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Fibrosis is characterized by excessive extracellular matrix deposition and is the pathologi-
cal outcome of repetitive tissue injury in many disorders. The accumulation of matrix disrupts
the structure and function of the native tissue and can affect multiple organs including the
lungs, heart, liver, and skin. Unfortunately, current therapies against the deadliest and most
common fibrosis are ineffective. The pathogenesis of fibrosis is the result of aberrant wound
healing, therefore, the microvasculature plays an important role, contributing through regu-
lation of leukocyte recruitment, inflammation, and angiogenesis. Further exacerbating the
condition, microvascular endothelial cells and pericytes can transdifferentiate into matrix
depositing myofibroblasts. The contribution of the microvasculature to fibrotic progression
makes its cellular components and acellular products attractive therapeutic targets. In this
review, we examine many of the cytokine, matrix, and cellular microvascular components in-
volved in fibrosis and discuss their potential as targets for fibrotic therapies with a particu-
lar focus on developing nanotechnologies.
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inTroducTion

Following insult through injury or patho-

genesis, the synthesis and remodeling of the

extracellular matrix (ECM†) is a critical step

in the wound healing process. If this pathway

is continuously activated through chronic in-

flammation, repetitive injury, or dysregula-

tion, excessive ECM components, including

collagen I, fibronectin, and hyaluronan, ac-

cumulate in the surrounding tissue. This ac-

cumulation is defined as fibrosis and is

damaging to the tissues surrounding the site

of injury. Unchecked, fibrosis can cause per-

manent organ damage and can be potentially

fatal. Fibrosis can affect many different organ

systems and is a hallmark of diseases such as

liver cirrhosis, rheumatoid arthritis, Crohn’s

disease, interstitial lung disorders, sclero-

derma, and ulcerative colitis (Figure 1) [1].

As many as 45 percent of all natural deaths

in the United States can be attributed to fi-

brotic disorders [2]. Recent advances have

furthered our understanding of the mecha-

nisms contributing to fibrosis; however, few,

if any, effective treatments exist for some of

the most common and lethal forms of fibrosis

such as idiopathic pulmonary fibrosis (IPF).

In this review, we highlight a number of po-

tential microvascular targets for anti-fibrotic

therapeutics (Table 1). In particular, we focus

on the emergence of nanomedicine as an av-

enue for the improvement and development

of existing and novel therapies.  

The use of nanoscale (1-100 nm) parti-

cles to deliver therapies or as diagnostic

tools has numerous advantages over tradi-

tional methods. In particular, nanoparticles

such as liposomes, polymers, and den-

drimers can significantly improve drug de-

livery via high specificity targeting,

controlled release and activation, increased

drug stability, and by passing through phys-

iological barriers [3,4]. For example, coat-

ing nanoparticles in ligands of specialized

cell receptors or monoclonal antibodies can

target them for drug delivery to a specific

cell type, e.g., cancer cells [5]. Such target-

ing can be especially advantageous in fi-

brotic disorders that are localized to specific

organ systems or tissues. 

Despite their heterogeneous origins, dif-

ferent fibrotic disorders, including those of the

liver, heart, lungs, and kidney, all involve the

activation of myofibroblasts [6-10]. Myofi-

broblasts are specialized fibroblasts that are re-

sponsible for the majority of the ECM

remodeling and synthesis that accompanies

wound healing and fibrosis. Importantly, my-

ofibroblasts may originate from several differ-

ent cellular sources. Endothelial cells and

pericytes from the microvasculature and ep-

ithelium in organs like the lung can lose their

tissue specific markers, transdifferentiating

into myofibroblasts [11,12]. Transdifferentia-

tion can be initiated by transforming growth

factor-ß (TGF-ß), while specific ECM proteins

can recruit myofibroblasts into injured tissue

[13]. Notably, circulating fibrocytes can be re-

cruited to the site of injury and will subse-

quently transdifferentiate into myofibroblasts

[14]. Fibrocyte recruitment into the extravas-

cular space requires transmigration through the

microvascular post-capillary structure. Differ-

ing from the large vessel, the post-capillary

venule is composed of luminal endothelial

cells and perivascular pericytes, both serving

as barriers to cellular diapedesis until cytokine-

activation occurs. During fibrosis, the abnor-

mal structure of the microvasculature is

marked by endothelial swelling, necrosis, and

detachment and by a thickening of the vascu-

lar basement membrane [15,16]. These

changes suggest that clear correlations be-

tween microvascular dysregulation, leukocyte

recruitment, and fibrosis could provide mech-

anisms for anti-fibrotic therapeutics.

The recruitment, subsequent transdif-

ferentiation, and activation of myofibroblast

precursors are acutely tied to immune and

wound healing responses. As such, the cells,

matrix, and signaling molecules of the mi-

crovasculature play an important role in the

pathogenesis of fibrotic disorders (Figure 2).

However, the microvasculature does not act

in isolation. Fibrosis is a complex disease,

and fibrotic pathogenesis involves many

systems and pathways acting in concert.

