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Type 1 diabetes (T1D) remains a devastating disease that requires much effort to

control. Life-long daily insulin injections or an insulin pump are required to avoid severe

complications. With many factors contributing to disease onset, T1D is a complex

disease to cure. In this review, the risk factors, pathophysiology and defect pathways

are discussed. Results from (pre)clinical studies are highlighted that explore restoration

of insulin production and reduction of autoimmunity. It has become clear that treatment

responsiveness depends on certain pathophysiological or genetic characteristics that

differ between patients. For instance, age at disease manifestation associated with

efficacy of immune intervention therapies, such as depleting islet-specific effector T

cells or memory B cells and increasing immune regulation. The new challenge is to

determine in whom to apply which intervention strategy. Within patients with high rates

of insulitis in early T1D onset, therapy depleting T cells or targeting B lymphocytes may

have a benefit, whereas slow progressing T1D in adults may be better served with

more sophisticated, precise and specific disease modifying therapies. Genetic barcoding

and immune profiling may help determining from which new T1D endotypes patients

suffer. Furthermore, progressed T1D needs replenishment of insulin production besides

autoimmunity reversal, as too many beta cells are already lost or defect. Recurrent

islet autoimmunity and allograft rejection or necrosis seem to be the most challenging

obstacles. Since beta cells are highly immunogenic under stress, treatment might be

more effective with stress reducing agents such as glucagon-like peptide 1 (GLP-1)

analogs. Moreover, genetic editing by CRISPR-Cas9 allows to create hypoimmunogenic

beta cells with modified human leukocyte antigen (HLA) expression that secrete immune

regulating molecules. Given the differences in T1D between patients, stratification

of endotypes in clinical trials seems essential for precision medicines and clinical

decision making.
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INTRODUCTION

Type 1 diabetes (T1D) is an auto-immune disease that
causes insulin deficiency, affecting over 14 million patients
worldwide. This results in blood glucose levels that are too
high (hyperglycaemia) or too low (hypoglycaemia), which lead
to frequent occurrence of both physical and mental difficulties:
extreme thirst and hunger, muscle weakness and spasm, blurred
vision, fainting, nausea, irritability, and poor concentration (1).

Patients require several insulin injections daily or an insulin
pump to maintain healthy blood glucose levels. However, despite
intensive monitoring and treatment most patients do not reach
the guideline of a desired HbA1c for diabetics (<48 mmol/mol),
let alone a healthy hemoglobin A1c (HbA1c) in general (<42
mmol/mol) (2). These guidelines are established to assure
minimal risk of developing comorbidities later in life that result
from poor glucose control (e.g., cardiovascular disease, damage
to nerves, eyes, kidney, and feet). The mandatory effort to control
blood glucose levels is very high, yet this dedication does not
ascertain in-range glucose levels. Unexpected highs and lows
are responsible for an average of an hour less sleep per night
compared to the healthy population and an estimated 10 years
shorter lifespan (2, 3). Furthermore, the overall psychological
burden increases T1D patients’ risk for depression. Treating
insulin shortage is treating the symptoms of the disease, but not
its cause; insulin is not a cure.

It has long been thought that T1D was caused by impaired
antigen tolerance due to thymic dysfunction, as this is the
case for several other autoimmune diseases (e.g., Myasthenia
Graves, Addison, and severe combined immunodeficiency).
However, recent research shows that healthy individuals also
have CD8+ T cells that are specific for beta-cell proteins.
Therefore, the mechanism of disease development remains
elusive. Patients typically pass several physiological hallmarks
before the symptoms of insulin deficiency start to show. Until
today, it is still a topic of debate in which order this cascade of
events takes place and how they affect disease progression. Also,
many genetic and pathophysiological differences exist between
patients. Altogether, it shows that T1D is a complex disease that
requires more attention to ultimately cure. Most recently, the
appreciation is growing that different etiopathogeneses may exist
that cause disease heterogeneity, adding to the complexity and
challenge to understand T1D and translate this understanding
into disease intervention strategies.

T1D is complex in a sense that many factors seem to
contribute to its onset. Several gene variants yield a higher
risk, but environmental factors are also important. This idea
arises from observational studies in which identical twins—
with the same genetic background—may still have different
disease outcome. Also, unrelated individuals that carry the same
susceptible genes, but who live in different areas with different
lifestyles, would have other risk. The incidence of T1D amongst
young children increases too rapidly (2–3% annually) to be only
caused by genetics (3). This suggests that certain environmental
factors are needed to trigger the immune system and progress to
clinical diabetes. Obesity, for example, causes chronic elevation
of inflammatory cytokines, insulin resistance and metabolic and

islet stress. Another hypothesis is that enteroviruses, which
appear to be found in pancreatic tissue of some patients with
T1D, induce HLA class 1 overexpression and CD8 recruitment
(4, 5).

