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Acute-on-chronic liver failure (ACLF) usually develops based on acute

decompensation (AD) of cirrhosis and is characterized by intense systemic

inflammation, multiple organ failure, and high short-term mortality. Validated

biomarkers for the diagnosis and prognosis of ACLF remain to be clarified.

Metabolomics is an emerging method used to measure low-molecular-weight

metabolites and is currently frequently implemented to understand

pathophysiological processes involved in disease progression, as well as to

search for new diagnostic or prognostic biomarkers of various disorders. The

characterization of metabolites in ACLF has recently been described via

metabolomics. The role of metabolites in the pathogenesis of ACLF deserves

further investigation and improvement and could be the basis for the

development of new diagnostic and therapeutic strategies. In this review, we

focused on the contributions of metabolomics on uncovering metabolic

profiles in patients with ACLF, the key metabolic pathways that are involved

in the progression of ACLF, and the potential metabolite-associated therapeutic

targets for ACLF.
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Introduction

Acute-on-chronic liver failure (ACLF) is a distinct disease state in patients with

advanced chronic liver disease characterized by liver failure due to an acute hepatic injury

in an underlying chronic liver disease with high 28-days mortality (Sarin et al., 2019).

ACLF mainly progresses from acute decompensation (AD) of cirrhosis, which refers to

the occurrence of ascites, encephalopathy, gastrointestinal hemorrhage, or any

combination of these disorders in patients with cirrhosis (Trebicka et al., 2020).

Bacterial infections, alcoholism, and chronic viral hepatitis relapse are the most
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common precipitating factors in half of patients with ACLF; the

remaining patients do not have an identifiable trigger (Moreau

et al., 2013; Shi et al., 2015). Patients with ACLF present intense

systemic inflammation and multiple organ failures (liver, kidney,

brain, coagulation, circulation, and respiration), leading to high

short-term mortality (Sarin and Choudhury, 2016; Arroyo et al.,

2020). Accumulating evidence has shown that systemic

inflammation and immune paralysis are considered the main

drivers of extensive tissue injury and organ failure in patients

with AD who develop ACLF (Clària et al., 2016; Trebicka et al.,

2019). Systemic inflammation has been reported to result mainly

from the activation of innate immune cells by pathogen-

associated molecular patterns (PAMPs) or damage-associated

molecular patterns (DAMPs) (Fernández et al., 2018; Aizawa

et al., 2020). However, the underlying mechanisms of ACLF at

the tissue and cellular levels that lead to the occurrence and

maintenance of organ failures remain to be elucidated. It is

crucial to uncover the pathogenesis of ACLF to establish

reliable biomarkers to determine the progression and/or

regression of ACLF in response to a given treatment.

Metabolomics is a potent approach for measuring the

products of individual protein expression, based on

comprehensive monitoring of metabolites (mass <1,000 Da) in
biological systems (Johnson et al., 2016). The changes at the

genome or proteome level of the organism reflect the tendency

for specific behaviors of biological systems, while the changes in

metabolites embody the current condition of the organism

(Bujak et al., 2015). Subtle changes at the genome or

proteome level can be amplified due to the higher sensitivity

of metabolomics. Moreover, the small molecular chemicals

measured by metabolomics are downstream from the genome,

transcriptome, and proteome, providing a highly integrated

profile of biological status relative to other omics (Newgard,

2017). Owing to metabolome consisting of thousands of different

chemical classes, metabolomic measurements are more difficult

than genome or proteome. Additionally, the identification of

metabolites remains a major challenge in metabolomics due to

inadequate databases (Djoumbou Feunang et al., 2016; Wishart

et al., 2018).