While an abundance of research has been

done to identify the involvement of each

system in fibrosis, we have dedicated the

scope of this review to the important mi-
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crovascular components involved in fibro-

sis, and we highlight their utility as targets

for anti-fibrotic nano-based therapies. 

cyTokines

TGF-ß1

Transforming growth factor-ß has been

implicated in most fibrotic disorders in

human disease and confirmed in animal

models [17]. The three isoforms of TGF-ß,

TGF-ß1, -ß2, and -ß3, have biologically

similar functions, though TGF-ß1 plays a

larger role in fibrotic disorders [18]. TGF-

ß1 is a prolific cytokine, and depending on

the context, it can inhibit or stimulate cell

proliferation, act as an immunosuppressant,

and induce ECM production [17]. During

wound healing and in the pathogenesis of fi-

brotic disorders, TGF-ß1 induces fibroblast

to myofibroblasts transdifferentiation and

induces the production of ECM components

(Figure 3) [19,20]. Additionally, it has been

demonstrated to be a primary mediator of

epithelial cell, endothelial cell, and pericyte

transdifferentiation into myofibroblasts [21-

23]. During fibrotic progression, TGF-ß1

binds a heterodimeric receptor consisting of

a TGF-ß1 type I and a TGF-ß1 type II re-

ceptor, subsequently activating Smad tran-

scription factors. Smad2 and, to a lesser

degree, Smad4 upregulate α-smooth muscle

actin (α-SMA), and Smad3 upregulates pro-

fibrotic genes including procollagen, fi-

bronectin, and connective tissue growth

factor (CTGF) [24-26]. TGF-ß1 alone is in-

sufficient to induce fibroblast transdifferen-

tiation. In vitro and in vivo studies have

demonstrated that ED-A fibronectin (FN),

an alternatively spliced FN, and integrin sig-

naling at focal adhesions (via focal adhesion

kinase [FAK]) are necessary for TGF-ß1-in-

duced transdifferentiation [27,28]. 

During wound healing, platelets ini-

tially release TGF-ß1 and other factors like

platelet derived growth factor (PDGF) into

the site of injury. This both recruits neces-

sary cells and induces additional TGF-ß1

synthesis [17]. The autoinduction of TGF-

ß1 appears to be controlled by Smad3, with

input from the MKK4/Sapk and MEK/Erk

pathways [29]. TGF-ß1 is secreted in the la-

tent (inactive) form, non-covalently bound
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Figure 1. Pathological and mo-

lecular markers of fibrosis. Al-

though the pathogenesis of many

fibrotic disorders is poorly under-

stood, each is characterized by

specific pathological or molecular

changes. While many of these

changes – such as extensive peri-

cyte-to-myofibroblast transdiffer-

entiation in renal fibrosis – are

unique to a subset of fibrosis,

there are common features as

well. Notably, elevated TGF-ß is

characteristic of all fibrosis, under-

scoring its role in fibrotic patho-

genesis. There are few, if any,

effective anti-fibrotic therapies

(Table 1), however many of the

current and developing therapies

target common fibrotic pathways

such as TGF-ß. Thus, although

developed with a specific fibrosis

in mind, some drugs, like pir-

fenidone, might effectively treat

multiple fibrosis.



by latency-associated protein (LAP). At the

site of injury, dissociation of LAP is cat-

alyzed by cellular, vascular, and ECM pro-

teins, including plasmin, integrin αVß6,

matrix metalloproteinase-9 (MMP-9),

MMP-2, and thrombospondin [30-32]. Be-

cause TGF-ß1 is prominently featured in the

pathogenesis of fibrotic disorders, it is con-

sidered a promising target for anti-fibrotic

therapies. However, because it is so prolific,

targeting TGF-ß1 during fibrosis without

disrupting its other physiological functions

— including its tumor suppressor activity

and its role as a leukocyte chemokine ― has

proven to be a challenge [33,34].

There are several drugs in various

phases of development or approval that are

designed to target multiple parts of the TGF-

ß1 pathway. For example, pirfenidone (In-

terMune), a small molecule drug, suppresses

TGF-ß1 transcription and subsequent colla-

gen accumulation and was recently approved

to treat IPF in the European Union and Japan

(as well as several other countries) [35]. In

the United States, pirfenidone is currently

being evaluated in a phase III clinical trial.

STX-100 (Stromedix) is a monoclonal anti-

body that targets integrin αVß6 and neutral-

izes its TGF-ß1 activating activity. STX-100

is also designed to treat IPF and is currently

entering phase II clinical trials [36]. 

Increasingly novel methods of targeting

TGF-ß1 occur through nanoparticle delivery

of inhibiting and neutralizing reagents.

Using pirfenidone-loaded poly(lactide-co-

glycolide) nanoparticles significantly in-

creased drug retention in the lungs (versus a

pirfenidone solution) and increased the over-

all anti-fibrotic efficacy of the drug [37].