T1D has been proposed to undergo several stages of
progression: (1) single islet autoantibody (Ab); (2) multiple islet
Abs; (3) impaired glucose tolerance; (4) clinical diabetes (6). A
single islet Ab may already be present before the age of 2, but
this does not perse mean T1D development (stage 1). On the
other hand, late-onset T1D is often accompanied by only one islet
Ab. Also, the rate of progression differs between patients: some
develop clinical diabetes within 1 year, some after 10 years or not
at all, with rapid progression typically occurring in younger cases
(7). However, if two or more antibodies are present (stage 2),
further progression toward T1D is almost inevitable (84% risk),
at least in the pediatric population (3).

DISEASE HETEROGENEITY

The notion that T1D appears in different flavors depending
of age at onset has generated much attention lately and the
concept of disease endotypes was introduced to allow the design
and assignment of different therapeutic intervention strategies
depending on the disease endotype (precision medicine), as now
is a common practice in high-income countries or communities
for some diseases, including cancer (8–11). A pathological basis
for this disease heterogeneity is still relatively weak, but the most
compelling evidence derives from immunohistopathological
studies of the lesion in the pancreatic islets showing differences in
the rate and composition of the insulitic immune cells (Figure 1)
(12). Patients diagnosed below the age of 7 (an arbitrary cut-
off based on the available tissues) showed higher rates of
inflammation dominated by CD8 T-cells but also featuring some
B lymphocytes, whereas the rate and frequency of inflammation
was less in children beyond the age of 12, while B lymphocytes
were rare or absent in lesions at older onset (12). Strikingly, beta-
cell features differed too: in cases with younger onset, insulin and
its precursor proinsulin in the same subcellular compartments
of the beta-cells whereas these molecules where not overlapping,
suggesting that there may be intrinsic features of beta-cells too
reflecting altered cell physiology, distress and immunogenicity
that may contribute to a different and possibly faster disease
progression than seen amongst patients with diagnosis at older
ages (12).

In addition to differences in rate of disease progression and
immunopathology associated with age, there are differences
between patients at a given age related to, for instance, genetic
background (HLA-DR3 and/or HLA-DR4; presence or absence
of “protective” insulin gene variants) and ethnicity and ancestry
(13). Commonly used Genetic Risk Scores designed to predict or
diagnose T1D in patients of European descent did not deliver in
populations of color (14).

Finally, the disease activity changes substantially with
progression of disease, where insulitis appears most frequently
in islets around diagnosis of T1D but is much reduced both
in frequency and severity in prediabetic seropositive subjects or
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FIGURE 1 | Pathophysiology and endotypes of type 1 diabetes (T1D). Both beta-cells and the immune system can provoke and diminish autoimmunity and beta-cell

destruction. The contribution of the major cell types in disease progression differs depending on the age of disease onset. Green indicates a protective role and red

(Continued)
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FIGURE 1 | points to a progressive role toward T1D development. The immune imbalance is greatest in patients developing T1D at younger ages, where the

pathology is more acute and severe. With age, the degree of autoimmunity and the rate of beta-cell loss declines. CD4T cells are activated by islet autoantigens that

vary between disease endotypes. IL-2 differentially stimulates CD8+ effector T-cells as well regulatory T cells (low dose IL-2). Tregs protect against beta cell

destruction. IL-6 stimulates inflammation and inhibits regulation. Activated CD8T cells are triggered by IFN-alpha and IL-1 to attack beta cells. Due to stress, beta

cells overexpress HLA Class 1 (HLA 1) and secrete IFN-alpha that provoke and attract CD8 cells. This destructive process may be inhibited by stress-reducing

proteins GLP-1 and EGF. IFN-γ signaling stimulates PD-L1 expression and beta cell survival. This figure was partly generated using Servier Medical Art, provided by

Servier, licensed under a Creative Commons Attribution 3.0 unported license.

after diagnosis and restoration of glycaemic control with insulin
therapy (12, 15, 16). This observation points out that the windows
of therapeutic efficacy may depend on progression of disease,
implying that some interventions specifically targeting insulitis
may only be suitable or effective around the time of diagnosis,
whereas other intervention strategies (for instance restoration
of immune tolerance) would be better served not to be applied
during the time around the medical emergency of diagnosis,
insulitis and dysglycemia.

In this review we aim to find the most promising methods to
cure T1D. This is investigated by sharing the latest knowledge
and exploring different therapeutic approaches, covering both
insulin production and auto-immunity reversal. Furthermore,
the successful and less successful results from state-of-the-art
studies are presented, highlighting the challenges in today’s
diabetes research and how to tackle these.

KEY STEPS TO CURE T1D

To cure a patient with clinically manifested T1D, two treatment
goals need to be achieved: (1) reverse or suppress autoimmunity;
and (2) restore insulin production. This treatment combination
ensures that the new cells can provide insulin continuously, as
they are no longer destroyed by the immune system.