Metabolomics is mainly divided into targeted and non-

targeted metabolomics. Targeted metabolomics focus on

identifying and quantifying specific compound classes or

metabolic pathways. Untargeted metabolomics aims to include

all the metabolites (Jacob et al., 2019). Various analytical

techniques are applied in both targeted and untargeted

metabolomic studies. Liquid chromatography coupled with

mass spectrometry (LC-MS) is widely used owing to the

extensive availability and continuous advancement of

instruments, while nuclear magnetic resonance (NMR) is

suitable for detecting the compounds which contain the

hydrogen atoms (Jang et al., 2018). By virtue of continuous

advancement in sensitive analysis techniques and progressive

biostatistics, metabolites in blood, urine or other body fluids can

be determined and identified (Johnson et al., 2016). Changes in

metabolites may appear earlier than specific symptoms in

diseases. Hence, metabolomics is commonly utilized to search

for new diagnostic and prognostic disease biomarkers and to gain

a deeper understanding of the pathogenesis of various diseases

(Gowda et al., 2008; Mamas et al., 2011).

Recently, the concept that the combined effect of cytokines/

chemokines and metabolite-derived factors that act on

metabotoxins contributes to systemic inflammation and tissue/

organ injury of ACLF has been reinforced. It is noteworthy that

metabolomics has been used in ACLF research to characterize

ACLF metabolic changes and to identify metabolic signatures as

prognostic indicators (McPhail et al., 2016; Moreau et al., 2020;

Clària et al., 2021). These studies highlight the intrinsic biological

activity of metabolites and provide new ideas for the application

of metabolomics, as they can be used to identify metabolites that

act as drivers or mediators of biological processes, and thus better

understand their physiological role in the progression of ACLF.

In this review, we summarize the pivotal metabolic pathways

involved in ACLF that have been identified by metabolomics and

assess the use of metabolomics to identify biomarkers related

to ACLF.

Key metabolic pathways associated
with ACLF

Various metabolic pathways are altered in ACLF due to

systemic inflammation, stimulating the hypothalamic-

pituitary-adrenal axis and sympathetic nervous system to

activate glycogenolysis, proteolysis, and lipolysis. Herein, we

review several key metabolic pathways involved in the

progression of ACLF (Figure 1).

Inhibition of oxidative phosphorylation

The liver is the main organ that regulates various pathways

controlling glucose metabolism, including glycogenesis,

glycogenolysis, glycolysis, and gluconeogenesis (Nordlie et al.,

1999). ACLF is characterized by changes in glucose catabolism

through specific extramitochondrial pathways (Moreau et al.,

2020). The main site of glucose metabolism is transferred to the

cytoplasm from the mitochondria in ACLF (Zhang et al., 2021).

In the context of systemic inflammation, innate and adaptive

immune cells are stimulated by PAMPs or DAMPs. Glucose is

distributed to immune cells to maintain energy anabolism and

the immune response, which activates intracellular glycolysis

pathways by activating key enzymes associated with glycolysis to

rapidly generate adenosine triphosphate (ATP) (Van Wyngene

et al., 2018; Zhang et al., 2021). Furthermore, mitochondrial

OXPHOS is inhibited, partly due to suppression of the electron

transport chain by excessive nitric oxide (Van Wyngene et al.,
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2018; Wang et al., 2019; Moreau et al., 2020). In addition,

inhibition of OXPHOS is also associated with increased

generation of reactive oxygen species (ROS) (Chan, 2006).

The source of mitochondrial OXPHOS is varied, while

glycolysis relies on glucose as the single energy source (Mills

et al., 2017). Hence, it is less efficient at producing ATP in ACLF.

Extramitochondrial pathways

Glucose can be involved in the pentose phosphate pathway,

contributing to the production of ribose and nicotinamide

adenine dinucleotide phosphate (NADPH). Increased ribose

promotes nucleotide synthesis, which leads to the production

of inflammatory cytokines. NADPH, a hydrogen carrier, is

involved in various anabolic reactions and can also produce

ROS, further inhibiting mitochondrial OXPHOS (O’Neill and

Pearce, 2016).

