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Abstract. In naturally synchronous plasmodia of  Phy- 
sarum polycephalum, both tubulin and histone gene 
transcription define periodic cell cycle-regulated 
events. Using a slot-blot hybridization assay and 
Northern blot analysis, we have demonstrated that a 
major peak of  accumulation of  both a-tubulin and 
histone H4 transcripts occurs in late G2 phase. Nu- 
clear transcription assays indicate that both genes are 
transcriptionally activated at the same point in the cell 
cycle: mid G2 phase. While the rate of  tubulin gene 

transcription drops sharply at the M/S-phase bound- 
ary, the rate of  histone gene transcription remains 
high through most of  S phase. We conclude that the 
cell cycle regulation of  tubulin expression occurs pri- 
marily at the level of  transcription, while histone regu- 
lation involves both transcriptional and posttranscrip- 
tional controls. It is possible that the periodic expres- 
sion of  both histone and tubulin genes is triggered by 
a common cell cycle regulatory mechanism. 

I 
N naturally synchronous plasmodia of the myxomycete, 
Physarum polycephalum, tubulin synthesis is limited to 
a discrete portion of the cell cycle. During the 2 h preced- 

ing mitosis the rate of tubulin biosynthesis increases by 40- 
fold and returns to basal levels within 1 h after mitosis (22). 
This applies to all four tubulin isotypes expressed in plasmo- 
dia: two a- and two B-tubulins (5). While the increase in the 
differential rate of tubulin protein synthesis is mirrored by 
an equivalent increase in the level of tubulin mRNA (32), 
messenger titration experiments cannot distinguish between 
transcriptional and posttranscriptional regulation. 

In Physarum plasmodia, ttie sole function of microtubules 
may be as part of the mitotic spindle. Interphase microtubules 
have never been observed in plasmodia, and assembly of 
spindle microtubules begins -30 min before metaphase (32). 
Since the increase in tubulin expression precedes spindle 
assembly, it is unlikely that expression is driven by microtu- 
bule polymerization. Rather, tubulin expression seems to be 
under the direct control of a "mitotic clock" mechanism that 
may not depend on microtubule assembly. 

We have recently reported evidence that heat shocks can 
uncouple tubulin expression from the timing of mitosis (6). 
Since similar heat shock effects have been reported for thy- 
midine kinase synthesis (41), it is possible that the same 
mechanism regulates genes involved in chromosome replica- 
tion as well as those involved in mitosis. Since there is no G1 
phase in the Physarum cell cycle, S phase immediately follows 
mitosis (35). Histone synthesis is essentially limited to S phase 
(33) and is coupled to DNA replication (21). Therefore, the 
coupling of tubulin and histone gene expression, while sur- 
prising, is not implausible. 

In mammalian cells the accumulation of histone mRNA is 

subject to both transcriptional and posttranscriptional con- 
trols (1, 13-15, 30). Transcriptional regulation is most im- 
portant in early S phase, while posttranscriptional regulation 
predominates later in S (30). These studies are limited by the 
synchrony of cell populations prepared by elutriation (1), 
mitotic detachment (30), or G l/S arrest-release methods (l 5, 
30) because the high levels of histone mRNAs in S phase 
tend to obscure late G l events. Pre-S phase events can be 
more clearly addressed in lower eukaryotes where better syn- 
chrony is possible. In yeast, it has been demonstrated that 
histone transcripts begin to accumulate late in Gl phase (16, 
17), and in Physarum a preliminary report indicates that 
histone H4 transcripts accumulate in G2 phase (40). In both 
cases, the cells accumulate a dowry of histone transcripts in 
anticipation of chromosome replication. With the virtually 
perfect natural synchrony of mitosis in Physarum plasmodia, 
the timing of these events can be more carefully studied than 
in other systems. 

This system is an excellent model for studying the regula- 
tion of gene action during the cell cycle. Two new findings 
will be presented in this report. First, the accumulation of 
histone transcripts begins at the same point in the cell cycle 
that tubulin transcripts begin to accumulate, and second, this 
is accompanied by a dramatic increase in the rate of transcrip- 
tion of both tubulin and histone genes. The significance of 
this temporal coupling of tubulin and histone transcription 
to the overall scheme of cell cycle regulation will be discussed. 

Materials and Methods 
Synchronous Cultures 
Strain M3CV plasmodia were cultured as previously described (22). To prepare 
synchronous cultures, microplasmodial shake cultures grown in simplified soy 
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medium (22) were harvested by centrifugation, the pellet resuspended in an 
equal volume of sterile water, I ml plated on filter paper supported by a stainless 
steel grid over simplified soy medium, and incubated at 26"C. The third mitosis 
after plating, determined by phase contrast observation of ethanol-fixed smears, 
usually occurred 20 h after plating. 

