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Abstract: This study provides a comparative assessment of the various nanodispersed markers and
related detection techniques used in the immunochromatographic detection of an antibiotic lincomycin
(LIN). Improving the sensitivity of the competitive lateral flow immunoassay is important, given
the increasing demands for the monitoring of chemical contaminants in food. Gold nanoparticles
(AuNPs) and CdSe/ZnS quantum dots (QDs) were used for the development and comparison of
three approaches for the lateral flow immunoassay (LFIA) of LIN, namely, colorimetric, fluorescence,
and surface-enhanced Raman spectroscopy (SERS)-based LFIAs. It was demonstrated that, for
colorimetric and fluorescence analysis, the detection limits were comparable at 0.4 and 0.2 ng/mL,
respectively. A SERS-based method allowed achieving the gain of five orders of magnitude in the
assay sensitivity (1.4 fg/mL) compared to conventional LFIAs. Therefore, an integration of a SERS
reporter into the LFIA is a promising tool for extremely sensitive quantitative detection of target
analytes. However, implementation of this time-consuming technique requires expensive equipment
and skilled personnel. In contrast, conventional AuNP- and QD-based LFIAs can provide simple,
rapid, and inexpensive point-of-care testing for practical use.

Keywords: lateral flow immunoassay; antibiotics; lincomycin; gold nanoparticles; quantum dots;
surface-enhanced Raman spectroscopy

1. Introduction

The lateral flow immunoassay (LFIA) is a common analytical platform for the point-of-care testing
of medical diagnostics and environmental monitoring because of its rapidity and simplicity. The LFIA
provides clear advantages, including the availability of results within a few minutes, the small volume
of an analyzed sample, and inexpensive and user-friendly point-of-care testing [1]. The LFIA combines
immunochemical reactions with a chromatography principle. It relies on interactions between an
analyte and pre-immobilized recognition elements initiated by the addition of a liquid sample. The
LFIA result is a signal at the test line generated by a nanodispersed reporter used. Despite all the
advantages mentioned above, the widespread use of LFIAs has been limited by their insufficient
sensitivity. Significant effort has been devoted to improving LFIA sensitivity, including the use of
alternative labels and detectors, as well as the addition of amplification stages [2,3].

Biosensors 2020, 10, 198; doi:10.3390/bios10120198 www.mdpi.com/journal/biosensors

http://www.mdpi.com/journal/biosensors
http://www.mdpi.com
https://orcid.org/0000-0003-3008-2839
https://orcid.org/0000-0003-4008-4918
http://dx.doi.org/10.3390/bios10120198
http://www.mdpi.com/journal/biosensors
https://www.mdpi.com/2079-6374/10/12/198?type=check_update&version=2


Biosensors 2020, 10, 198 2 of 15

To improve the sensitivity of the immunoassay, integration of the LFIA and surface-enhanced
Raman spectroscopy (SERS) was proposed. Because of a simple and cost-effective synthesis, gold and
silver nanoparticles are the most common SERS substrates [4]. Typically, nanostructured substrates are
functionalized with Raman reporter molecules to produce strong and characteristic peaks in SERS
spectra, thus enabling quantitative detection of target analytes. The effectiveness of the SERS-based
LFIA technique has been confirmed in numerous recent studies [5–8]. In addition to common AuNPs
or latex beads, magnetic and fluorescent particles are used as labels in LFIAs. QDs are used as labels
because of their unique optical properties, such as high fluorescence, broad and continuous distributed
excitation, photostability, and proven immunoassay effectiveness [9,10]. LFIAs with magnetic and
photoluminescent labels showed improved sensitivity for a wide range of analytes [11–14]. Among
other markers applied in LFIA, carbon nanoparticles can be mentioned [15,16]. Compared to other
labels, carbon nanoparticles are easily detected visually, which contributes to reducing the detection
limit of the analyte.

A survey of the literature shows there have been many works published on new immunoassay
markers, but they do not go beyond the description of the effectiveness at detecting a particular
analyte or report a comparison of the results with conventional gold nanoparticle-based LFIAs. These
regularities are poorly transformed into other objects of research. Therefore, the assessment of the
test systems with the same reagents that vary according to the kind of marker and readout technique
applied will provide more information.