Zhang et al. (Zhang et al., 2021) indicated that

extramitochondrial pathways, including glycolysis,

glycogenolysis, and pentose phosphate pathway, were

excessively activated in the peripheral blood mononuclear cells

(PBMCs) from patients with AD and ACLF. Moreover, the

nitrogen and carbon sources were utilized exceedingly in

PBMCs from ACLF. Additionally, another metabolic

characteristic of PBMCs from AD and ACLF patients is the

impaired pyruvate decarboxylation to acetyl-CoA, a process that

is intermediated by the pyruvate dehydrogenase complex (PDC)

FIGURE 1
The alterations of serum metabolites and key metabolic pathways in acute-on-chronic liver failure (ACLF). Glycogenolysis (liver), proteolysis
(mainly muscles), lipolysis (adipose tissue), and bacterial translocation (gut) are induced in the context of ACLF, resulting in the release of glucose,
amino acids, fatty acids and gut microbiota-associated metabolites. During PAMP-induced systemic inflammation, glucose is used for promptly
producing ATP through glycolysis and enters the pentose phosphate pathway that is involved in nucleotide synthesis, while mitochondrial
oxidative phosphorylation (OXPHOS) is suppressed; Mitochondrial β-oxidation of FAs is inhibited and blood level of fatty acylcarnitines is increased;
Increased generation and accumulation of many blood amino acid metabolites are involved in various amino acid metabolism. AA, arachidonic acid;
EPA, eicosapentaenoic acid; GSH, reduced glutathione; GSSG, oxidized glutathione; LOX, lipoxygenase; LT, leukotriene; LX, lipoxin; OXPHOS,
oxidative phosphorylation; TCA, tricarboxylic acid.
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(Zhang et al., 2021). PDC, a multi-enzyme complex located in the

mitochondrial matrix, plays a key role in connecting glycolysis

with the tricarboxylic acid (TCA) cycle (Reed, 1981).

Accordingly, the impaired PDC may partly explain the

reduction in OXPHOS in ACLF (Zhang et al., 2021).

Generally, disturbance of glycometabolism in leukocytes may

further enhance the inflammatory response in patients with

ACLF. Indeed, energy production from glycolysis can not be

maintained for the long term in advanced chronic liver disease

(Nishikawa et al., 2014). Thus, how energy produces remains to

be elucidated with the development of ACLF.

Kynurenine pathway

Pro-inflammatory cytokines, such as interferon (INF)-γ or

tumor necrosis factor (TNF)-α, induce tryptophan degradation

through the kynurenine pathway, and metabolites of this

pathway are involved in the pathogenesis of inflammatory

diseases and cancer (Cervenka et al., 2017). It has been

confirmed that kynurenine pathway (KP) activation is

associated with ACLF development and is also an

independent predictor of short-term death in patients with

ACLF (Clària et al., 2019). Notably, the lower concentrations

of kynurenate and xanthurenate of KP in patients treated with

simvastatin and rifaximin indicate an inhibition of this metabolic

pathway (Pose et al., 2021).

Ketone bodies and the ammonia pathway

Amino acids act as nutrients and intracellular signaling

molecules, regulating key metabolic pathways that are

essential for cellular activity (Baker, 2009). In the context of

systemic inflammation, substantial inflammation-linked

molecules and acute phase proteins are produced by activated

leukocytes and hepatocytes, respectively (Moreau et al., 2013;

Clària et al., 2016). The production of these molecules involved in

the inflammatory response may be based on the mobilization of a

large number of proteinogenic amino acids from skeletal muscle

(Zaccherini et al., 2021). Ketone bodies, as fuel for tissues and

organs in the body, are produced from fatty acids and ketogenic

amino acids (Ganeshan et al., 2019). In ACLF, the production of

ketone bodies in the liver relies on the catabolism of ketogenic

amino acids due to the inhibition of fatty acid β oxidation

(Ganeshan et al., 2019; Moreau et al., 2020). Furthermore, the

transsulfuration pathway, a part of the methionine cycle that is

involved in one-carbon metabolism, is activated—contributing

to the synthesis of glutathione to resist systemic oxidative stress

in ACLF (Sanderson et al., 2019).

Circulating ammonia, mainly derived from amino acids

through phosphate-activated glutaminase, is increased in

decompensation and ACLF (Sawhney et al., 2016).