RNA Titrations 

At various times relative to the third mitosis after plating, approximately one- 
quarter of a plasmodium was harvested and RNA isolated by essentially the 
same guanidine isothiocyanate/CsCI method as described by Burland et al. (5). 
RNA was dissolved in RNAase free water and quantitated by absorbance at 
260 nM. Aliquots were denatured with formaldehyde as described by White 
and Bancroft (38), adjusted to 15x standard saline-citrate buffer (SSC), and 
applied to a nylon filter (Biodyne A, Pall Corp., Glen Cove, NY) using a slot 
blot manifold (Schleicher & Shuell, Inc., Keene, NH). SSC (Ix) is 0.15 M 
NaCI, 15 mM sodium citrate. Triplicate filters were prepared containing paired 
slots loaded with 2 and 0.5 ~g RNA, respectively, for each timepoint. Filters 
were prehybridized in 50% formamide, 5x SSC, 5x Denhardt's solution, 50 
mM sodium phosphate, pH 6.5, 0, 1% SDS, 250 #g/ml denatured salmon sperm 
DNA at 42"C for 2 h. Denhardt's solution is composed of 0.02% Ficoll (400,000 
D), 0.02% polyvinylpyrrolidone (360,000 D), and 0.02% BSA. We did hybrid- 
izations in the same buffer with 2.5 x l0 ~ cpm/ml probe for 2 d at 42°C. Under 
these conditions, the radioactive signal from each probe is directly proportional 
to the amount of RNA loaded. Filters were washed twice in 2x SSC, 0. 1% SDS 
at room temperature for 30 rain, and twice with 0.1x SSC, 0.1% SDS at 60"C 
for 30 min. One filter was hybridized to an a-tubulin probe, another to a 
histone H4 probe, and the third to a probe prepared from Ppc42 (32). Probes 
were a2P-labeled by nick translation of plasmid DNA as described by Maniatis 
et al. (25). The t~-tubulin plasmid NU62 carries a 1.l-kb ECO RI-Sac I fragment 
from Ppc-al25 cloned into pSP65. This fragment is internal to the a-tubulin 
coding region. The histone H4 plasmid NU81 carries a 59 l-bp HinlII fragment 
carrying an H4 genomic sequence (39). Plasmid Ppc42 is a eDNA clone of a 
presumptive "constituitive" transcript (32). However, our data show a doubling 
in transcript level before mitosis. Radioactivity was detected by radioautography 
and quantified by Cerenkov counting of excised slots. Plasmids Ppc42 and Ppc- 
a125 were kindly provided by T. Budand (University of Wiseonsin) and F. X. 
Wilhelm (C.N.R.S., Strasbourg, FRG) provided the histone H4 segment. 

Northern Blot Analysis 

20-pg aliquots of total plasmodial RNA was denatured with giyoxal and 
dimethylsulfoxide (25), electrophoresed through 1% agarose in 12 mM Tris- 
HCI, pH 7.0, 6 mM sodium acetate, 0.3 mM EDTA, and blotted to Gene 
Screen Plus (New England Nuclear, Boston, MA) transfer membranes. Blots 
were prehybridized in l0 ml 50% formamide, 1 M NaCl, 1% SDS, and 10% 
dextran sulfate for 6 h with constant agitation. For hybridization, heat dena- 
tured salmon sperm DNA and nick-translated probe were added in 0.5 ml to a 
final concentration of 100 pg/ml and 5 x l0 s cpm/ml, respectively. Hybridi- 
zations were performed overnight at 42"C with constant agitation. Blots were 
washed twice in 2x SSC for 5 rain at room temperature, twice in 2x SSC, 1% 
SDS for 30 rain at 60"C, and twice in 0. I x SSC for 30 rain at room temperature. 
Exposures lasted 4 h at -80"C with intensifying screens. The actin probe was 
derived from an ardA clone (29) kindly provided by W. Nader (Max Planck 
Institute). 