During the study, we explored three approaches to improving LFIA sensitivity. To verify the
effectiveness of the proposed methods, we selected the antimicrobial lincomycin (LIN), which is
a product of Streptomyces lincolnensis bacteria. The known varieties of methods for quantitative
detection of LIN include mainly microbiological and chromatographic techniques [17]. The use
of accurate chromatographic methods is a common practice to identify and quantify antibiotics in
different matrices. Although chromatography–mass spectrometry is a highly sensitive and efficient
method, its use requires sample pretreatment, costly equipment, and specially trained personnel [18,19].
Recently, other techniques have also been reported for the determination of LIN in foodstuffs [20,21].
Numerous studies have reported the use of the enzyme-linked immunosorbent assay (ELISA) and
LFIA for monitoring LIN residues [22–24]. However, despite the availability of the techniques to
control antibiotics, there is great demand for the development of highly sensitive alternative ways
of (a) achieving simple pretreatment procedures (reduce it to dilution eliminating the matrix effect)
and (b) minimizing the risk of long-term consumption of contaminants at concentrations below
threshold levels.

In this study, the same bioreagents were used to compare different labels and readout systems
in a competitive LFIA for LIN. An increase in competitive LFIA sensitivity is possible by reducing
the concentration of immunoreagents; however, this decrease is limited by the ability to detect the
analytical signal. Beyond the optimization of reagent concentrations, improving the signal-generating
elements and readout techniques are other effective strategies to achieve increased assay sensitivity.
Moreover, the integration of sensitive detection techniques with LFIA allows for a reduction in
immunoreagent consumption.

The current study is a systematic investigation using LFIA integrated with different labels (AuNPs
and QDs) and readout techniques (colorimetry, fluorescence, and SERS) to detect LIN. AuNPs were
implemented both for traditional colorimetric detection and for coupling to SERS readouts. The
quantitative detection of LIN was performed by registering the colorimetric or fluorescence intensity
of AuNPs or QDs, respectively, captured on the test line. To design a SERS-based LFIA, AuNPs
functionalized with 4-mercaptobenzoic acid (4-MBA) and coupled with anti-LIN monoclonal antibodies
(AuNPs–MBA–Ab) were used as a SERS reporter bioprobe. In this case, a conventional LFIA procedure
was followed by registration of Raman spectra from the test line.
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2. Materials and Methods

2.1. Reactants

Lincomycin hydrochloride monohydrate (LIN), HAuCl4, sodium azide, sodium
citrate, Tween-20, Triton X-100, and 4-MBA were obtained from Sigma-Aldrich (St. Louis,
MO, USA). N-(3-dimethylaminopropyl)-N′-ethylcarbodiimide hydrochloride (EDC) and
sulfo-N-hydroxysuccinimide (NHS) were supplied from Fluka (Buchs, Switzerland). Goat
antibodies against mouse immunoglobulins (GAMI) were purchased from Arista Biologicals
(Allentown, PA, USA). Bovine serum albumin (BSA) was supplied from Eximio Biotec (Wuxi, China).
The CdSe/ZnS QDs with an emission peak at 625 nm were obtained from Invitrogen (Catalog No
A10200, Thermo Fisher Scientific, Waltham, MA, USA). All other reagents were of analytical grade.

Ultrapure water (Millipore Corporation, Burlington, MA, USA) with resistivity of 418.2 MΩ was
used to prepare the AuNPs and their conjugates as well as LIN stock solutions (100 µg/mL). The LFIAs
were carried out in 96-well transparent Costar 9018 polystyrene microplates provided by Corning
Costar (Tewksbury, MA, USA). Amicon Ultra-0.5 mL Centrifugal Filter (100 K) was purchased from
Millipore (Billerica, MA, USA).

2.2. Preparation of Monoclonal Anti-LIN Antibodies

A synthesis of the LIN–BSA conjugate and a preparation of anti-LIN antibodies were carried out
in accordance with the procedure described in the study by Cao et al. [25].

2.3. Synthesis and Characterization of AuNPs

AuNPs with an average diameter of 30 nm and 40 nm were prepared according to the
citrate-reduction method [26]. To obtain 30 nm AuNPs, 1 mL of 1% HAuCl4 was added to 97.5 mL of
ultrapure water and heated to boiling. After that, 1.5 mL of 1% sodium citrate was added immediately
to the boiling solution during vigorous stirring. The mixture was left to boil for 25 min and then cooled.
The colloidal AuNPs were stored at 4 ◦C.