Portosystemic shunts and reduced activity of the urea cycle

weaken ammonia removal capacities, leading to

hyperammonaemia (Wright et al., 2011). Elevated ammonia

not only causes hepatic encephalopathy but is also associated

with death and organ failures (Poh and Chang, 2012; Shalimar

et al., 2019). Ammonia can serve as a cytotoxic product by

changing the cell membrane potential and Pondus Hydrogenii

(PH) and producing several free radicals, which leads to

mitochondrial dysfunction and aggravates organ failure (Rose

et al., 2005; Dasarathy et al., 2017). Furthermore,

hyperammonemia can aggravate portal pressure by stellate cell

contraction and can directly impair neutrophil phagocytosis,

contributing to systemic inflammation (Shawcross et al., 2008;

Jalan et al., 2016).

Fatty acylcarnitines and the sphingolipids
pathway

Immune-metabolic dysregulation and inflammation can

be mediated by changes in lipid composition (Ertunc and

Hotamisligil, 2016). Levels of a large series of fatty acids are

increased in plasma due to lipolysis in adipose tissue due to

systemic inflammation (Van Wyngene et al., 2018). The liver

plays a key role in the synthesis of endogenous lipids

(Eisenberg and Levy, 1975). Accordingly, suppression of

serum lipid levels is largely attributed to the disturbance of

liver function.

There is a reduction in fatty acids (FAs) catabolism through

mitochondrial β-oxidation in ACLF(25). Increased levels of

fatty acylcarnitines in plasma indicate that mitochondrial β-
oxidation is inhibited in peripheral organs in ACLF, partly

resulting from the suppression of translocation of fatty

acylcarnitines into the mitochondrial matrix mediated by the

peroxisome proliferator-activated receptor (PPAR)-α
(Ganeshan et al., 2019; Moreau et al., 2020). Ultimately, a

large amount of FAs, which cannot be dissimilated via β-
oxidation, together with ROS produced by systemic

inflammation, causes mitochondrial damage, which

contributes to the progression of extrahepatic organ failure

(Moreau et al., 2020). Sphingolipids are basic components of

cytomembranes and are involved in immunomodulation and

maintenance of cell survival (Hannun and Obeid, 2018).

Reduced intermediates involved in sphingolipid synthesis

and downregulated genes coding for enzymes involved in

sphingolipid biosynthesis partly explain the inhibition of the

sphingolipid pathway in ACLF (Clària et al., 2021).

Paradoxically, a multicenter study from the Chinese Group

for the Study of Severe Hepatitis B (COSSH) demonstrated that

sphingolipid metabolic pathways were upregulated in PBMCs

from acute hepatitis B virus-related acute-on-chronic liver

failure (HBV-ACLF), which could be partly explained by

different etiologies (Li et al., 2021).
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Bile acids pathway

Increased serum bile acid levels indicate deterioration of

liver clearance and the formation of portosystemic shunting

(Krähenbühl and Reichen, 1988). Bile acids can exert

vasoactive effects and induce splanchnic vasodilation

through stimulation of the G protein-coupled bile acid

receptor one and can contribute to the development of

portal hypertension, which further aggravates the

translocation of components of the intestinal flora

components translocation (Thomas et al., 1991; Fryer et al.,

2014). In addition, bile acids directly alter the gut barrier

function by downregulating the nuclear receptor farnesoid-X-

receptor (FXR) (Sorribas et al., 2019). Furthermore, bile acids

can stimulate the generation of inflammatory cytokines

directly in hepatocytes during cholestasis by activating

inflammatory pathways, involved in the progress of ACLF

(Allen et al., 2011; Horvatits et al., 2017).