Nuclear Transcriptions 

Nuclei were isolated by homogenization in 0.25 M sucrose, l0 mM MgCI2, 
0.1% Triton X-100, l0 mM Tris-HC1, pH 7.2, essentially as described by 
Mohberg (28) and stored at -80*(2 in 40% glycerol, 50 mM Tris-HCl, pH 8.0, 
5 mM MgCl2 at a concentration of 2 mg DNA/ml. To prepare labeled 
transcripts, nuclear aliquots containing 100 pg DNA were incubated for 30 
min at 26"C in the presence of 100 uCi a-32P-guanosine 5'-triphosphate in a 
volume of 100 td. The incubation buffer contained 60 mM (NH4)~SO4, 35 mM 
KCI, 0.2 mM MnCl~, 3 mM MgCI2, 2.5 mM dithiothreitol, 0.25 M sucrose, 
20% glycerol, 1 mM ATP, 0.25 mM cytidine 5'-triphosphate and uridine 5'- 
triphosphate, 10 ~M guanosine 5'-triphosphate, 75 mM Tris-HCl, pH 7.8. 
These conditions are similar to those reported elsewhere (1 l, 27), and we have 
confirmed the optima with our nuclei (data not shown). A probe was prepared 
as described by Groudine et al. (12). Linearized plasmids were denatured in 
0.3 M NaOH at 60"C for 15 rain, an equal volume of 2 M ammonium acetate 
was added, and 2 ~g of each spotted in 5 tzl onto nitrocellulose filters (BA85, 
Schleicher & Shueli, Inc.) presoaked in l M ammonium acetate. By baking 2 
h at 80*C under vacuum, DNA was fixed to the filters. Each filter was hybridized 
to 10 ~ clam runoff transcript probe for 4 d (12), and washed as above except 

that the final washes were at 65"C. The hybridization solution was identical to 
that used in the slot-blot analysis except that SDS was omitted and yeast tRNA 
added at 125 v.g/ml. Radioactivity was detected by radioautography. Under the 
conditions used, the signal is proportional to the amount of probe added (data 
not shown) and hybridization to pBR322 controls is minimal. 

Results 

Transcript Levels 
Relative levels of tubulin transcripts are reported to increase 
by 40-fold late in G2 phase (32). These determinations were 
based upon dot hybridization assays using a heterologous/3- 
tubulin probe and a homologous a-tubulin probe (eDNA 
clone Ppc-~125). We have confirmed these results using as a 
probe a subclone of Ppc-a 125 containing a fragment internal 
to the ,-tubulin coding region. In addition, we have followed 
histone H4 transcripts by hybridization with a homologous 
histone H4 genomic sequence (39). The sequence carried by 
Ppc42 was included as a non-cell cycle-regulated control. 
Fig. I shows the results of a representative slot hybridization 
experiment, a-Tubulin transcripts begin to accumulate ~2 h 
before mitosis and return to basal levels soon after mitosis. 
Histone H4 transcripts follow a more complicated pattern. 
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Figure ]. Analysis of a-tubulin, histone H4, and Ppe42 RNA levels 
over the cell cycle. Total  plasmodial  R N A  was prepared from plas- 
modial  samples  taken at various cell cycle points  relative to the  third 
synchronous  mitosis  after plating. The arrow marks  metaphase  (t = 
0). G2 phase runs  f rom the end o f  the previous S phase (t --- - 6  h) to 
prophase (t = - 0 . 5  h). S phase extends from telophase (t = 0.1 h) to 
the beginning o f  the next  G2 phase (t -- 3.5 h). R N A  aliquots were 
denatured with formaldehyde and  blotted to Biodyne A (Pall Corp.) 
paper using a slot-blot manifold.  Blots were prehybridized as de- 
scribed and  hybridizations carried out  in identical buffer containing 
2.5 x 106 cpm nick-translated probe 008 cpm/pg)  for 48 h. Blots 
were exposed overnight  wi thout  intensifying screens. After autora-  
diography, radioactive slots were excised and  the  cpm of  probe 
hybridized de termined by liquid scintillation counting.  The  data  are 
presented as cpm hybridized to 2 pg total R N A  vs. t ime relative to 
metaphase.  Filled circles, hybridization with a- tubul in  probe. Open  
circles, hybridization with Ppe42 probe. Triangles, hybridization with 
histone H4 probe. 

Carrino and Laffler Cell Cycle-regulated Transcription 1667 



While the major peak of  accumulation parallels the tubulin 
peak, the basal level is only reached at the end of  S phase. 
The transcript detected by Ppc42 describes a minor G2 peak. 
This same general result has occurred several times. 