Prostaglandin E2 (PGE2) has also been

shown to attenuate bleomycin-induced fi-

brosis. Its exact mechanism of action is un-

known, but it inhibits lung fibroblast

transdifferentiation to myofibroblasts, hint-
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Figure 2. The microvasculature in fibrosis. The microvasculature plays multiple roles in

the pathogenesis of fibrosis. a) Cytokines such as TGF-ß, PDGF, CTGF, CCL2, IL-8, and

IL-1ß activate endothelial cells and pericytes – inducing pro-fibrotic activities including cy-

tokine production, angiogenesis, transdifferentiation, and leukocyte recruitment. b) During

leukocyte recruitment, IL-1ß and TNF-α activate endothelial cells, enabling capture of cir-

culating leukocytes , subsequently initiating leukocyte transmigration through the vessel

wall and into the surrounding tissue. This process regulates the recruitment of fibrocytes

and leukocytes and is crucial for the pathogenesis of some fibrosis. c) Endothelial cells,

pericytes, and fibrocytes can transdifferentiate into myofibroblasts under the influence of

TGF-ß. Notably, pericytes and fibrocytes appear to be major sources of myofibroblasts in

renal and idiopathic pulmonary fibrosis respectively. d) During fibrogenesis activated my-

ofibroblasts deposit excessive collagen into the surrounding tissue. Pericytes also produce

matrix, depositing it into the basement membrane and contributing to the thickening of the

basement membrane and deformation of microvasculature during fibrosis.  



ing that it might act on parts of the TGF-ß

pathway. It was recently shown that using

nanoscale liposomes to deliver PGE2 to the

lungs via inhalation effectively diminished

bleomycin-induced fibrosis, overcoming

previous difficulties of specifically deliver-

ing PGE2 to the lungs [38]. Wang et al.

(2009) used chitosan nanoparticles to deliver

anti-TGF-ß1 short hairpin RNA (shRNA),

successfully knocking down TGF-ß1 ex-

pression in rhabdomyosarcoma cells [39].

Using a similar strategy, Liu et al. (2010)

demonstrated that specifically blocking

miR-21, a miRNA regulator of the Smad

and thus TGF-ß, with small antisense probes

successfully attenuated TGF-ß1 activity in

bleomycin-induced fibrosis in mice [40]. If

combined with recent developments in RNA

delivery to specific lung cells, this method

could prove an effective therapy for targeted

inhibition of TGF-ß1 signaling in myofi-

broblasts [41]. 

Connective Tissue Growth Factor

Connective tissue growth factor (CTGF)

is a cytokine that is associated with most

types of fibrosis. A member of the CCN pro-

tein family (CCN is an acronym derived

from the names of the first three members of

the family: Cyr61 [cysteine-rich protein 61],

CTGF, and NOV [nephroblastoma overex-

pressed gene]), CTGF is produced by fi-

broblasts and endothelial cells following

TGF-ß stimulation [42,43]. Like TGF-ß,

CTGF stimulates cell proliferation, transdif-

ferentiation, apoptosis, ECM production, and

potentially angiogenesis [44,45]. CTGF is

generally considered a downstream mediator

of TGF-ß activity. It enhances TGF-ß signal-

ing by directly binding TGF-ß and increas-

ing its affinity for its numerous receptors.

Blocking CTGF production decreases TGF-

ß-induced ECM production [18,46]. Addi-

tionally, it has been reported that CTGF is

important for epithelial and endothelial cell

transdifferentiation into myofibroblasts, also

known as the epithelial-mesenchymal (EMT)

and endothelial-mesenchymal (endo-MT)

transition [47]. Alone, CTGF signaling is not

sufficient to cause fibrosis; however, over-

expression does increase fibrotic susceptibil-

ity in bleomycin mouse models [48].

Because the scope of CTGF’s activity is

more limited than TGF-ß, it has good poten-

tial as a therapeutic target, though its

pleotropic effects should be fully considered.

The CTGF targeting antibody FG-3019 re-

cently completed phase I trials and is cur-

rently entering phase II trials as a treatment

for advanced kidney disease and other fi-

brotic disorders [49]. Furthermore, the use of

cationic solid lipid nanoparticles to deliver
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Figure 3. The TGF-ß fibrotic pathway.

TGF-ß1 is the most ubiquitous fibrotic

cytokine, and it can act in several ways

to induce ECM production. TGF-ß1 is

activated when extracellular or mem-

brane bound proteins including MMPs,

plasmin, and integrins cleave the bound

latency-associated protein. Activated-

TGF-ß1 binds its heterodimeric receptor,

initiating two Smad signaling cascades.

In myofibroblasts, Smad3 along with

input from the MKK4/Sapk pathway acti-

vates production of additional TGF-ß1

and extracellular matrix components in-

cluding collagen and fibronectin. In non-

myofibroblasts, Smad2 and Smad4

ultimately control transdifferentiation into

myofibroblasts, upregulating α-smooth

muscle actin. Transdifferentiation also

requires integrin signaling via focal ad-

hesion kinase and the alternatively

spliced ED-A fibronectin. 



CTGF siRNA was shown effective in treat-

ment of rat hepatic fibrosis, highlighting the

utility of emerging nanotechnologies for tar-

geting cytokine signaling at the translational

level [50].

Platelet-Derived Growth Factor

Platelet-derived growth factor (PDGF)

acts as a powerful mitogen and chemoattrac-

tant for pro-fibrotic cells including myofi-

broblasts. It plays an important role in the
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Table 1. summary of anti-fibrotic therapies.

name

(Manufacturer)*

Pirfenidone 

(Intermune)

Maraviroc (Pfizer)

Imatinib (Novartis)

BIBF 1120

(Boehringer 

Ingelheim)

STX-100 (Stromedix)

Carlumab 

(CNTO-888) 

(Centocor/Janssen)

FG-3019 (Fibrogen)

Tetrathiomolybdate

(Pipex)