To obtain AuNPs with an average diameter of 40 nm, 1.5 mL of 1% sodium citrate was added to
100 mL of boiling 0.01% HAuCl4 aqueous solution under rapid agitation. The solution was then boiled
for another 15 min and cooled to room temperature.

The transmission electron microscopic (TEM) images were recorded with a JEM-100C electron
microscope (JEOL, Tokyo, Japan) operating at 80 kV. The AuNP preparations were applied to 300-mesh
grids (Pelco International, Redding, CA, USA) coated with formvar film. The images obtained were
analyzed using Image Tool software (University of Texas Health Science Center, San Antonio, TX,
USA). UV–vis absorption spectra were obtained through spectrophotometer UV-2450 (Shimadzu,
Kyoto, Japan).

2.4. Conjugation of Antibodies to AuNPs

Antibody–AuNPs conjugates were prepared according to the previously described technique [27].
Anti-LIN antibodies were dialyzed against a Tris-HCl buffer (10 mM, pH 8.5), and added to AuNPs at
a concentration of 10 µg/mL (OD520 = 1). The mixture was incubated for 45 min while stirring at room
temperature. BSA in the final concentration of 0.25% was further added to this preparation, followed
by stirring for 15 min. The excess reagents were removed by centrifugation at 9500× g for 15 min,
followed by resuspension of the antibody–AuNPs pellet in Tris buffer (10 mM, pH 8.5) with 1% BSA,
1% sucrose, and 0.1% sodium azide (TBSA).
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2.5. Conjugation of Antibodies with QDs

Anti-LIN antibodies were dialyzed against a borate buffer (50 mM, pH 8.7). The molar ratio of QDs
to anti-LIN antibodies during synthesis was 1:2. Antibodies (300 µL, 0.2 mg/mL), QDs (25 µL, 8 µM),
and freshly prepared EDC and NHS solutions (50 µL, 0.8 mM each) were mixed. After incubation for
90 min in a dark place at room temperature, the resulting mixture was purified by centrifugation at
10,000× g for 15 min using Amicon Ultra 100 kDa tubes (Billerica, MA, USA).

The centrifugation was repeated four times, and, finally, 14 µL of QDs with a concentration of
4.26 mg/mL was obtained.

2.6. Synthesis of the Raman Reporter Bioprobe

To a solution of 40 nm diameter AuNPs (10 mL), 10 µL of 1 mM 4-MBA in ethanol was added [28].
The mixture was incubated for 3 h, followed by centrifugation at 5000× g for 15 min. The resulting
pellet was resuspended in water.

To prepare the AuNPs–MBA–Ab bioprobe, Au–MBA conjugate and anti-LIN antibodies were
adjusted to pH 8.9 with 0.1 M K2CO3. Anti-LIN antibodies at a concentration of 10 µg/mL were added
to 2 mL of Au–MBA and incubated for 3.5 h at room temperature. Then, 50 µL of 10% BSA was added
and incubated overnight at 4 ◦C. After that, the mixture was centrifuged at 9000× g, for 10 min. The
pellet was resuspended in an equal volume of water and stored at 4 ◦C.

2.7. Preparation of Test Strips

The schemes of three LFIA formats are shown in Figure 1. Test strips were assembled using
MdiEasypack membrane sets (Advanced Microdevices, Ambala Cantt, India) comprising the following
elements: a plastic support, a CNPC nitrocellulose working membrane with a pore size of 15 µm,
a PT–R7 conjugate fiberglass pad (in case of conventional AuNP- and QD-based LFIAs), a GFB-R4
sample pad, and an AP045 absorbent pad. The control line was formed by applying 0.5 mg/mL GAMI
in a K-phosphate buffer (PBS, 50 mM, pH 7.4, with 0.1 M NaCl) by an Iso-Flow automatic dispenser
(Imagene Technology, Hanover, NH, USA). To form a test line, LIN–BSA conjugate (0.5 mg/mL—for
AuNPs-based, 0.15 mg/mL—for QD-based, and 0.2 mg/mL—for SERS-based LFIAs, in PBS) was applied.
After that, the test strips were dried at 37 ◦C for 2 h. For AuNP-based LFIA, the antibody-AuNPs
conjugate in TBSA containing 0.05% Tween-20 was applied to the conjugate pad and dried at room
temperature overnight. For QD-based LFIA, 1 µL of antibody–QDs conjugate (0.09 µM) in a borate
buffer (BB, 0.05 M with 1% BSA, 0.1% sucrose, and 0.1% sodium azide, 0.05% Tween-20) was applied to
the interface of the sample pad and nitrocellulose membrane and dried at room temperature overnight.
Finally, the assembled multimembrane composites were cut into individual test strips 3 mm wide
using an automatic guillotine cutter (Index Cutter-1, A-Point Technologies, Gibbstown, NJ, USA).