SUPPRESS OR REVERSE AUTOIMMUNITY

Distinct cell types are associated with T1D development that may
act in different patients (Figure 1). Both T cells and beta cells are
involved in the pathogenesis, which likely induce disease onset
in concert with dendritic cells and other antigen presenting cells
(APCs), accompanied by B cells secreting islet-autoantibodies,
which collectively cause beta cell destruction (8, 10, 17–21).
The question remains which factor contributes to which, in
whom and at which stage during disease progression. Thus,
to answer this in the best possible way, researchers investigate
pathophysiological changes and frequencies of immune cells in
individuals that are at high-risk for T1D development (genetic or
familiar susceptibility).

Over the past few years more evidence has been found
regarding the imbalance between Tregs and Teff cells. The
fact that non-diabetic individuals also produce islet-specific
CD8 cells—although at lower levels—suggests that T1D has
incorrect immune regulation by Tregs. Interestingly, genetically
high-risk individuals are relatively protected when Treg levels
are high (18). Furthermore, CD4+ T cells restricted by high-
risk HLA class II alleles DR4-DQ8 and DR3-DQ2 present

many islet-antigens such as insulin, islet-specific glucose-
6-phosphatase catalytic subunit-related protein (IGRP), zinc
transporter 8 (ZnT8), pre-proinsulin (PPI), while also secreting
cytokines, which recruits and activates increasing amounts of
CD8+ cells (19). Consequently, high levels of CD8+ cells that are
reactive to glutamic acid decarboxylase 65 kDa (GAD65), IA-2,
PPI, ZnT8, or IGRP or other islet autoantigen have been detected
in islets of T1D patients (17). Tregs of patients appear impaired in
their capacity to regulate effector T-cells (22). In addition, CD4+
cells in T1D patients are thought to be relatively resistant to
Tregs (23). These pathogenic T cells are more responsive to IL-6,
which promotes immune responses and further suppresses Tregs
(24). These findings provide more insight into the imbalanced
regulatory and effector immune system and how this causes
greater immune responses in T1D.

Upon stressful circumstances, beta cells—together with
resident macrophages—secrete IL-1 and express the chemokine
CXCL10, which attracts more T cells toward the islets (25–28).
Beta cells also produce TYK2 to undergo apoptosis, while further
promoting inflammation by enhancing IFN-alpha signaling,
upregulating HLA class 1 molecules and attracting CD8T cells
(29). Elevated levels of proinsulin are found right after food
intake, which suggests that during this stage beta cells are
still intact (stage 1–3), but there is a mechanistic defect in
insulin processing that is responsible for glucose intolerance
(12, 30). Recent findings suggest that after prolonged stress, beta
cells secrete post-translationally modified proteins that behave
like autoantigens: a phenomenon that is also seen in other
autoimmune diseases (e.g., multiple sclerosis and rheumatoid
arthritis) (10, 31–38).

Next to initial T cell and beta cell dysregulation, B cells
may also contribute to disease progression, most likely in
younger patients as high levels of pancreatic B lymphocytes
were found in patients aged below 7 years old (16). Less IL-
10 production by regulatory T and B cells is found in children
with diabetes, which cytokine is found to play a protective role
against T1D development (18). Also, gut bacteria stimulate IL-10
production and maternal antibiotics intake in non-obese diabetic
(NOD) mice increases the risk of diabetes development in new-
borns whereas low intrauterine gluten exposure and vitamin D3
supplements in human infants decrease the risk to develop T1D
(39, 40). This further supports the idea that dysbiosis contributes
to early T1D development (41–44). Curiously, fecal microbiome
transplantation showed promise halting disease progression in
newly diagnosed T1D patients (45).

Most immunotherapy-investigating trials are aimed at
preventing further progression toward clinical diabetes by
immune suppression (Table 1) (46). For the antigen-specific
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TABLE 1 | Treatment strategies and pitfalls.

Mechanism (Drug) Pitfall

Autoimmunity T cell deactivation; anti-CD3

(teplizumab, ATG)

CD8 expansion

Co-stimulation blockade;

anti-CTLA4/CD2 (abatacept,

alefacept)

CD8 expansion when treatment

stops

Memory B cell blockade;

anti-CD20 (rituximab)

Only effective in young patients

Treg development; IL-2 CD8 expansion

Antigen tolerance; oral insulin Only effective in patients with IGT

Insulin Progenitor cell differentiation in

vivo

Unpredictable cell fates

Porcine pancreas transplantation Zoonosis, xenograft rejection

iPSCs into liver Necrosis, immunogenic

environment

iPSCs into pancreas Redifferentiation and apoptosis

Bio membrane-encapsulated

iPSCs

Central necrosis, foreign body

response

Current approaches are shown that target autoimmunity (red) and insulin deficiency (blue).