Pirfenidone 

nanoparticles

CTGF siRNA

Recombinant Flt23k

intraceptor plasmid

Prostaglandin E2

TGF-ß1 shRNA

Anti-miR-21 

antisense probes

CCR5 RNAi

P-selectin antagonist

Target

TGF-ß1 synthesis

CCR5

PDGF

VEGFR, PDGFR,

and FGFR 

inhibitor

Integrin αVß6

/TGF-ß1 activity

CCL2

CTGF

Angiogenic 

pathways

TGF-ß1 synthesis

CTGF

Angiogenesis/

VEGF

Fibroblast/myofi-

broblasts activity

TGF-ß1 synthesis

TGF-ß1 activity

via Smad

CCR5 synthesis

Leukocyte 

recruitment via 

P-selectins

class

Small molecule

Small molecule

Small molecule

Small molecule

Monoclonal 

antibody

Monoclonal 

antibody

Monoclonal 

antibody

Small molecule

Poly(lactide-co-gly-

colide) nanoparticle

Cationic solid lipid

nanoparticles

Targeted 

nanoparticle

Liposome 

nanoparticle

Chitosan 

nanoparticle

Targeted 

nanoparicle

Targeted 

nanoparticle

Polymerized 

liposomes

Target disease

IPF, renal fibrosis, and

hepatic fibrosis

Hepatic fibrosis

Nephrogenic 

systematic fibrosis,

Crohn’s Disease

IPF, Crohn’s Disease

IPF

IPF

Kidney disease, IPF

IPF

IPF

Hepatic Fibrosis

Macular degeneration

related fibrosis

IPF

Cancer/IPF

IPF

HIV/Hepatic Fibrosis

Pulmonary fibrosis/IPF,

and Dermal fibrosis

Phase

III/In use

IV

III

III

II

II

I/II

I/II

Research

Research

Research

Research

Research

Research

Research

Research

*Manufacturer listed for drugs in clinical development



pathogenesis of pulmonary, hepatic, renal,

cardiac, dermal, and intestinal fibrosis [51].

The PDGF isoforms, PDGF-A and PDGF-B,

bind and dimerize either the PDGFα or

PDGFß tyrosine-kinase receptors (PDGFRs).

PDGF-C and PDGF-D also act through the

PDGFRs. Their part in fibrosis is less clear,

but potential roles being considered include

the regulation of ECM degradation [52,53].

PDGF signal transduction follows the Ras

and ERK/MAP kinase pathways. In addition

to its mitogenic activity, PDGF stimulates the

production of collagen and other ECM com-

ponents and promotes cell adhesion [51]. In

IPF and other pulmonary fibrosis, alveolar

macrophages are a major source of excess

PDGF. They primarily produce PDGF-B and

lung myofibroblasts produce PDGF-A in an

autocrine feedback loop [54]. In vitro and in

vivo studies have shown that multiple isoform

PDGF overexpression can lead to accumula-

tion of ECM components; however, addi-

tional factors such as TGF-ß are necessary to

sustain the fibrotic state [55]. 

PDGF activity is regulated through inter-

actions with its receptors and though syner-

gism with other cytokines, and extracellular

proteins including ECM components con-

tribute significantly to its functional effects

[56]. For example, interleukin 1ß (IL-1ß) is

produced by macrophages and upregulates

PDGFRα, enhancing the mitogenic and

chemotactic effect of PDGF on myofibroblasts

[57]. Additionally, TGF-ß activity down-reg-

ulates PDGFRα expression, suppressing cell

growth in favor of collagen/ECM production

[58]. 

Currently, there are several fibrosis

therapies in development that target PDGF

activity. Perhaps the most promising is ima-

tinib (also known as Gleevec), a small mol-

ecule tyrosine-kinase inhibitor. Imatinib is

thought to block PDGF activity and has

shown promise as an anti-fibrotic drug and

recently completed a phase III trial to treat

nephrogenic systemic fibrosis, results pend-

ing [59,60].

CC and CXC Chemokines

Historically, the role of chemokines in fi-

brosis was limited to the initial recruitment of

immune cells to the site of injury. However, re-

cent studies have demonstrated that they play

a far larger role in fibrosis, initiating angio-

genesis and acting as mediators of the fibrotic

response. For example, the pro-fibrogenic CC

chemokine CCL2 (CC Ligand 2, or MCP-1)

has been implicated in hepatic, renal, dermal,

and pulmonary fibrosis. Along with CCL7,

CCL8, CCL13, and CCL16, CCL2 binds the

CCR2 receptor (CC Receptor 2) [61]. In scle-

roderma, fibroblasts spontaneously express

CCL2, which engages an autocrine feedback

loop, stimulating further CCL2 production and

attracting monocytes [62]. In addition to re-

cruiting immune cells, CCL2 stimulates TGF-

ß production in hepatic and pulmonary

fibroblasts, contributing to the accumulation

of collagen [63,64]. CCL2 levels are elevated

in the serum and bronchoalveolar lavage fluid

(BALF) of patients with IPF. Murine models

deficient in the CCL2 receptor CCR2 were

partially protected against renal, pulmonary,

and hepatic fibrosis in various fibrotic disor-

der models [61,65-67]. 

CCR1 and CCR5, and their shared lig-

ands CCL3 and CCL5, have also been

shown to be important pro-fibrotic media-

tors. In hepatic fibrosis, CCR1 and CCR5

levels are highly elevated and blocking the

receptors reduces the fibrotic response.

