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Numerical simulation of 3D 
Darcy–Forchheimer fluid flow 
with the energy and mass transfer 
over an irregular permeable surface
Ebrahem A. Algehyne1,2, Haifaa F. Alrihieli1, Anwar Saeed3*, Fuad S. Alduais4,5, 
Asif Ullah Hayat6 & Poom Kumam3,7*

The Jeffrey fluid model is capable of accurately characterizing the stress relaxation behavior of non-
Newtonian fluids, which a normal viscous fluid model is unable to perform. The primary objective of 
this paper is to provide a comprehensive investigation into the effects of MHD and thermal radiation 
on the 3D Jeffery fluid flow over a permeable irregular stretching surface. The consequences of the 
Darcy effect, variable thickness and chemical reaction are also considered. The phenomena have been 
modeled as a nonlinear system of PDEs. Using similarity substitution, the modeled equations are 
reduced to a dimensionless system of ODEs. The parametric continuation method (PCM) is used to 
determine the numerical solution to the obtained sets of nonlinear differential equations. The impact 
of physical parameters on temperature, velocity and mass profiles are presented through Figures and 
Tables. It has been noticed that the energy profile magnifies with the increment of porosity term, 
thermal radiation and heat source term, while diminishing with the flourishing upshot of power index 
and Deborah number. Furthermore, the porosity term and wall thickness parameter enhance the skin 
friction.

The analysis of heat and mass transmission, as well as boundary layer flow across a starching substrate, is an inter-
esting subject of study due to its numerous applications in various industries and metal extraction  processes1,2. 
Sivaraj and  Kumar3 evaluated the consequences of mixed convection on time-dependent MHD dusty viscous 
fluid flow with thermal conduction through the impermeable irregular surface. The streamlines of dusty fluids 
are found to be greater than the velocity distribution of dust particulates. Alharbi et al.4 reported the three-
dimensional ferrofluid flow across an impermeable upright surface, as well as the impacts of slips in a porous 
medium with hybrid nanoparticles. It’s has been discovered that as the volume proportion of nanoparticles (Nps) 
increases, the rate of heat transport enhances. Ullah et al.5 described the flow variations in the near area of and 
inside irregular surfaces. Bilal et al.6 investigated the effect of inconsistent 2D & 3D sharpness on instability by 
simulating fully developed flows over two distinct rough substrates. The two designs are created by superimposing 
sinusoidal functions with various wavelengths and random amplitudes. Gul et al.7 and Zhou et al.8 established 
a numerical model that compared the comportment of simple and hybrid NPs moving over an extending sheet. 
When compared to simple nanofluid, the hybrid nanofluid (HNF) is more efficacious in heat flux due to its excel-
lent thermal properties. Iyyappan and  Singh9 examined the flow of a force convective laminar boundary layer on 
an irregular diverging channel when magnetic field influences were employed. Bilal et al.10 studied the Casson 
fluid flow under the upshot of magnetic flux over an expanding surface. It has been shown that the variation 
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of the magnetic field, Marangoni factor, and unsteadiness component decreases the fluid velocity. Some advanced 
research have been reported  by11–14.

Non-Newtonian fluids come in a wide variety of types, each with its own set of characteristics. Non-New-
tonian fluids are being examined by scientists and researchers due to a broad range of implementations, like 
drug companies, fiber new tech, cables sealant, food items, crystal growth, psychology and many more. Jeffrey 
fluid is the most well-known and easiest-to-understand. The Jeffrey fluid parameter and the time retardation 
parameter elevates this fluid to the top of the non-Newtonian fluids  list15. Ullah et al.16 evaluated the Jeffrey 
fluid flow across porous horizontal sheet. The velocity of an unsteady Jeffrey fluid flow over an inestimable plane 
permeable plate is inspected by Algehyne et al.17. The results reveal that as the magnetic parameter, the ratio of 
retardation and relaxation times and Jeffrey fluid parameter increase, the fluid velocity decreases. In the response 
to an ambient magnetic field, Ali et al.18 calculated the upshot of energy conduction on the flow of a Jeffery fluid 
with immersed NPs through a dynamic flexible substrate. Alrabaiah et al.19 inspected the peristaltic transmis-
sion of MHD Jeffery fluid flow through channel. Saleem et al. evaluated MHD Jeffrey fluid flows with mass and 
energy transport on an indefinitely circulating inverted cone.20. Azlina et al.21 proposed a numerical calculation 
of the MHD Jeffrey fluid flow through plates in a translucent sheet. Bilal et al.22 investigate the 2D Jeffrey fluid 
flow across a continuously extending disc. Kumar et al.23 discussed the influence of an applied magnetics flux 
on an irregular 2D Jeffrey fluid flow. A theoretical investigation is carried out by Yadav et al.24 to determine the 
upshot of a magnetic flux and mixed convection on the Jeffrey fluid flow. The results show that increasing the 
Jeffrey fluid parameter reduces system stability while increasing magnetic field parameters has the reverse effect. 
Recently many researchers have worked on this  topic25–28.

