

lar EC is required to supply sufficient energy to fuel

these transporters [84]. Furthermore, glucose is the

main source of energy for the brain [98]. Thus,

increased reliance on oxidative phosphorylation over

glycolysis within brain EC allows more glucose to pass

through the blood–brain barrier. Similarly, heart

microvascular EC express higher levels of fatty acid

transporters than other vascular beds, to account for

the metabolic needs of cardiomyocytes. This feature is

mediated by the transcriptional regulator Meox2/

Tcf15, uniquely expressed in cardiac EC and lost upon

in vitro culture [99].

Such loss of organ-specific features in vitro is

observed amongst several different EC [100,101], but

the mechanisms behind this phenomenon remain lar-

gely unknown. It stands to reason that the cause is a

combination of loss of signals from neighbouring cells

in the tissue, as well as a change in the physical envi-

ronment. Depending on the exact mode of culturing,

this may involve loss of the three-dimensional vessel

structure, loss of shear stress, changes in nutrient

availability and increased exposure to oxygen. Given

the crucial role of EC in oxygen homeostasis, exposure

to hyperoxia in particular may affect EC physiology.

Indeed, our own observations in culturing microvascu-

lar EC at different oxygen levels show that this param-

eter alters both their baseline metabolism and their

ability to adapt to hypoxia (Reiterer et al., in prepara-

tion). Importantly, oxygen content within blood is not

constant but varies drastically from 13% to 14% in

freshly oxygenated arterial blood [102], to < 5% in

peripheral organs such as the brain [103]. Therefore,

while the 21% O2 present in ambient air indeed pro-

vide a hyperoxic environment to all EC, the magnitude

of the hyperoxic insult is less severe for cells from nat-

urally well-oxygenated tissues. This introduces a con-

founding variable if cells from different tissues are

compared under ambient oxygen levels. For example,

brain microvascular EC cultured at 5% O2 display a

higher respiratory capacity than their lung counter-

parts but this trend is reversed if the cells are cultured

at 21% O2 (Reiterer et al., in preparation).

Endothelial dysfunction and
comorbidity: diagnostic, prognostic
and treatment opportunities?

Insight into organ-specific microvascular function pro-

vides an opportunity to tackle a vast amount of

pathologies. Indeed, it is fair to speculate that it may

provide the prospect of diagnosing and preventing an

equally vast amount.
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We know liver sinusoid EC, alone and in combina-

tion with Kupffer cells, play roles in innate and adap-

tive immunity, in recruitment and activation of

monocytes and CD4+ T cells, are involved in 75%

LPS clearing during acute inflammatory insults and

hepatic regeneration following severe resection. Simi-

larly, liver and lung tissue regeneration, extracellular

matrix remodelling [104] or muscle recovery from

ischaemic damage, all rely on appropriate revascular-

ization, which is a result of a meticulous molecular

and intercellular manoeuvring, both those initiated by

EC and those that EC must respond to, such as the

signals sent from perivascular environment

[9,10,105,106]. The potent restorative powers of

microvascular EC include using tissue-native language

to communicate with resident cells [16], but also acti-

vation of neighbouring stem cells [23].

However, and likely more often, the vasculature is

overwhelmingly challenged by other conditions. Sec-

ondary to the primary cause of the malaise, the

microvascular reactions to pathological challenges

often result in either severe comorbidity, such as in the

case of respiratory disease (e.g. COPD and acute respi-

ratory distress syndrome) [5,46,75] or sepsis [107,108],

where EC activation compounds primary symptoms

through added oedema, permeability and positive feed-

back of inflammatory signals. Endothelial activation in

response to disturbed flow underlies atherosclerosis, a

condition also shown to result from damage to the

endothelial glycocalyx [109,110], but also results in a

feed-forward loop that exacerbates the condition and

fosters the establishment of further and wide-ranging

complications. The same is observed in metabolic syn-

drome and the inability to coordinate a response to

local vasodilating factors with the need to limit nutri-

ent absorption and transport to an already over-

whelmed tissue [19,108].

Similarly to signals, cells, gas and nutrients, treat-

ments are also commonly delivered to diseased tissues

via the bloodstream, and it is this same system that

transports waste metabolites for processing and

removal from the organism. It is thus not surprising

that the inevitable exposure to, and often absorption

of, those compounds result in changes in EC viability

and behaviour, and this is seen more strikingly during

extreme cytotoxic treatments for cancer [17,111]. A sig-

nificant body of work [17,111], including some of our

preliminary studies, show that minimal exposure of

human and murine EC to the lowest (physiological)

levels of chemotherapeutic agents, even for as little as

15 min, results in extensive changes in activation state

and viability, most of which are not reversed after

72 h (Eakin et al., in preparation). Also, acute

intestinal toxicity following radiotherapy is signifi-

cantly compounded by associated EC dysfunction [18].

Discussion: challenges, implications and

applications for increased knowledge of specific

EC populations

Finding accurate and representative models for in vivo

EC behaviour has proven to be a challenging task.

Immortalized EC derived from a wide variety of ves-

sels are commercially available. While they avoid

issues relating to donor heterogeneity, their modifica-

tions necessarily make them a less accurate model.

Thus, in vitro studies have increasingly moved towards

using primary EC instead. The large majority of such

studies use human umbilical vein EC (hUVEC). These

cells are relatively easy to culture and allow for highly

reproducible experiments. However, their widespread

use may lead to skewed observations, due to the

heterogeneity of EC from different vessel types or

from different organs. Organ-specific primary EC are

also used, but they are laborious to obtain or expen-

sive to purchase. Cells from human donors addition-

ally suffer from issues relating to donor heterogeneity,

since samples are usually obtained from a small num-

ber of individuals who may differ significantly in age,

gender and physiological state. Furthermore, the beha-

viour of EC is highly influenced by culture conditions.

Most conventional growth media contain nutrients

and/or growth factors in nonphysiological concentra-

tions, leading to altered proliferation rates, metabolism

and permeability [112–115]. Similarly, EC in vivo are

constantly exposed to shear stress from blood flow.

Removing this stimulus has been shown to alter EC

metabolism [62,94,116].

While in vivo readouts are available, they usually

involve one of a small number of assays, such as mea-

suring angiogenesis in the retina or the hindbrain. Ani-

mal experiments frequently use zebrafish as a model

system, since their transparent nature enables complex

in vivo microscopic analysis and real-time visualization

of cellular behaviour in situ. However, findings are not

always translatable into humans [55,117–119]. Knock-

out studies in mice using Cre recombinase under

endothelial-specific promoters are possible, but global

phenotypes are often difficult to interpret or may even

obscure organ-specific effects. A challenge for the

expansion of this subject will be to generate and estab-

lish reliable ex vivo models to study the molecular

aspects of microvascular function, as well as expand

the in vivo options to further study the reciprocal con-

tribution of the organ microenvironment and thus pro-

vide increased translational value.
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Altogether, the above examples stress a wide range

of conditions that can be managed and treated also

as a vascular disease, and that opportunities in

which preventing vascular dysfunction could improve

treatment outcomes and reduce morbidity associated

with the primary condition. The knowledge of speci-

fic properties of tissue-specific EC features and

responses will allow the development of therapeutic

strategies that are suitably targeted to the unique

condition.
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