CCR1 and CCR5 are co-expressed on many

different cell types, but they differentially

activate cell populations. CCR1 is a pro-fi-

brotic mediator of bone marrow-derived

cells and CCR5 acts on resident liver cells.

The ultimate effect of their action is the re-

cruitment and activation of hepatic stellate

cells, the primary fibrogenic cell in the liver

[68,69]. Eliminating CCR1 and CCR5 sig-

naling in mice via receptor knockout lessens

the impact of induced pulmonary fibrosis,

suggesting an additional pro-fibrotic role of

these receptors in the lung [70,71]. How-

ever, it does not appear that CCR1 and

CCR5, or their ligands, directly activate lung

mesenchymal cells as in hepatic fibrosis, but

instead play an important role in regulating

the balance of pro/anti-fibrotic cytokines

and immune cell infiltration [61,72].

In addition to their role in immune ac-

tivation, CXC chemokines are important
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angiogenic/static regulators. For example,

endothelial-derived CXCL8 (IL-8) is a po-

tent neutrophil chemoattractant and impor-

tant to the transendothelial and transpericyte

migration of leukocytes. It has also been

shown to be a powerful angiogenic factor

[73-75]. The recruitment of neutrophils to

the early fibrotic lung results in the release

of cytokines, including TNF-α and IL-1ß,

elastases, and reactive oxygen species that

cause further damage to the tissue [76,77].

During wound healing and the pathogene-

sis of fibrosis, metabolic demand increases

and angiogenesis is required to supply the

tissue with requisite nutrients and for tissue

remodeling [78]. CXC chemokines with the

ELR motif (ELR+) are angiogenic and pri-

marily bind endothelial CXCR2. ELR-

CXC chemokines are angiostatic and they

bind CXCR3 [78,79]. Examining BALF,

serum, and tissue samples from patients

with IPF and hepatic fibrosis has shown that

fibrosis is correlated with an imbalance of

ELR+ and ELR- chemokines [78,80]. In ad-

dition to regulating angiogenesis, CXC

chemokines contribute to fibrotic patho-

genesis by mediating fibrocyte extravasa-

tion and tissue infiltration, increasing the

myofibroblasts population and matrix dep-

osition [81].

Although targeting chemokines has

shown potential in vitro and animal mod-

els, successful chemokine directed human

anti-fibrotic therapies have yet to be de-

veloped. However, several drugs devel-

oped to treat other diseases are currently

being investigated for their pleotropic anti-

fibrotic properties. The CCL2 targeting

monoclonal antibody carlumab (CNTO-

888) (Centocor/Janssen) is in phase 2 trials

to assess its safety and effects in individu-

als with IPF. Maraviroc is a CCR5 antago-

nist developed as an antiretroviral HIV

treatment and is currently entering a phase

4 clinical trial (NCT01327547) to investi-

gate its effect on liver fibrosis in HIV/HCV

co-infected individuals. A recent study also

targeted HIV with CCR5 RNAi delivered

via nanoparticles; however, this method’s

utility in treating fibrosis has not been

evaluated [82].

exTrAcellulAr MATrix 
coMPonenTs

General ECM Changes

The pathological outcome of fibrosis is

an excessive accumulation of ECM compo-

nents. Depending on the tissue, the amount

and composition of ECM accumulation dif-

fers but can be generalized as an increase in

fibrillar and non-fibrillar collagens, fi-

bronectin, and proteoglycans [83-85]. No-

tably, in decellularized human IPF lungs

versus healthy lungs, there is a 21-fold in-

crease in hyaluronan, a 20-fold increase of

matrix gla protein, a 16-fold increase in la-

tent-TGF-ß-binding protein 1, and a 3-fold

increase in collagen III chains [85]. This ac-

cumulation of large and small matrix protein

increases tissue stiffness and inhibits normal

tissue function. 

Hyaluronan

Hyaluronan (HA), a glycosaminoglycan,

is one of the chief components of ECM, pro-

viding structural support by binding and ag-

gregating proteoglycan chains in connective

tissue [86]. HA is produced by a wide range

of cells, but fibroblasts are the most produc-

tive source. HA is an important regulator of

the immune response and myofibroblasts ac-

tivity, including cell adhesion, chemoattrac-

tion, and signaling for transdifferentiation.

[87]. While HA and HA fragments interact

with numerous receptors, CD44 is the princi-

ple HA receptor and can be found on most

cell types, including fibroblasts, fibrocytes,

endothelial cells, epithelial cells, lympho-

cytes, and leukocytes [88-91]. CD44-HA in-

teractions can induce a broad range of activity

including cell adhesion, migration, transdif-

ferentiation, and protein expression [92]. In

response to injury and factors like IL-1ß and

TNF-α, fibroblasts secrete HA, which asso-

ciates with CD44 to form a pericellular coat.

This pericellular coat facilitates cell adhe-

sion/de-adhesion and shape changes required

for cell motility and proliferation [93]. Fur-

thermore, continual HA secretion appears to

be required for transdifferentiation to and

maintenance of the myofibroblasts phenotype

[94,95]. Inhibiting HA synthesis prevents
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TGF-ß mediated myofibroblasts transdiffer-

entiation; however, adding HA alone to fi-

broblasts fails to induce transdifferentiation,

indicating that HA modulates TGF-ß induced

transdifferentiation [95,96]. 