The MHD flow plays a vital role in manufacturing heavy machinery, astrophysics, electrical power generation 
solar power equipment, space vehicle and many other fields. Kumar et al.29 explore the thermal energy transfer-
ence in a HNF flow through an extending cylinder while considering magnetic dipoles. Nanoliquid flow across 
curved stretched sheets is studied numerically by Dhananjaya et al.30 to determine the effect of magnetic fields 
on Casson nanoliquid flow. The findings indicated that enhancing the curvature parameter positively affects 
the velocity profile, but that it has the opposite impact on the thermal gradient. Chu et al.31 scrutinise Maxwell 
nano liquid’s radiative flow along with a cylinder by taking into consideration the magnetic effect. The fluid flow 
and temperature fluctuations of nanofluid flow with the Hall upshot are discussed by Acharya et al.32. A moving 
plate with Joule heating is used to demonstrate Magnetohydrodynamic hybrid nanofluid flow with temperature 
distribution is solved numerically by Lv et al.33. Kodi et al.34 presented an analytical assessment of Casson fluid 
flows with heat and mass transmit. This analysis revealed that intensifying the Newtonian heating effect shrinks 
heat transport at the plate surface. The influence of a porous surface and magnetic flux on the Jeffery fluid flow 
has been reported by  Abdelhameed35. Ellahi et al.36 investigated the upshots of MHD and velocity slip on sliding 
flat plate. The obtained outcomes exposed that the velocity contour improves for different values of the slip vari-
able. Recently, a large number of studies have been reported by the implying magnetic effect on the fluid  flow37–40.

The Jeffrey fluid model effectively describes the stress relaxation behavior of non-Newtonian fluids, which 
is something that the standard viscous fluid model can’t. The Jeffrey fluid model may accurately explain a class 
of non-Newtonian fluids. The main purpose of this research is to look into the impact of MHD and thermal 
radiation on the 3D Jeffery fluid flow over an irregular stretching surface. The Darcy effect, varying thickness, 
and chemical reaction are all taken into account. The results are obtained through computational strategy PCM.

Mathematical formulation
The influence of a tridimensional steady MHD Jeffery fluid flow on an irregular surface immersed in an absorbent 
medium is considered. Figure 1 described a schematic description of the model. The magnetic effect B is imposed 
in the z-direction. When the fluid is stationary at t = 0, the sheet is impulsively stretched in the x and y direc-
tions with velocities uw and vw . The effects of solar radiation on the sheet’s surface as well as chemical reaction 
are considered. Under the above description, the principal equations are expressed  as14:

 Here (u, v,w) determine the velocity factors in x, y and z direction.  kp  is the permeability of the porous medium, 
kf  is the thermal conductivity, T is the temperature of the fluid, ν is the kinematic viscosity, Q the heat absorption/
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generation term, F is the non-uniform inertia factor, where, Cb is the drag coefficient. D is the molecular diffusiv-
ity and �1,�2 is the period of relaxation and time retardation respectively.

The boundary conditions  are14,41:

where

In the above equation, we supposed as n  = 1 (i.e., n = 1 denotes the surface shape to flat sheet). Where, n > 1 
and n < 1 are yields to surface curviness, inner convex and outer convex due to reduction and increment of wall 
thicknesses respectively. T0,T∞ reference atmospheric liquid temperature f1 specify the Maxwell coefficient, b 
shows the thermal adaptation coefficient,  ζ1, ζ2 are the constant number, � specific heat ratio.