2.8. LFIA Procedures

2.8.1. Colorimetric and Fluorescent LFIAs

Solutions of LIN (1 µg/mL–1 pg/mL) in PBST (100 µL) were dripped onto the microplate wells.
The test strips were vertically placed into the well and left to react for 15 min. The color intensity
(in the case of AuNP-based LFIA) of the formed bands was scanned by the CanoScanLiDE 90
(Canon, Tokyo, Japan). The fluorescence intensity (for QD-based LFIA) was recorded under UV light
excitation. The obtained images were then digitized using the TotalLab program (Nonlinear Dynamics,
Newcastle upon Tyne, UK).
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Figure 1. Schemes of lateral flow immunoassay (LFIA) formats developed in the study: conventional
colorimetric gold nanoparticle (AuNP)-based LFIA (a); fluorescent quantum dot (QD)-based LFIA (b);
AuNP-based LFIA with surface-enhanced Raman scattering (SERS) detection (c).

2.8.2. SERS-Based LFIA

To perform the SERS-based LFIA, 2 µL of AuNPs–MBA–Ab bioprobe was pipetted onto
the sample pad approximately 1 cm below the nitrocellulose membrane, and 100 µL of LIN
(100,000–1 × 10−8 ng/mL) in PBS containing 0.05% Triton X-100 (PBST) was added into the microplate
wells. The test strips were vertically inserted into the wells and left to react for 15 min. Then, the
Raman spectra from 10 points along the middle of the test line were collected using a DXR Raman
microscope (Thermo Fisher Scientific, Madison, WI, USA). The SERS settings were selected with the
identical registering technique [29,30]. All spectra were obtained under the same conditions: The
excitation source was tuned at 780 nm and laser power of 20 mW; the exposure time was 10 s. A 10×
objective lens (NA = 0.25) was used to focus a laser spot on the surface of the test strip.

3. Results and Discussion

3.1. Synthesis and Characterization of Signal Markers

AuNPs were used as a reporter label in conventional and SERS-based LFIAs. AuNPs of a diameter
close to 30 nm were reported to be optimal for traditional immunochromatography [31], whereas
larger particles are preferable in SERS-based LFIAs. The optimal size of AuNPs for the preparation
of a SERS-active probe was previously found to be no more than 50 nm [32]. Therefore, to achieve a
desirable sensitivity and high reproducibility in SERS-based LFIAs, AuNPs with an average size of
40 nm were preferred. To prepare AuNPs with diameters of 30 and 40 nm, a simple method of sodium
citrate-associated reduction of chloroauric acid was applied. According to this method, the size of
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the resulting AuNPs is varied by adding different amounts of the reducing agent: to obtain larger
particles, a smaller volume of reducing agent is required. The selection of 4-MBA as a Raman reporter
molecule stems from the widespread use of thiol-containing aromatic molecules because of their
ability to conjugate directly to the gold surface and provide surface carboxyl groups for biomolecule
binding [33]. To optimize the composition of the AuNPs–MBA–Ab bioprobe, the amount of added
4-MBA was varied in the range of 10–50 µL per 10 mL of AuNPs. It was demonstrated that an excess
of 4-MBA could cause the aggregation of AuNPs, as evidenced by a red-shifted absorbance peak in
UV–vis spectra and a color change of the AuNPs–MBA–Ab probe (data not shown). Therefore, 10 µL
of 1 mM MBA was proven to be sufficient for preparation of a stable AuNPs–MBA conjugate.