A Northern blot analysis was done with the same RNA 
preparations as were used in Fig. 1. The data shown in Fig. 2 
indicate that, for actin, histone H4, and a-tubulin sequences, 
the signal represents a single size class of  transcript. Our data 
fail to reproduce the difference in size between late G2- and 
S-phase histone H4 transcripts reported by Wilhelm et al. 
(40). This Northern analysis shows no systematic cell cycle 
variation in the level of  actin mRNA. Since histone protein 
synthesis is limited to S phase (33), it is notable that the 
histone transcript level shown in Fig. 1 appears to peak before 
the beginning of  S phase: the mRNA level is higher just before 
mitosis than it is at the beginning of  S phase. It appears that 
the major accumulation of  both tubulin and histone mRNAs 
begins at the same time in the cell cycle: mid G2 phase. 

Transcriptional Activity 

To distinguish transcriptional regulation from other levels of  
control, we followed messenger synthesis by nuclear run-on 
assays. Existing transcription protocols were modified to max- 
imize the activity of  isolated Physarum nuclei. The most 
significant modification was to include RNAsin (Promega 
Biotech, Madison, WI) to inhibit endogenous RNAase activity 
present in all Physarum nuclear preparations. As the data in 
Fig. 3 indicate, the period of  ~-tubulin gene transcription is 
limited to the 2 h preceding mitosis, while transcription of  
histone H4 genes begins at the same time in the cell cycle as 
that of the tubulin genes but continues through S phase. 

Inhibitor studies were performed to test that these genes are 
being transcribed by RNA polymerase B. As the data in Fig. 
4 indicate, incorporation can be inhibited by various concen- 
trations of  the transcription inhibitor a-amanitin. While about 
half of  the incorporation is resistant to the inhibitor, 1 tLg/ml 
~-amanitin completely inhibits histone, tubulin, and actin 
transcription, as expected for genes transcribed by RNA 
polymerase B. 

Figure 2. Northern blot analysis of alpha tubulin, histone H4, and 
actin RNAs. Total RNAs were isolated at timepoints relative to 
metaphase of the third synchronous mitosis after plating. Aliquots 
(20 pg) were glyoxalated, electrophoresed through 1% agarose gels, 
and blot-transferred to Gene Screen Plus (New England Nuclear) 
membranes. Hybridizations were carried out according to manufac- 
turer's instructions in l0 ml of hybridization buffer containing 5 x 
l0 ~ cpm/ml nick-translated probe. Blots were exposed at -80"C for 
4 h with intensifying screens. 

Figure 3. Transcription of a-tubulin, histone H4, Ppc42, and actin 
genes during the cell cycle. Nuclear transcription reactions were 
performed at 26"C for 30 min and labeled RNA isolated as described. 
The 2-ttg aliquots of the indicated plasmid DNAs were denatured 
with NaOH and spotted on nitrocellulose filters. After overnight 
prehybridization, 106 cpm labeled transcript was added in four parts 
prehybridization solution/one part 50% dextran sulfate and hybridi- 
zation carried out for 4 d at 42"C. Exposures were for 72 h at -80"C 
with intensifying screens. 

Figure 4. a-Amanitin sensitivity of 
transcription in vitro. The amount 
of labeled RNA synthesized in vi- 
tro in the presence of various con- 
centrations of a-amanitin was de- 
termined by trichloroacetic acid 
precipitation. The values shown 
represent percent incorporation 
relative to untreated control reac- 
tions. Labeled transcripts from un- 
treated reactions and reactions 
containing 1 pg/ml a-amanitin 
were used as a probe as described. 
After hybridization, blots were ex- 
posed at -80"C for 72 h with in- 
tensifying screens. 

Our results show that the transcription of  both tubulin and 
histone genes is activated at the same time in late G2 phase. 
However, tubulin transcription is turned off at mitosis while 
histone transcription continues until the end of  S phase. By 
inspection of  Fig. 3, modulation of  transcription seems suffi- 
cient to explain the accumulation of  tubulin mRNA, while 
posttranscriptional effects appear to play a significant role in 
controlling the level of  histone mRNA. In particular, there 
are comparable levels of histone mRNA in early-mid-G2 
phase (see Fig. l, -2 .5  h) and in mid-S phase (Fig. 1, +1.3 
h), but the rates of  transcription are radically different as 
shown by comparing the equivalent timepoints in Fig. 3. 
Rather, it appears that histone H4 transcription remains high 
from the time it is activated in mid-G2 phase until the end of  
S phase, when it stops. Hereford et al. (17) claim that in yeast, 
transcription of  the histone genes stops early in S phase, and 
suggest that replication of the histone genes at that time might 
signal the end of  their transcription. It has recently been 
reported that the Physarum histone H4 genes are replicated 
in early S phase (19). Our data indicate that in Physarum at 
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least histone H4 mRNA transcription continues unabated 
after the genes encoding those transcripts are replicated. 