Similarity transformation
The similarity variables are:

By applying the above similarity transformation, Eq. (1) is identically satisfied while Eq. (2–5) take the form as:
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Figure 1.  Fluid flow over an irregular permeable surface.



4

Vol:.(1234567890)

Scientific Reports |        (2022) 12:14629  | https://doi.org/10.1038/s41598-022-18304-7

www.nature.com/scientificreports/

The reduced conditions are:

Here, D and MF is the Deborah number and magnetic field, Hs is the absorption & generation term, P0 is the 
porosity factor, R is the thermal radiation, Pr and Sc is the Prandtl and Schmidt numbers, Fr is the Darcy Forch-
hemier term, Cr is the chemical reaction and � wall thickness factor. Mathematically we have

The friction factor towards x and y direction are:

where

Here the physical quantities are:

The skin friction, heat and mass allocation expression are as follows:

Here Re = �Uw
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 is the Reynold’s number.
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Numerical solution
The basic methodology steps of PCM approach are as  follow17,42–46:

Step 1: simplification to 1st order ODE. 

By putting Eq. (21) in Eqs. (12)–(15) & (16), we get:

with the corresponding boundary conditions.

Step 2: familiarizing the embedding constraint p in Eqs. (22)–(25). 

Step 3: solving the Cauchy principal. Numerical implicit scheme is employed for the above modeled 
equations, which is defined as below:

Finally, we get:

Results and discussion
The section revealed the physics behind each figure and table. The subsequent trends have been observed:
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Velocity profile. Figures 2, 3, 4, 5, 6, 7, 8 explained the presentation of axial f ′(η) and radial g ′(η) velocity 
profile versus the variation of porosity term P0, power-law index n, magnetic field constraint MF, Darcy Forch-
hemier term Fr, Deborah number D, wall thickness term � and the ratio of relaxation time to retardation term 
�1 respectively. Figures 2 & 3 shows that the velocity curve declines with the growth of porosity term, while 
augmented with the flourishing upshot of power index constraint. Physically, the number of pours increases 

Figure 2.  Velocity profile versus porosity term P0.

Figure 3.  Velocity profile versus power law index n.

Figure 4.  Velocity profile versus magnetic field constraint MF.
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with the porosity parameter effect, which resists the fluid flow, so causes the reduction in the velocity outline. 
Figures 4 and 5 reported that the rising frequency of both constraints magnetic field and Darcy Forchhemier 
effect deduce the velocity distribution. Because the opposing force, which is created due to magnetic effect, resist 
the flow field, as a result such trend observed. Figures 6 and 7 described that the impact of local Deborah number 

Figure 5.  Velocity outline versus Darcy Forchhemier term Fr.

Figure 6.  Velocity outline versus local Deborah number D.

Figure 7.  Velocity profile versus wall thickness term �.
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and wall thickness parameter augmented the velocity field. Figure 8 displays that the upshot of thermal relaxa-
tion term, reduce the energy profile.

Energy profile. Figures 9, 10, 11, 12, 13, 14 explained the appearance of energy contour θ(η) versus the 
variation of porosity term P0, power-law index n, thermal radiation R, heat source term Hs, Deborah number 

Figure 8.  Velocity profile versus ratio of relaxation time to retardation term �1.

Figure 9.  Energy profile versus the porosity term P0.

Figure 10.  Energy profile versus the power law index n.
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D, thermal relaxation term �1 . Figures 9 and 10 shows that the energy contour amplifies with the increment of 
porosity term while diminishing with the flourishing upshot of power index constraint. Physically, the number 
of pours increases with the porosity parameter effect, which resists the fluid flow, so triggers an expansion in 
the heat. Figures 11 and 12 illustrated that the thermal field boosts with the mounting values of R and Hs. The 
effect of both constraints generates an additional heat inside the fluid, which scores in the advancement of the 

Figure 11.  Energy profile versus the thermal radiation R.

Figure 12.  Energy profile versus the heat source term Hs.

Figure 13.  Energy profile versus the local Deborah number D.
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temperature field θ(η) . Figures 13 and 14 presented that Deborah number D decreases the thermal energy field, 
while the impact of thermal relaxation term �1 enhances the energy distribution.