The size and shape of AuNPs were estimated by TEM and UV–vis spectroscopy (Figure 2). The
as-prepared AuNPs showed localized surface plasmon resonance at 523 and 527 nm for AuNPs of 30
and 40 nm, respectively. After the conjugation process, the slight redshift of the maximum peak of
AuNPs–MBA–Ab was observed, which indicates a successful conjugation of Au–MBA and anti-LIN
antibodies. The TEM images revealed spherical morphology and homogeneity with a size distribution
in the range of 29.5 ± 7.4 nm and 39.5 ± 5.0 nm, and a degree of ellipticity of 1.3 for two AuNPs
preparations (Figure 2b,c). According to the manufacturer, the size of carboxyl quantum dots varies
from 15 to 20 nm.
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Figure 2. (a) UV–vis spectra of AuNPs of 30 nm (a) and 40 nm (b) diameter, and AuNPs functionalized
with 4-mercaptobenzoic acid (4-MBA) and coupled with anti-lincomycin (LIN) monoclonal antibodies
(AuNPs–MBA–Ab) (c); (b) microphotograph of AuNPs for colorimetric LFIA. The average diameter
is 29.5 ± 7.4 nm and the degree of polydispersity is 1.3; (c) microphotograph of AuNP–MBA for
SERS-based LFIA. The average diameter is 39.5 ± 5.0 nm and the degree of polydispersity is 1.3.
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3.2. AuNP-Based LFIA

Given the need to detect a low molecular weight compound in this study, a direct competitive
LFIA format was performed (Figure 1). In this assay, free LIN present in the sample competed with
the immobilized LIN–BSA conjugate in regard to binding with specific anti-LIN antibodies. The
binding sites of the specific anti-LIN antibodies labeled with different nanodispersed markers were
first occupied with the target analyte. And thereafter the excess labeled antibodies were captured by
the LIN-BSA conjugate, which in turn was detected by employing different detection techniques. Thus,
the signal intensity on the test line of the strip was inversely proportional to the concentration of LIN
in the sample. The preliminary characterization of the immune properties of monoclonal anti-LIN
antibodies used by ELISA confirmed their high affinity (Figure S1) and allowed for the development
of LFIAs.

The scheme of the conventional AuNP-based LFIA is presented in Figure 1a. For the LFIA,
LIN–BSA conjugate, and GAMI were applied to form test and control lines on the working membrane,
respectively. The specific antibody-labeled AuNPs was immobilized on the fiberglass pad. The assay
conditions were optimized to achieve the lowest detection limit at a high amplitude of the analytical
signal. As a result, the following conditions were found to be optimal for three formats of assay:
0.5 mg/mL—for AuNP-based, 0.15 mg/mL—for QD-based, and 0.2 mg/mL—for SERS-based LFIAs
(the concentration varies from 0.2 to 1 mg/mL) and 0.5 mg/mL for GAMI (the concentration varies from
0.15 to 0.5 mg/mL). The AuNPs-anti-LIN antibodies solution was then applied to the conjugate pad
at the concentration corresponding to OD520 = 1 (we tested OD520 in the range from 0.5 to 2.5). The
overall performance of the LFIA was explored by varying the concentration of the analyte (from 1000
to 0.001 ng/mL). Under optimal experimental conditions, the AuNP-based LFIA exhibits linearity over
the range of 0.7–7.2 ng/mL with an instrumental detection limit of 0.4 ng/mL (Figure 3). The cutoff was
10 ng/mL with the assay duration of 15 min.
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Figure 3. Calibration curve of LIN in the AuNP-based LFIA and the digital photographs of the LFA
strips after conventional AuNP-based LFIA procedure. The LIN-BSA conjugate was applied at the
test line at a concentration of 0.5 mg/mL. The AuNPs-anti-LIN antibodies solution was applied at a
concentration corresponding OD520 = 1. LIN concentrations are given at the bottom of the test strips.
The error bars indicate the standard deviations for three measurements.
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3.3. QD-Based LFIA

The scheme of QD-based LFIA is demonstrated in Figure 1b. For QD-based LFIA, the selection
of working membranes aimed to decrease background fluorescence was carried out together with
the optimization of specific reagent concentrations described above. For this purpose, CNPC SS12
12/15 µ (Advanced Microdevices), HF120, and HF180 (Millipore) membranes differing in pore size
and flow rates were tested. Figure 4 indicates that the use of CNPC SS12 (of a 12 and 15 µm pore
size, respectively) leads to the formation of background coloration over its entire surface. Testing of
Millipore membranes with different pore sizes and flow rates demonstrated that the application of the
Millipore HF180 membrane facilitated achieving the maximum analytical signal intensity (as opposed
to a 20% reduction in intensity when using a HF120 membrane), eliminating nonspecific binding, and
ensuring uniform movement of samples.
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Figure 4. Images of the test zones after the LFIA performed using CNPC SS12 and Millipore HF180
membranes. The LIN-BSA conjugate concentration was 0.15 mg/mL.