Through the research cited above, it has

become increasingly clear that HA is an im-

portant player in the pathogenesis of fibrosis

and is a potential therapeutic target. However,

few, if any, therapies targeting HA are being

developed or proposed. The HA receptor

CD44 is also being studied as a target for

metastatic tumor therapies, though a safe

therapy has yet to be developed. 

MMPs and TIMPs 

Matrix metalloproteinases (MMPs) and

tissue inhibitors of metalloproteinases

(TIMPs) are enzymes responsible for the

turnover and regulation of ECM components.

The 22 different MMPs are zinc-dependent

proteolytic enzymes that degrade specific

ECM components, and the four identified

TIMPs can inhibit the activity or activation

of multiple MMPs [97,98]. MMPs are pro-

duced as pro-MMPs — latent forms of the

enzymes that require the cleavage of a pro-

peptide for activation [99]. The balance of

MMPs and TIMPs is critical for the mainte-

nance of homeostasis and during fibrotic

pathogenesis. It is generally accepted that

early MMP activity is needed for fibrogene-

sis, while persistence of some MMPs can

contribute to prolonged fibrosis [99]. There

are various levels of imbalance that can lead

to either prolonged or self-resolving fibrosis.

For example, the progression of hepatic fi-

brosis is initially marked by elevated MMP-

1, MMP-3, and MMP-13 activity. This is

thought to degrade existing ECM in prepara-

tion for de-novo ECM synthesis and help to

activate ECM producing hepatic stellate cells

(HSCs) (liver pericytes) [99-101]. This brief

period of ECM degradation is followed by an

upregulation of TIMP-1 and TIMP-2, which

inhibits further matrix degradation and tips

the balance in favor of fibrosis [102]. Inter-

estingly, expression of the collagenase (type

IV) MMP-2 and its membrane-bound activa-

tor MMP-14 also increases. Pro-MMP-2 is

activated at the cell membrane through a

complex with MMP-14 and TIMP-2, and its

local activity, degrading periceullar matrix,

likely facilitates the proliferative, pro-fibrotic

HSC phenotype [99,100,103]. Similar matrix

degrading yet pro-fibrotic activity has been

observed in kidney and pulmonary fibrosis

and is important for EMT and sustained fi-

brosis [104,105]. Additionally, infiltrating

neutrophils also release MMPs, including

MMP-2, into the extravascular tissue during

the wound healing response, but the extent to

which MMPs contribute to fibrotic patho-

genesis is still being defined [106]. 

Because MMPs and TIMPs play a role

in both fibrogenesis and fibrolysis, they are

attractive anti-fibrotic targets. Upregulating

MMPs, downregulating TIMPs, or some

combination of the two should help control

and reverse fibrotic pathogenesis. To this ef-

fect, there have been many studies examin-

ing possible MMP/TIMP based therapies

(See [99] for review in Hepatic Fibrosis) in

animal and human models. Blocking TIMP-

1 via adenovirus-delivered mutant MMP-9

suppressed HSC activation and inhibited fi-

brosis in mice [107]. In rats, the plant alka-

loid halofuginone has been shown to

upregulate anti-fibrotic MMP-3 and MMP-

13 while downregulating MMP-2 and TIMP-

1 [108]. Furthermore, many MMPs and

TIMPs are in the TGF-ß pathway, so thera-

pies targeting TGF-ß are likely to affect

MMPs and TIMPs in an anti-fibrotic manner

[98]. 

MicrovAsculAr cells

Endothelial Cells

Endothelial cells (EC) mediate or partic-

ipate in many biological processes important

to fibrotic pathogenesis, including the in-

flammatory/immune response, angiogenesis,

and myofibroblasts transdifferentiation. They

respond to a broad range of stimuli and pro-

duce proteins and factors including ECM,

TGF-ß, PDGF, CTGF, CCL2, IL-8 (CXCL8),

and MMPs [109]. As the physical barrier sep-

arating the blood stream from the extravas-

cular space, ECs regulate cellular and

molecular access to the underlying tissue.
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Circulating leukocytes and lymphocytes must

pass through the EC monolayer during the in-

flammatory response that occurs early in the

pathogenesis of many fibrotic diseases [110].

Furthermore, leukocyte accumulation is a

hallmark of scleroderma and other dermal fi-

brosis like psoriasis, contributing to tissue re-

modeling and skin damage [111,112].

Transendothelial migration occurs when ECs

are activated by cytokines like IL-1β or TNF-

α and capture circulating leukocytes via se-

lectins. Subsequent migration through the EC

monolayer, subendothelial basement mem-

brane, and vascular pericytes (PC) is facili-

tated by adhesion molecules such as

intercellular adhesion molecule-1 and -2

(ICAM-1, -2), platelet-endothelial cell adhe-

sion molecule (PECAM-1), and neutrophil

Mac-1 (CD11b/CD18) [75,113]. 

As previously mentioned, angiogenesis

is required to sustain the elevated metabolic

activity associated with fibrotic pathogenesis

[78]. EC are activated from their quiescent

state by a number of different angiogenic fac-

tors, including tumor necrosis factor-α (TNF-

α), IL-8, vascular endothelial growth factor

(VEGF), and basic fibroblast growth factor

(bFGF) [114]. In their activated state, EC pro-

liferate and produce angiogenesis-promoting

proteins such as ECM, MMPs, and integrins.