For each approach, themechanism of action, drug (italic), and disadvantages (last column)

are indicated.

response, a T-cell receptor/CD3 complex is required to activate
the T-cells upon recognition of this specific antigen. Teplizumab
and Otilixizumab, both anti-CD3 mAbs, were found effective for
delaying T1D in stage 1-3 diabetes patients (47–49). A similar
drug, anti-thymocyte globulin (ATG), showed some effect at
stage 2-3 (50). Both treatments caused less IFN-γ and TNF
secretion by the disabled CD8 memory T cells, which is desired.
However, this effect sustained for only 2 years and was soon taken
over by CD8 expansion and disease progression. An ultimate
reset of the immune system by autologous hematopoietic stem
cell therapy induced complete remission in half of the treated
newly diagnosed T1D patients that sometimes lasted for more
than a decade (51, 52). Efficacy was observed in a subgroup of
patients characterized by low CD8 T-cell autoimmunity to islets
and superior immune regulation (51).

T cells are also controlled by binding of co-stimulatory
ligands and co-inhibitory ligands. These ligands are perhaps
more suitable targets to restore the balance toward immune
regulation instead of attack (17, 46). Several immunotherapeutic
agents have been developed that target these pathways. Promising
drugs are abatacept inhibiting cytotoxic T-lymphocyte-associated
protein 4 (CTLA4) (53–55) and alefacept targeting CD2 (56).
Monthly treatment for 2 years with abatacept significantly
reduced HbA1c levels compared to placebo, even after 1 year
cessation. Alefacept improved C-peptide response and beta cell
function, which improved HbA1c and reduced hypoglycaemia
incidence. Alefacept also impairs CD8 function, confirming
that T effector cells play a big role in disrupting beta cell
function. Both drugs show good results in stage 3 diabetes, yet
they require prolonged administration for sustained efficacy.
Of note, disease was accelerated by abatacept in patients of
color, pointing to both disease heterogeneity and the need for
precision medicine.

Rituximab is an anti-CD20 antibody that depletes memory
B cells and reduces auto-antigen presentation and attacks (57).
This drug was only effective in a minority of stage 3 patients for
a maximum duration of 1 year. Antibodies against insulin were
less abundant, but antibodies against other beta cell derivatives
remained the same. Interestingly, rituximab was more effective in
younger patients, in whom pancreatic B cell infiltration is more
profound. Individuals in which this treatment was less effective
had increased levels of T-effector (Teff) cells, which supports the
idea that treatment should target both B and T cells, at least in
some cases (16, 58, 59). Efficacy of Rituximab to delay disease
progression seemed limited to younger cases, whereas abatacept
showed efficacy at older disease onset.

Furthermore, treatment with cytokines is being explored to
enhance Treg development by increasing FOXP3 expression.
Ultra-low interleukin-2 (IL-2) treatment reversed diabetes
development in mice, however, in humans this effect was
only temporary and led to expansion of CD8 cells. It seems
that IL-2 is involved in both regulatory and Teff pathways,
depending on other stimuli (60–62). Subsequently, a new
treatment was developed that was more specific: stimulating
CD25 and inhibiting CD122 receptor bonding (63).

Oral antigen administration effectively built tolerance and
prevented development of diabetes in preclinical studies. This
approach has been assessed in several clinical trials, showing
some efficacy of oral insulin in a subgroup of patients but not
all, and in particular in patients with higher titres of insulin
autoantibodies (IAA) (17, 64, 65). Interestingly, more efficacy in
delaying onset was also noted in patients with impaired glucose
tolerance (IGT) than in patients without IGT who presented
multiple autoantibodies. This suggests that such antigen exposure
approaches are more effective in delaying further progression of
stage 1 than as preventative treatment. Perhaps proinsulin would
yield better outcome—especially in stage 0 patients—as this
antigen is more immunogenic and its autoantibodies are present
earlier during progression (66–68). Furthermore, preclinical
studies suggest that low doses stimulate regulatory systems, while
frequent or high doses cause depletion of effector cells (17, 69).
Several other strategies to restore immune tolerance selectively
without suppressing the immune system at large are currently
explored that include injection with GAD65 (70, 71), proinsulin
peptides in solution (72, 73) or presented by tolerogenic dendritic
cells (74) and proinsulin DNA vaccination (17, 75).

PRESERVE OR RESTORE INSULIN
PRODUCTION

Current successes in reversing autoimmunity are targeting up
until stage 3 diabetes, in which a certain amount of beta cells is
still intact. However, in clinical diabetes (stage 4) an estimated
90% of beta cells are already lost or non-functional (senescent)
(76, 77). Hence, the source of insulin production needs to
be replenished.