Short-chain fatty acids pathway

Short-chain fatty acids (SCFAs), gut microbiota-derived

metabolites that participate in maintaining the integrity of

intestinal mucosal barrier and host’s immune response, are

markedly reduced in advanced stages of liver disease, while

decreased SCFAs are inversely correlated with the severity of

portal hypertension, systemic inflammation, and the prevalence

of decompensating events (Juanola et al., 2019). Furthermore,

reduced SCFAs can affect energy metabolism in decompensated

cirrhosis because fewer SCFAs are transformed into acetyl

coenzyme A to produce ATP (Crawford et al., 2009). The

microbial metabolites of phenylalanine and tyrosine, which

engage the aryl hydrocarbon receptor (AhR) and promote

interleukin (IL)-22 secretion, and contribute to local

immunization, were reported to be reduced in patients who

developed ACLF, which manifested a relative

immunodeficiency (Gao et al., 2018; Bajaj et al., 2020).

TABLE 1 Biomarkers associated with ACLF from the clinical studies of metabolomics.

First
author,
year

Sample size Specimen Targeted/
Untargeted

Technique Main findings

Moreau, 2020 181 ACLF; 650 AD; 43 CC; 29 HS Serum Untargeted LC-MS A 38-metabolite cluster including Kynurenic acid,
Pentose phosphates, D−Glucuronic acid are
significantly associated with ACLF

Bajaj, 2020 602 patients with cirrhosis Serum Untargeted LC-MS Increased levels of aromatic compounds, secondary
or sulfated bile acids, benzoate, and estrogen
metabolites, as well as decreased levels of
phospholipids, were associated with development of
ACLF

López-
Vicario, 2020

127 ACLF; 119 AD; 18 HS Plasma Targeted
lipidomics

LC-MS LTE4 and 12-HHT, both derived from arachidonic
acid, shaped a minimal plasma fingerprint for ACLF

Clària, 2021 Discovery: 518 AD; 43 ACLF Validation:
128 AD; 137 ACLF

Serum Untargeted
lipidomics

LC-MS Cholesteryl ester and lysophosphatidylcholine
composed a fingerprint for ACLF

Pose, 2021 Descriptive cohort: 22 AD; 20 ACLF
Intervention cohort: 12 DC treated with
simvastatin and rifaximin; 13 DC receiving
placebo

Plasma Untargeted LC-MS The signature of 32 metabolites including gluconate
is identified to predict the presence of ACLF;
Secondary bile acids and dicarboxyl fatty acids
decreased in patients treated with simvastatin and
rifaximin

Clària, 2019 342 AD; 180 ACLF; 39 CC; 40 HS Serum;
Urine

Untargeted;
Targeted

LC-MS Higher KP activity independently predicted mortality
in patients with ACLF

Horvatits,
2016

143 patients with cirrhosis Serum Targeted LC-MS Serum total and individual BAs are associated with
ACLF

McPhail,
2016

Derivation cohort: 43 DC; 37 ACLF
Validation cohort: 101 DC; 27 HS

Plasma Untargeted H-NMR;
LC-MS

Higher levels of lactate, tyrosine, methionine and
phenylalanine were found in patients with poor
outcome

Amathieu,
2014

30 ACLF; 93 DC Serum Untargeted H-NMR Increased lactate, pyruvate, ketone bodies, glutamine,
phenylalanine, tyrosine, and creatinine shaped a
fingerprint for ACLF

ACLF, acute-on-chronic liver failure; AD, acute decompensation; BA, bile acids; CC, compensated cirrhosis; DC, decompensated cirrhosis; 12-HHT, 12-hydroxyheptadecatrienoic acid;

H-NMR, proton nuclear magnetic resonance (NMR) spectroscopy; HS, healthy subject; LC-MS, liquid chromatography mass spectrometry; LTE4, leukotriene E4; KP, kynurenine pathway.
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Biomarkers associated with the
development of ACLF based on
metabonomics

Recent investigations have determined the alteration of

metabolites in patients with ACLF and identified several

fingerprints shaped by various metabolites in ACLF (Table 1).

Herein, we summarize various key metabolites which are

identified to be robust biomarkers for ACLF development

(Figure 2).