Integrin signaling, in particular, is an impor-

tant mediator of angiogenesis because it reg-

ulates migration, adhesion, and cell survival

[115]. If the proper balance of integrin ligands

(predominantly ECM molecules including

collagens, laminin, and fibronectin) is not

present in the provisional matrix, integrin sig-

naling prevents EC proliferation and may in-

duce apoptosis [114,115].

In addition to their proliferation during

angiogenesis, EC proliferation and subse-

quent transdifferentiation represents another

source of myofibroblasts. During the en-

dothelial-to-mesenchymal transition (endo-

MT), ECs loose the cell markers CD31 and

vascular endothelial cadherin (VE-cadherin)

and expresses the mesenchymal markers in-

cluding procollagen 1, fibroblast-specific pro-

tein-1, and α-SMA [116]. Like fibroblast

transdifferentiation, endo-MT is regulated by

TGF-ß via the SMAD pathway with some ev-

idence suggesting that Ras plays a role in

maintenance of the myofibroblasts phenotype

[117,118]. The extent to which endo-MT con-

tributes to fibrosis is still unclear, though the

process has been identified as a myofibrob-

last source in mouse models of cardiac, kid-

ney, and pulmonary fibrosis [117-119]. 

Apoptosis of vascular EC also plays an

important role in the pathogenesis of dermal

fibrosis, including scleroderma. Although the

mechanism regulating pathogenesis of scle-

roderma remains unknown, it is thought that

anti-endothelial cell antibody (AECA)-in-

duced apoptosis of EC early in the progres-

sion of the disease is a key event [120,121].

Treatment with an anti-Fas ligand antibody

can block AECA induced apoptosis in vitro,

demonstrating that AECA acts with the Fas

pathway, thereby suggesting a potential ther-

apeutic target for treatment of scleroderma

[122].

Perhaps the most promising anti-fibrotic

strategy targeting endothelial cells is anti-an-

giogenic drugs. Drugs like tetrathiomolyb-

date and BIBF 1120 (Boehringer Ingelheim

Pharmaceuticals) target angiogenic pathways

controlled by VEGF, PDGF, and FGF. Both

have shown promise in treating bleomycin in-

duced fibrosis in mice and are currently in

early clinical trials [123-125]. Integrins have

been the focus of much anti-angiogenic can-

cer research and several, including αvß3 and

αvß5, have been identified as therapeutic tar-

gets. Recently, the small molecule αvß3 and

αvß5 antagonist cilengitide (Merck) com-

pleted phase 2 trials and entered phase 3,

showing positive results as a glioblastoma

therapy [126]. However, when used to treat

hepatic fibrosis in rats, cilengitide both sup-

pressed angiogenesis and aggravated fibrosis

[127]. Thus, further studies are needed to un-

derstand the full effects of integrin-targeted

anti-angiogenic therapies in varying models

of fibrosis. Integrins can also be used to tar-

get delivery systems in a non-invasive man-

ner. Nanoparticles coated in integrin-binding

RGD peptide successfully delivered an anti-

angiogenic and anti-fibrotic gene-therapy

plasmid to treat age-related macular degener-

ation in rats [128]. Nanoparticles have also

been used to target activated endothelium and
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inhibit leukocyte recruitment, attenuating in-

flammation in airway diseases. Coating poly-

merized liposome nanoparticles with a

P-selectin antagonist bound activated en-

dothelium and inhibited leukocyte recruit-

ment to the extravascular space [129]. This

strategy could be beneficial in treating pul-

monary and dermal fibrosis, and warrants fur-

ther examination. 

Current animal models suggest that the

endo-MT is a valuable target for anti-fibrotic

therapies. As in other myofibroblasts transd-

ifferentiation pathways, TGF-ß is a key

player, so many of the TGF-ß targeting drugs

and strategies previously discussed are can-

didates for inhibiting endo-MT. However, our

understanding of the molecular basis of endo-

MT and its role in human fibrosis is incom-

plete and must be expanded to aid in the

development of novel therapies targeting the

process of endo-MT.

Pericytes

PC are often thought of as the microvas-

cular equivalent of smooth muscle cells;

however, they have distinct localization, mor-

phology, and marker expression. Embedded

in the microvascular basement membrane

(BM), PC are in intimate contact with the lu-

minal EC via cell-cell contact, providing

structural support and integrating EC signal-

ing [130]. They are an integral part of the mi-

crovasculature and are involved in many of

the same processes as EC, including leuko-

cyte transmigration, angiogenesis, and my-

ofibroblasts proliferation [75,131,132]. In

fact, PC regulate many of those processes

through direct signaling (cell-to-cell), as is the

case in leukocyte transmigration and angio-

genesis or through production cytokines and

basement membrane proteins. Thus, PC are a

possible therapeutic target, especially in fi-

brotic disorders that present with morpho-

logic changes to the microvasculature such as

scleroderma or psoriasis [75,133,134].

In addition to the role of PC, or hepatic

stellate cells, in liver fibrosis, PC were also

recently identified as an additional source of

pro-fibrotic myofibroblasts in renal fibrosis

[135]. Using genetic fate tracing, Lin et al.

(2008) observed that in response to kidney in-

jury, PC populations expanded 15-fold and

possessed a myofibroblasts like phenotype.