Theoretically, there are two strategies: (1) re-activation of
senescent beta cells; or (2) pancreas, islet, beta cell or stem
cell transplantation. The first focuses on beta cells that are
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still present, but are non-functional, due to distress or other
often elusive factors. The internal biosynthesis machinery of
beta cells has changed to a senescent (non-insulin producing or
“hibernation”) status, which is conceivably a survival response,
because active beta cells would be attacked by the immune
system (10). Therefore, beta cell activation is only beneficial
when combined with autoimmune reversal and immunotherapy.
This approach requires external factors that switch the internal
system, such as transcription factors or genetic modification with
vectors that alter gene expression or treatment with beta-cell
tissue factors such as epidermal growth factor (EGF) and GLP-
1 that revitalize and activate beta-cell functions, respectively (78,
79). The possibility to differentiate progenitor cells in pancreatic
tissue is also being explored (80). The major obstacle is that the
differentiation process is quite unpredictable: multiple cell fates
are induced, but their cues are largely unknown. Therefore, ex
vivo differentiation and transplantation seem more promising,
although the first clinical trial using this method is currently
ongoing (NCT04786262).

The second approach uses cells from another source, which
are already producing insulin (pancreas, islets, or beta cells) or
are programmed to do so (stem cells). They should respond to
glucose fluctuations adequately with the right amount and pace
to prevent hypo and hyperglycaemia. To function as desired, they
need to be placed within an environment that contains optimal
circumstances and does not reject them.

Over the past decades, several insulin-producing transplants
have been studied (80). Allogeneic pancreas transplantation is
the only standard therapy suitable and available for a very
limited number of T1D patients that leads to durable remission
in the vast majority of recipients (81). Islet transplantation is
still experimental and suffers from the lack of suitable organs
and organ donors and the need for better immunotherapy (to
prevent recurrent islet autoimmunity and allograft rejection) and
improved and prolonged islet allograft survival and function (80).

Stem cells are another source of insulin production.
Embryonic stem cells are the most pluripotent, but are taken
from embryos, which is ethically questionable, and they need
to match the recipients HLA type to avoid rejection. Induced
pluripotent stem cells (iPSCs) are a more suitable source, as
they are derived from patients’ own stem cells (i.e., perfect
HLA-match and ethically correct). Although clonal variability
exists during the differentiation process of iPSCs, this source
of insulin production is mostly investigated (82–84). Stem-cell
derived beta-cells appear to be hypoimmunogenic and genetic
engineering of stem cell-derived beta cells could further improve
their resilience, protection, survival and function (85–87).
Curiously, alpha-cells turned into insulin producing cells are also
resistant to immune attack by islet specific autoreactive T-cells,
pointing to either more resilience or reduced immunogenicity,
or a combination thereof (88).

Now that several techniques for creating insulin-producing
cells have been developed, the next caveat is finding the
ideal implantation site and microenvironment for these cells.
Implantation into subcutaneous tissue allows monitoring
(observing abnormalities), implantation and removal, while
internal tissue has more vascularization. Theoretically, the liver

would be a logical choice, as glycogen is stored here. Additionally,
the liver is the first organ through which absorbed glucose from
the intestines passes. However, as described earlier, beta cells are
stressed by high glucose levels, whichmakes them non-functional
and self-destructive. Next to glyco- and lipotoxicity, the liver
has a strong immunogenic environment, which increases the
risk of damaging the implant (89). Furthermore, hepatic islet
infusion showed little revascularization, which led to hypoxia
and central necrosis. The fact that pancreatic islets receive five
times higher blood flow, stresses the necessity of vascularization
(90). However, researchers found that transplantation into the
pancreas often leads to unwanted (de)differentiation, because
of surrounding pancreatic differentiation cues (91). They also
found that, the more stem cells differentiated (into beta cells),
the more damage occurred. Only pluripotent cells (i.e., non-beta
cells) were able to survive longer, but did not produce insulin
(i.e., insufficient glucose-sensing). Implantation in alternative
locations such as bone marrow or omentum proved less
successful and required more donor tissue (92, 93).

Yoshihara et al. created human islet-like organoids (HILOs)
that produce insulin and are responsive to glucose (94).
Several differentiation steps were needed to induce beta
cell-like characteristics, including non-canonical WNT
signaling (maturation) and programmed death ligand-1
(PD-L1) overexpression (immune toleration). The optimal
dose and frequency were evaluated using short multiple
pulse stimulation (MPS) with interferon-γ (IFN-γ), inducing
overexpression of PD-L1 without dedifferentiation or beta cell
death. Transplantation of these cells led to sustained (>50 days)
glucose homeostasis in both immune competent and humanized
diabetic mice. Although IFN-γ is known to induce cancer in
humans when overexpressed in vivo, this approach would solve
this problem, as PD-L1 is expressed by in vitro IFN-γ stimulation
prior to transplantation (94, 95).