Biomarkers related to glucosemetabolism

In the context of systemic inflammation, ACLF is

characterized by a disturbance of energy metabolism. Moreau

et al. (Moreau et al., 2020) identified the alterations of serum

metabolites associated with glucose metabolism in patients with

ACLF through serum metabolomics. In particular, pentose

phosphate, as an intermediate of the pentose phosphate

pathway, was identified to increase 362-fold in ACLF (which

was the strongest alteration in this contrast), 64-fold in acute

decompensation, and 16-fold in compensated cirrhosis (CC),

compared to healthy subjects (HS), in accordance with previous

discoveries in immunometabolism-associated inflammation

(O’Neill and Pearce, 2016). The level of D-glucuronic acid

increases in ACLF, indicating the increased activity of the

glucuronate pathway, which can be connected to the pentose

phosphate pathway. Additionally, 4-hydroxy-3-

methoxyphenylglycol sulfate, a metabolic product of

norepinephrine that can be a stimulant of glycolysis, and

blood levels of lactic acid, the key product of glycolysis, also

increase in patients with ACLF (Moreau et al., 2020).

Biomarkers related to the metabolism of
amino acids

Skeletal muscle is the largest reservoir of amino acids in the

body (Davis and Fiorotto, 2009). High levels of amino acids and

peptides likely reflect increased proteolysis and have been

associated with a high catabolic status characteristic of

inflammatory conditions and sepsis (Hotamisligil, 2017).

Similarly, intense proteolysis acids (e.g., tyrosine, asparagine,

FIGURE 2
Overview of metabolites and related pathways which have been identified to be robust biomarkers for ACLF. Various metabolites and pathways
associatedwith glycometabolism, lipidmetabolism, and amino acidmetabolism have been determined to be powerful indicators for ACLF prognosis.
These metabolites may be a trigger for the activation of the immune system and systemic inflammation, contributing to the progress of ACLF. AA,
arachidonic acid; EPA, eicosapentaenoic acid; L-FABP, liver fatty acid binding protein; LTE4, leukotriene E4; OXPHOS, oxidative
phosphorylation; PPP, pentose phosphate pathway; Short-chain fatty acids (SCFAs).
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lysine, methionine, and isoleucine) were increased in serum from

patients with ACLF (Moreau et al., 2020; Pose et al., 2021).

Amino acid-related metabolites were associated with intense

systemic inflammation and oxidative stress in ACLF and were

correlated with organ system failures and severity (Zaccherini

et al., 2021). A cluster including 38 metabolites with a remarkably

significant association with ACLF was identified via

metabonomics analysis combined with bioinformatics analysis

and several metabolites of the cluster were amino acids or amino

acid derivatives (e.g., saccharopine and N6, N6, N6-trimethyl-

L-lysine, the intermediary metabolites in the degradation of

lysine) (Moreau et al., 2020). Furthermore, the metabolism of

aromatic amino acids, arginine, and benzoates has also been

identified to be correlated with the development of ACLF and

death (Bajaj et al., 2020).

Biomarkers related to lipid metabolism

In addition to the alternation of the sphingolipid pathway above-

mentioned, bioinformatics analysis of untargeted lipidomics

indicated that sphingolipids are the best markers to distinguish

acute decompensation from healthy controls and that reduced

sphingolipids are associated with the severity of the disease (Clària

et al., 2021). A previous investigation revealed that lower serum levels

of sphingolipids are associated with worse survival in patients with

alcoholic cirrhosis and that impaired sphingolipid biosynthesis is

associated with undernutrition in hospitalized patients with AD

(Grammatikos et al., 2015; Rachakonda et al., 2019). Furthermore,

serum extracellular vesicles loaded with sphingolipids have been

shown to predict death in decompensated cirrhosis (Sehrawat et al.,

2021). Cholesteryl ester (CE) can accumulate in the adrenal cortex

and can be used for the biosynthesis of steroid hormones (Kraemer

et al., 2013). Therefore, reduced CE levels could be related to adrenal

failure in patients with ACLF (Acevedo et al., 2013). López-Vicario

et al. (López-Vicario et al., 2020) uncovered that patients with ACLF

had an increased ratio between arachidonic acid and

eicosapentaenoic acid, which is an indicator of systemic

inflammation (Simopoulos, 2002). Notably, two lipid molecules

leukotriene E4 (LTE4) and 12-hydroxyheptadecatrienoic acid

(HHT) were identified to distinguish ACLF from AD.