Additionally, nearly all myofibroblasts in the

mouse model of renal fibrosis were pericyte-

derived. This finding is supported by addi-

tional genetic fate tracing studies that found

no evidence for epithelial-derived myofi-

broblasts in renal fibrosis [136,137]. The

exact mechanism for PC transdifferentiation

is unclear. In vivo experiments showed that

inhibiting PDGF signaling decreased pericyte

transdifferentiation, but PDGF failed to stim-

ulate transdifferentiation in in vitro experi-

ments, though TGF-ß did [12]. It is likely that

pericyte transdifferentiation involves TGF-ß

signaling through both the normal TGF-ß

pathways and as a mediator for PDGF sig-

naling.

Along with VEGF, PDGF is also an im-

portant mediator of EC/PC crosstalk that

helps regulate angiogenesis. Ablation of en-

dothelial PDGF inhibits pericytes recruitment

to microvasculature vessels, ultimately lead-

ing to defective tissues [138]. Additionally,

inhibiting pericyte-associated VEGF induced

EC apoptosis [139]. Thus, it is believed that

EC/PC crosstalk via VEGF and PDGF is nec-

essary for vascular integrity and angiogene-

sis. Interestingly, blocking the receptors

VEGFR2 and PDGFRß, in turn blocking per-

icyte migration, reduces both intestinal fibro-

sis and capillary rarefaction in models of

mouse renal fibrosis [140].

We have only recently begun to under-

stand the role of PC in fibrotic pathogenesis;

however, it is clear that they are a significant

player. The transdifferentiation of PC to my-

ofibroblasts and EC/PC crosstalk via VEGFR

and PDGFR are promising novel targets with

especially significant implications for renal

fibrosis therapies.

Fibrocytes

First described in 1994, fibrocytes are cir-

culating mesenchymal cells that share both

macrophage and fibroblast characteristics.

Arising from monocyte populations, fibrocytes

express CD45 and CD34, produce collagen,

and can transdifferentiate into myofibroblasts

[14,141]. During wound healing, fibrocytes

transmigrate through the microvasculature,
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aiding wound repair by differentiating and se-

creting a number of cytokines, growth factors,

and ECM proteins [142]. Fibrocytes are now

thought to contribute to fibrotic pathogenesis.

In particular, they appear to play an important

role in pulmonary fibrosis. Fibrocytes migrate

to injured lung via the CXCR4/CXCL12 re-

ceptor-ligand pair, and CXCL12 can be de-

tected in the BALF of many IPF patients (40

percent), but it is not present in normal patients

[81,143,144]. Furthermore, while fibrocytes

normally comprise <1 percent of circulating

leukocytes, that number increases by an order

of magnitude in patients with IPF [145]. Like

the other myofibroblasts transdifferentiation

pathways previously discussed, the process of

fibrocyte-to-myofibroblast transdifferentiation

is controlled by TGF-ß1 activity [14]. 

The CXCR4/CXCL12 axis is the most

likely candidate for a fibrocyte targeting fi-

brosis therapy. Anti-CXCL12 antibodies suc-

cessfully inhibited fibrocyte infiltration and

attenuated bleomycin-induced pulmonary fi-

brosis in mice [81]. Furthermore, targeting

the CXC pathways may have the additional

benefit of inhibiting pro-fibrotic angiogene-

sis. 

conclusion And ouTlook

Fibrosis represents a diverse range of

diseases with distinct molecular mechanisms

and pathogenic routes. The cells, signaling

molecules, and proteins that comprise the mi-

crovasculature are major regulators of many

fibrotic diseases. This review examines some

of the developing anti-fibrotic therapies that

target the microvasculature and suggests ad-

ditional avenues to further identify novel tar-

gets and strategies. While current clinical

trials targeting fibrosis utilize small molecule

drugs and monoclonal antibodies, there are

several nanoparticle-based technologies that

are currently in the research phase. 

Well-designed nanoparticle-based thera-

peutics offer a safe method to improve deliv-

ery, specificity, uptake, stability, and release

of traditional and novel reagents [146-148].

Nanoparticles have proven optimal for deliv-

ery of emerging nucleotide-based therapies,

including RNAi/siRNA/shRNA that specifi-

cally target pro-fibrotic pathways, e.g., TGF-

ß1 pathway. Current therapeutic strategies

utilize nanoparticles to target inflammatory

cytokines and growth factors, such as VEGF,

CTGF, TNF-α and TGF-β1 signaling,

through the delivery of pirfenidone, PGE2,

and IFN-γ, among others outlined in Table 1

[37,149]. Other examples include nanoparti-

cle encapsulation of anti-sense oligonu-

cleotides of Smad regulating miRNAs and

TGF-1 shRNAs. Nanoparticles are especially

suited for targeting two of the most common

types of fibrosis ― pulmonary and hepatic —

due to natural trafficking of nanoparticles to

the liver and lungs [150,151]. Therefore,

nanoparticle delivery of siRNAs against

CCR5, miR-21, or TGF-ß1 are logical candi-

dates for nano-therapeutic development. 

There are still large gaps in our under-

standing and ability to treat fibrosis. In-

creased research into the basic mechanisms

of fibrogenesis and how it relates to mi-

crovascular remodeling and inflammation

will help elucidate the most effective anti-fi-

brotic targets. An improved understanding of

pathogenesis and pathological progression in

conjunction with developing therapeutic

strategies will help us to halt the progression

of fibrosis and also restore normal tissue

function, improving the outlook of all fi-

brotic disorders.
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