Despite progenitor cells being well-programmed to produce
insulin, it becomes clear that interaction with the surrounding
tissue needs further optimalization. Isolated islets (e.g., cell
cultures) go into necrosis easily when their surrounding is not
providing natural stimuli that keep them active. The vascular
network diminishes, which results in less nutrients and signaling
molecules. Therefore, the use of hydrogels, matrices and other
biomaterial-based devices could improve tissue circumstances. A
promising method is the use of membranes that are permeable
for nutrients but impermeable for immune cells (80). A phase
1 trial was effective but not sustained, as hypoxia and foreign
body responses occurred. Currently, one phase-2 clinical trial
investigates an encapsulated version (NCT04678557), while
another trial uses bigger pores to reduce hypoxia combined with
immunosuppressors (NCT03163511) (80).

Transplant recipients receive immunosuppressants, but these
are not sufficient to reverse pre-existent B and T cell autoimmune
reactions and often harm beta-cell differentiation and function
(89, 96, 97). Immunosuppressive treatment usually consists
of immediate specific drugs, followed by long term broad
immunotherapy that blocks graft rejection. Low-dose systemic
immunosuppressants reduce graft antigen rejection and prolong
beta cell functioning (98, 99). Importantly, these drugs were
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TABLE 2 | Opportunities for precision medicine in type 1 diabetes.

Intervention

strategy

Preferred patient subgroup Comment References

Oral insulin Patients with high IAA titers Confirmed in replication trial. (65)

Diamyd (GAD65) GADA positive patients GADA negative have not been assessed. (70)

Patients carrying HLA-DR3? Suggested by post-hoc analyses of multiple trials. (108)

Tolerance induction

with proinsulin

peptide

Patients carrying HLA-DR4 Proinsulin peptide C19-A3 was eluded from HLA-DR4 molecules. (18, 72, 74)

Abatacept Adolescents Replication warranted. (53)

European ancestry? Disease acceleration in patients of color.

Rituximab Young patients No efficacy achieved in adult patients; replication required.

B-cells only present in insulitis in early onset T1D.

(57)

Islet transplantation Patients lacking prior islet donor specific

alloantibodies

A positive crossmatch consistently resulted acute allograft rejection. (101, 105, 109)

Patients lacking CD4 T-cell autoreactivity

to GAD65 and IA2

None of patients responding to both GAD65 and IA-2 achieved insulin

dependency, vs. >80% of patients not responding to either islet

autoantigen; replicated in multiple studies.

(101, 105)

HLA class I mismatch avoids recurrent

islet autoimmunity by CD8 T-cells

Indirect recognition of islet epitopes by recipients’ HLA class II cannot still

occur.

(110)

Patients lacking pre-existent thyroid

peroxidase (TPO) autoantibodies

All patients with TPO antibodies developed Graves’ disease following

discontinuation of immune suppression after graft failure vs. none of the

TPO-negative recipients.

(102)

Autologous

hematopoietic stem

cell transplantation

Patients with low rates of CD8 T-cell

autoimmunity to islets

Patients with CD8 islet autoimmunity in the lower 50th percentile all reached

complete disease remission at least up to 900 days after therapy at which

time 85% of patients with high islet autoimmunity had relapsed.

(51)

Fecal microbiome

transplantation

Autologous stool preferred over allogeneic

stool?

Disease progression only halted in patients receiving their own stool;

patients had not been randomized according to composition of microbiome

or rate of islet autoimmunity.

p.m.: Autologous microbiota have recolonization advantage.

(45)

selected to prevent rejection but are often uncapable to reverse
pre-existent immune responses, such as islet autoimmunity, and
therefore unable to prevent recurrence of autoimmune mediated
beta-cell destruction (100–107).

CHALLENGES

In the twenty-first century many breakthrough solutions have
been developed for a variety of diseases, however, T1D remains
one of the few (severe) autoimmune diseases that cannot be
cured yet by an approved therapy. Although much effort is put
into different strategies, recent studies show that finding a cure
for T1D is not as straightforward as earlier thought (17, 46).
Therefore, it is important to map the currently faced obstacles
to envision our next step.

First of all, diversity exists between T1D patients in several
areas: genetics, onset age, progression rate, autoantibodies, and
beta cell number and activity (8). This inter-subject variability
makes it difficult to find one clear cause, as different factors
contribute to the same clinical diagnosis. Therefore, the efficacy
of treatment that reverses disease progression is highly variable
among patients (Table 2) (11). This also explains why treatments
often do not make it further than phase II/III clinical trials: their
expected effect size is not met, because treatment has no effect in
certain patient groups.