Discussion 
Our data raise two questions: why is there cell cycle stage- 
specific transcription of the tubulin genes in Physarum but 
not in other cell types, and why is histone gene transcription 
activated in mid-G2 phase? 

Tubulin Periodicities 
Although no interphase or cytoskeletal microtubules are 
found in Physarum plasmodia, there are cytoskeletal micro- 
tubules in most other cells. It seems likely that in most 
organisms spindle microtubules could be assembled from 
subunits scavenged from the cytoskeleton (18). It makes good 
sense for tubulin mRNA synthesis to be periodic in cells that 
have a cyclic demand for microtubules but not in cells with 
constant demand. Thus, the lack of cell cycle periodicity in 
the synthesis of tubulin by HeLa ceils (4) is not inconsistent 
with our findings. 

The homeostatic regulation of microtubular protein syn- 
thesis first demonstrated by Ben-Ze'ev and Penman (3) cou- 
ples the level of tubulin mRNAs to that of unpolymerized 
tubulin (8, 9). Since nuclear transcription studies failed to 
show any difference in the rate of tubulin gene transcription 
between colchicine-treated and untreated cells, it was sug- 
gested that tubulin mRNA levels may be regulated by a 
posttranscriptional mechanism (7). Since the premitotic burst 
of tubulin gene transcription anticipates spindle assembly in 
Physarum, control of transcription by the free tubulin pool 
seems unlikely. However, there are no data indicating the fine 
tuning of tubulin mRNA levels does not involve posttran- 
scriptional controls in Physarum much as it does in mam- 
malian cells. 

Our data are the first clear example of cell cycle regulation 
of tubulin mRNA transcription. Earlier reports of periodicity 
in Chlamydomonas (2, 10, 36) appear to be synchronization 
artifacts, since the periodicity disappears when cultures are 
returned to normal growth conditions (31). There is precedent 
in Chlamydornonas for the direct induction of tubulin gene 
transcription during flagellar regeneration. After deflagella- 
tion, there is a burst of tubulin mRNA synthesis (20, 24, 26, 
34) that is not directly dependent on flagellar regeneration 
(23, 37). Rather, some mechanism triggers gene activity in 
anticipation of flagellar assembly. In Physarum, synthesis of 
the tubulin mRNAs similarly is triggered in anticipation of 
spindle assembly. 

We have recently presented data showing that the level of 
tubulin protein increases significantly before mitosis and 
drops soon after mitosis (6). Perhaps the periodicity oftubulin 
expression is part of a mechanism that keeps the intracellular 
tubulin concentration below a critical threshold during inter- 
phase, increasing the level when microtubule assembly is 
required. 

Histone Periodicities 
In Physarum, the accumulation of a dowry of histone mRNA 
during G2 phase permits the immediate synthesis of large 
amounts of histone at the beginning of S phase, at a time 
when the rate of DNA replication is maximal (21). Since 
histone protein synthesis appears to be limited to S phase, 

transcripts that accumulate in advance would be maintained 
in a translationaUy inactive state. As Physarum lacks a G I 
phase, the G2 accumulation of histone transcripts we observe 
need not be viewed as substantially different from accumu- 
lation in the G 1 phase of yeast (17). However, the phenome- 
non is far more pronounced in Physarurn, where substantial 
amounts of  histone mRNA are stored for hours, than it is in 
yeast, where transcription begins shortly before S phase (17). 
Our data indicate that the rate of histone mRNA turnover 
may actually increase at the beginning of S phase; this variance 
with other systems could stem from the exceptional stability 
of histone transcripts during late G2 phase. 

The temporal coupling of tubulin and histone gene tran- 
scription is novel. The need for the periodicity of each is 
clearly distinct: tubulins are needed for mitosis and histones 
are needed for chromosome replication. Assuming that a- 
tubulin and histone H4 are representative of their respective 
families, both sets of genes may be activated by a common 
cell cycle trigger. The tubulin genes could be under simple 
transcriptional control, while the histone genes respond to 
multiple levels of control. Termination of expression is clearly 
different. Transcription of the tubulin genes is turned off at 
mitosis, while transcription of the histone genes is not turned 
off until the end of S phase. It is an intriguing possibility that 
transcription of both the tubulin and histone genes may be 
cell cycle-regulated in a simple on-off manner, while the 
levels of mRNA are coupled to demand for the proteins they 
encode by a homeostatic mechanism that acts at the level of 
messenger degradation. 

This paper is dedicated to Harold P. Ruseh on the occasion of his 
77th birthday in recognition of his central contributions to the field 
of Physarum research and to cancer research in general. 
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