Additionally, it has been proved elevated urinary liver fatty acid

binding protein (L-FABP) may suggest the activation of

inflammatory pathways through lipid mediators and is correlated

with multiorgan dysfunction and serves as a promising biomarker to

predict mortality in patients with ACLF (Juanola et al., 2022).

Biomarkers related to intestinal microbial
metabolites

The gut and liver interact through the gut-liver axis and tight

bidirectional links through the biliary tract, portal vein, and

systemic circulation (Tripathi et al., 2018). Translocation of

components or metabolites of the gut microbiota—facilitated

by intestinal dysbiosis, increased intestinal permeability and

portal hypertension—is a key driver of the development and

progression of ACLF (Ridlon et al., 2015; Trebicka et al., 2021).

Gut microbiota-associated metabolites can be detected in the

serum by blood metabonomics and there are significant changes

in the level and composition of metabolites produced by the

intestinal microbiota in patients with ACLF (Bajaj et al., 2020;

Moreau et al., 2020). The levels of metabolites involved in choline

metabolism and most aromatic amino acids decreased in ACLF,

while the levels of metabolites associated with tyrosine, secondary

bile acids, and benzoate are increased. Of these, 4-

methoxyphenol sulfate, which belongs to tyrosine metabolism,

is the most correlated with ACLF and is also associated with

inpatient death. However, aromatic amino acid metabolites were

higher in those who died compared to survivors (Bajaj et al.,

2020). Gut microbial metabolites may be valuable biomarkers to

identify patients at risk of decompensation and ACLF. However,

these signatures are not consistent, and more research is needed.

Metabolites as potential therapeutic
targets for ACLF

With the advent and evolution of metabolomics

technologies, the discovery of active metabolites that can

change cell physiology has grown rapidly. The active

metabolites can regulate phenotypes and pathophysiological

processes via interaction with the key proteins or enzymes

(Rinschen et al., 2019). Recent investigations have indicated

the potential therapeutic benefits of exogenous

supplementation of several active metabolites in different liver

diseases (Masubuchi et al., 2011; Cai et al., 2016). Mitochondrial

dysfunction mediates metabolic disorders in leukocytes in

patients with ACLF and may be involved in the progression

of organ failure (Zhang et al., 2021). Furthermore, two break

points of the TCA cycle in PBMCs were identified: one is the

higher utilization of α-KG inducing a reduced utilization of

upstream intermediates, including isocitrate, cis-aconitate and

citrate; and the other is the higher utilization of fumarate leading

to a lower utilization of succinate (Zhang et al., 2021). Therefore,

supplementation of the two metabolites may replenish the

impaired TCA cycle and attenuate the development of ACLF.

Conclusion and future directions

This review described the role of metabolomics in

investigations aimed at determining biomarkers correlated

with the pathophysiology of ACLF. Regarding the high short-

term mortality of ACLF, metabolomics should be earlier

performed in patients with decompensated cirrhosis, especially
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in patients presenting with acute variceal bleeding, ascites, or

hepatic encephalopathy, to identify individuals at high risk of

developing ACLF via target metabolomics, and to enable early

preventive interventions. Metabolomics approaches have

provided insightful evidence on altered metabolites and

metabolic pathways in ACLF. Overall, studies have shown

variations in glucose metabolism, amino acid metabolism,

several aspects of lipid metabolism, and intestinal microbial

metabolism; and identified the association between serum

metabolites and the pathogenesis of ACLF. Furthermore,

future studies should validate the biomarkers and metabolic

pathways reported in the progression of ACLF and explore

potential therapeutic targets associated with metabolites for

ACLF. It is promising that metabolomics can provide clinical

tools for precision therapy for ACLF in the future.
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