Concentration profile. Figures 15, 16 and 17 elaborated the exhibition of mass outline φ(η) versus CR, 
Deborah number D and Schmidt number Sc respectively. Figures 15, 16 and 17 assessed hat the mass transmis-

Figure 14.  Energy profile versus the ratio of relaxation time to retardation term �1.

Figure 15.  Mass profile versus the chemical reaction CR.

Figure 16.  Mass profile versus the Deborah number D.
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sion profiles reduce with the intensifying upshot of chemical reaction, Deborah number and Schmidt number. 
Physically, the influence of the Sc enhances the kinetic viscosity of the fluid, while lessen the molecular diffusion, 
which causes the reduction in mass profile. Similarly, the consequences of chemical reaction and Deborah num-
ber also declines the concentration profile φ(η).

Error analysis. In Fig. 18, we performed the error analysis, to ensure that our results are accurate up to the 
lowest residual error scale. Until evaluating and providing physical forecasts, we analyze an error to determine 
the accuracy of the proposed method.

Tables 1 and 2 illustrated the statistical outcomes for skin friction, Nusselt and Sherwood number versus 
several physical constraints respectively. Table 3 highlighted the comparative assessment of the present results 
versus the existing works. The results of Table 3 verify the accuracy of the current analysis.

Figure 17.  Mass profile versus the Schmidt number Sc.

Figure 18.  Residual error for velocity, energy and concentration profile.
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Conclusion
We have numerically analyzed the energy conveyance through Jeffery fluid flow over an irregular extensible sheet 
with a porous medium. The consequences of the Darcy effect, variable thickness and chemical reaction are also 
considered. The phenomena have been modeled as a system of PDEs. Using similarity substitution, the modeled 
equations are reduced to a dimensionless system of ODEs. The computational technique is used to determine the 
numerical solution to the obtained sets of nonlinear differential equations. The key conclusions are:

• The velocity profiles 
(

f ′(η), g ′(η)
)

 both decline with the increment of porosity term, magnetic field, Darcy 
Forchhemier and thermal relaxation factor while augmented with the flourishing upshot of power index and 
local Deborah number.

• The energy profile θ(η) magnifies with the increment of porosity term, thermal radiation and heat source 
term, while diminishing with the flourishing upshot of power index and Deborah number.

• The mass transfer profiles reduce with the rising upshot of CR, Deborah number and Schmidt number.

Table 1.  The arithmetical results for skin friction along x and y direction.

�1 � M P0 D CfxRe
1
/2

x CfyRe
1
/2

y

0.3 0.1 0.4 1.0 0.2 − 1.47496 − 2.63760

0.5 − 1.38337 − 2.31511

0.7 − 1.30327 − 2.03290

0.2 − 1.53371 − 2.48535

0.3 − 1.59228 − 2.39394

0.8 − 1.72496 − 3.04651

1.2 − 1.87555 − 3.41097

1.5 − 1.64601 − 3.02635

2.0 − 1.79842 − 3.04401

0.4 − 1.49881 − 3.08712

0.6 − 1.52651 − 3.53664

Table 2.  The statistical outputs of Sherwood and Nusselt numbers.

�1 � M CR D
(

−
n+1

2

)

θ ′(0)
(

−
n+1

2

)

φ′(0)

0.1 1.0 0.4 1.0 0.2 0.5807 0.8134

0.3 0.5730 0.8117

0.5 0.5657 0.8102

2.0 0.1523 0.8133

3.0 0.9234 0.8133

0.8 0.5552 0.8078

1.2 0.5225 0.2013

1.5 0.5807 1.2574

2.0 0.5807 1.2814

0.4 0.6013 0.9963

0.4 0.6177 0.9891

Table 3.  Relative evaluation of current results with the available literature for −f
′′(0).

n Reddy et al.41 Khader et al.47 Khan et al.48 Present work

0.0 0.95664 0.9477 0.94128 0.95136

0.5 0.97894 0.9698 0.97354 0.97365

0.0 1.01000 1.0100 0.98364 0.99372

2.0 1.02242 1.0134 1.01270 1.02281

3.0 1.03488 1.0258 1.02454 1.03464

5.0 1.04762 1.0386 1.03758 1.04767

10.0 1.06134 1.0503 1.04994 1.16995
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• The porosity term and wall thickness parameter enhance the skin friction.

Data availability
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