Furthermore, beta cells modify their antigens under stressful
circumstances. This mechanism of the immune system usually
acts as surveillance against tumor cells that express neoepitopes
(10). However, in this case the immune attack is targeted
against beta cells, which might be an act of self-destruction;
the new antigen is more immunogenic and has a higher
binding affinity with cytotoxic T cells. Several studies show
that post-translational modifications of beta cell epitopes are
indeed strong triggers for T cell activation (10, 31–38). The
neoepitope modification is thought to enhance binding affinity
to high-risk HLA alleles compared to unmodified epitopes,
which increases antigen presentation and recognition by T
cells (111, 112). An alternative explanation for the cause of
epitope modification is that the defective insulin protein is
expressed under stress: an unwanted response that can be
inhibited by verapamil, a drug that reduces oxidative stress and
insulin-processing defects (113). Nevertheless, the formation of
neoantigens complexifies the development of immunotherapy,
as these antigens are highly variable between subjects. It is
conceivable that immunotherapy alone will not suffice to reverse
T1D durably. Combinations of beta-cell and immunotherapy
may prevent continued provocations by distressed beta-cells to
the immune system.

Another difficulty is translation from cell cultures to animal
models to humans. Since beta cells are highly dependent on
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FIGURE 2 | Innovative technologies and solutions. Promising strategies are shown that target autoimmunity (red), insulin deficiency (blue) or both (purple).

Autoimmunity solutions: (1) Long-term and low-level antigen expression by AAV infection; (2) Combination therapy of effector T cell depletion followed by regulatory T

cell stimulation; (3) Selective CD25-agonist/CD-122 antagonist. Insulin solutions: (1) Glucose sensing beta-cell like organoids that secrete sustained insulin by ex vivo

WNT and IFN-γ signaling; (2) Humanized pancreas growth by patient-derived stem cell injection into pig blastocyst; (3) Hydrogels and TMTD-alginate microspheres to

avoid rejection and necrosis. Solutions for both: (1) Trial stratification and treatment choice based on endotype; (2) Engineering hypoimmunogenic beta cells using

CRISPR-Cas9; (3) Beta cell stress reducers to lower inflammation and increase beta cell function.

nutrients and oxygen (i.e., blood flow) and external stimuli,
they function better in vivo than in vitro. On the other hand,
they are more prone to re-differentiate in vivo, because of
surrounding transcription factors and other signaling molecules.
However, beta cells that are damaged or undergo necrosis secrete
inflammatory cytokines that attract immune cells and cause
damage to the well-functioning beta cells (10). In addition, a lack
of good preclinical models of human T1D, the lack of access to
the lesion in humans had delayed progress for decades. Since
the access of diabetic pancreata through the establishment of
the Network for Pancreatic Organ Donors (www.jdrfnpod.org),
the insight in T1D has grown in a spectacular fashion, further
underscoring the differences in autoimmune diabetes between
species, but also pointing to the role of distressed islets preceding
inflammation an revealing the relative paucity of inflammatory
cells in human insulitis (with an striking lack of Tregs in the
lesion), the low number of inflamed islets, the focal lesions,
and the unexpectedly large number of insulin-positive islets
seemingly unaffected at diagnosis (114).

Furthermore, transplanted cells are at risk for immune
attacks and require additional immunosuppressive treatment.
This becomes clear as transplanted islets slowly degrade within
a few months (80, 89). Yet, broad immunosuppressants—
such as cyclosporine used in the 80s—induce severe side
effects such as kidney damage or infections (107, 115).
Thereafter, research focused on development of more specific
immunosuppressive drugs, such as IFN-γ to increase PD-
L1 expression. Unfortunately, IFN-γ treatment also allows
development of tumor cells as these are protected from immune
surveillance as well (95).

A final hurdle is the fact that the control of T1D symptoms is
relatively easy, increasing the bar for potentially risky therapeutic
intervention strategies. In contrast to other autoimmune disease,
where there is no alternative for immunotherapy, or cancer that
would become lethal if untreated, insulin therapy deals with
the hyperglycemia and diabetic complications only show years
after diagnosis, masking the burning need for curative therapies.
There is also a burning need to define efficacy of intervention
therapy in T1D (116). At least seven types of clinical benefit
were identified, varying from prevention of seroconversion in

individuals at genetic risk, to prevention of epitope spreading,
delay, reversal or prevention of T1D, to prevention of diabetic
complication. Different immune intervention strategies may be
amenable and effective in different stages of the disease and in
different T1D patients (17, 46, 116).

NOVEL STRATEGIES AND FUTURE
PERSPECTIVE

The post-translational modification of beta cell proteins (i.e.,
neoepitopes) explains why beta cells are suddenly not tolerated
anymore, as the immune system should have been programmed
to tolerate native epitopes by thymic selection. Therefore,
research in antigen-based therapies should also focus on targeting
neoantigens (Figure 2). Combining antigen with tolerogenic
adjuvants, such as blocking T cell activation (e.g., anti-CD3)
or co-stimulation (e.g., alefacept and abatacept) might limit
the risk of severe side effects, which treatments were recently
proven effective in mice and—to a certain extent—in humans.
The major pitfall is that co-stimulation is also necessary for
Tregs in humans, which might negatively affect the translation
to the clinic. So, perhaps it would be beneficial to investigate a
treatment regimen that depletes effector T cells, followed by Treg
enhancement, as these two methods might interfere too much
when administered simultaneously (17). Furthermore, as beta cell
neoepitopes are a strong trigger for autoimmunity induction and
are secreted under stress, agents that reduce beta cell stress (e.g.,
GLP-1 analogs, EGF, and Verapamil) could prevent autoimmune
attacks (15, 117) (Figure 2).

Another evolving strategy is to induce Treg expansion by
ectopic expression of antigen through antigen-encoding plasmid
vaccines (75). In recently diagnosed patients, pro-insulin peptide
injection increased IL-10 secretion and transcription factor
forkhead box P3 (FOXP3) expression, and lowered beta cell-
specific CD8T cells and stress (72). Next, an intramuscular
DNA vaccine to induce self-antigen expression—administered
weekly for 12 weeks—induced significantly improved C-peptide
levels until week 15 (75). Preclinical studies suggest that low
doses of anti-CD3 combined with such antigen-delivery could
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build tolerance (118, 119). Given their long-term expression,
adeno-associated virus (AAV) vaccines would be an interesting
corrective gene delivery system for T1D, perhaps targeting
multiple autoantigens, because only those CD8T cells are
reduced that are specific for the vector-expressed antigen (17, 75).

With the rapidly rising interest in the endotype concept,
where subtypes of T1D could be based on pathobiological
or functional mechanisms that cause T1D rather than the
clinical characteristics, personalized intervention therapy comes
in sight. Like asthma, treatments that target specific pathways
are only effective in some patient groups, suggesting there are
distinct subtypes of T1D with varying defective pathways that
lead to a similar clinical result. It becomes clear that certain
traits are linked, such as age, autoantibodies, and HLA-specific
autoimmunity (120). For example, high-risk HLA allele DR4 is
associated with early proinsulin autoantibodies. Similarly, high-
risk allele DR3 is associated with GAD autoantibodies. These
associations could form two distinct subtypes: proinsulin-DR4
and GAD-DR3 (8). Since drugs have very different efficacy based
on low or high B cell titres, such as rituximab, B cell infiltration
would also be a useful subtype.

Similarly, it would be useful to stratify clinical trials based on
these variables, as described in the Palette model by McCarthy
(121). He opts to cluster participants based on combinations of
alleles, traits, and genes. Then, their clinical responsiveness to the
investigational drug is mapped, which serves as a tool for clinical
decision making: if the patient has similar characteristics to one
distinct endotype, the treatment with highest benefit according to
their endotype would be preferably administered. Stratification
based on these endotypes would also lower variance, leading to
higher power or significance, which would take precision drugs
further toward phase 4 and to the market.

Lastly, whenever transplantation conditions are improved
and the engrafted tissue is not rejected, there would still be a
shortage of human donors, as they should be HLA-matched.
Therefore, humanized pancreas growth in pigs is currently under
investigation (122). This method blocks porcine pancreas growth

by engineering their blastocyst and inserting patient-specific
iPSCs. This technique was successful with mouse-derived stem
cells, but still awaits confirmation in human trials. Another
promising technique to tackle the shortage of (HLA matched)
donors and graft rejection is to genetically modify beta cells
using clustered regularly interspaced short palindromic repeats-
associated protein 9 (CRISPR-Cas9) (70, 123). Insulin-producing
beta cells were created that co-secrete IL-10, which protects them
from immune attacks. Additionally, this technique could also
knock-out endogenous HLA molecules and replace them with
HLA-E or HLA-G to avoid attack of natural killer cells (124).

To conclude, treatment responsiveness depends on certain
pathophysiological or genetic characteristics that are highly
variable between patients. Therefore, future research may benefit
from genome-wide association studies (GWAS) to gain insight
into linked genes and characteristics, from which new T1D
endotypes can be defined. Graft rejection or necrosis seem to
be the most challenging obstacles, for which immune-tolerated
and vascularized hydrogels and microspheres are promising
strategies. Furthermore, stress reducing agents and CRISPR-Cas9
may preserve beta cell function. Since T1D remains complex
and highly heterogenic, stratification of endotypes in clinical
trials would help development of precision medicines and
clinical decision making. Given the specular, ground-breaking
and paradigm shifting new insight into the pathogenesis and
diversity thereof of T1D, there is an urgent need to educate
the different stakeholders (T1D patients and their loved ones,
care providers, pharma, regulators and legislators) on realistic
possibilities, expectation and outcomes that will differ between
strategies and between patients (116). The future of T1D patients
and the therapy of their disease has already changed for the better
but there is still much to be gained.
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