The next stage of assay optimization was to select the optimal reaction medium that would
decrease nonspecific binding and provide a higher signal intensity. The use of PBST as a buffer solution
for QD-based LFIA led to nonspecific binding of the antibody–QDs conjugate and background staining
of the working membrane. For LIN detection, significantly higher signal intensities were obtained
with BB. It is acknowledged that, for the effective elution of the antibody–QDs conjugate and its
movement along the membrane, detergents must be added to the buffer [26]. It was shown that the
addition of Tween-20 (0.05%), BSA (1%), and sucrose (0.1%) to BB eliminated the nonspecific sorption
of QD-labeled antibodies in the test zone and increased the intensity of the analytical signal by 15%.
BSA and sucrose were added to the buffer to reduce the flow rate (due to a viscosity increase) and,
hence, to maximize the contact time of the sample with the labeled antibodies. Furthermore, the use of
BSA allows blocking the sites of nonspecific sorption of the conjugate [34].

An antibody–QDs conjugate solution was applied to the interface of the sample pad and working
membrane at a volume of 1 µL and a concentration range of 0.09 to 0.28 µM. The 0.09 µM conjugate
concentration was shown to give the optimal fluorescence intensity. A further decrease in the
concentration of the antibody–QDs conjugate led to a drop in the signal amplitude and a decrease in
the reproducibility of the test results.

Figure 5 shows the calibration curve for LIN detection in the optimized LFIA. The instrumental
LOD was 0.2 ng/mL and the dynamic linear range was 0.6–10.4 ng/mL. The visual LOD was 20 ng/mL.
QD-based LFIA can provide results in 15 min.
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Figure 5. Calibration curve of LIN in the QD-based LFIA and image of the test strips with increasing
concentration of LIN ranging from 0.1 to 100 ng/mL under following optimal conditions: The LIN-BSA
conjugate was applied at the test line at a concentration of 0.15 mg/mL; 1 µL of antibody–QDs conjugate
(0.09 µM) was applied to the interface of the sample pad and nitrocellulose membrane. The error bars
indicate the standard deviations for three measurements.

3.4. SERS-Based LFIA

The principle of the SERS-based LFIA is illustrated in Figure 1c. In this study, the bioconjugates of
the anti-LIN antibody and AuNPs functionalized with 4-MBA were applied as both a Raman reporter
bioprobe and a detection probe. In this study, 4-MBA was chosen as the reporter molecule because of its
ability to provide a strong binding to the AuNP surface and high SERS-signal while being in proximity
with a metal surface (enhancement factor up to 1 × 107) [35]. To obtain the optimal characteristics of
the test-system, the following parameters were optimized: The amount of the LIN–BSA conjugate
immobilized on the test line; the amount of the Raman reporter bioprobe. After immersing the test strips
in 100 µL of the LIN solutions, visual staining was detected on the test line after 15 min. According to
the competitive format of assay, the color intensity and, consequently, the SERS signal provided by the
AuNPs-MBA-Ab probe is inversely proportional to the LIN concentration. As shown in Figure 6, the
SERS spectra of the Raman reporter bioprobe are characterized by two intense peaks at 1077 cm−1 and
1580 cm−1, which in conformity with spectral data for the MBA molecule [36] correspond to vibrations
in the aromatic ring. Therefore, this confirms the specific binding of reporter bioprobe to the LIN-BSA
conjugate on the test line. The highest peak at 1077 cm−1 was used further to quantify the antibiotic
content. As follows from the spectra corresponding to different LIN concentrations, the SERS intensity
gradually decreases at 1077 cm−1 with an increase in the concentration of antibiotics.
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Figure 6. SERS spectra arising from MBA on a test line for various LIN concentrations following the
LFIA procedures under optimal conditions: The amount of AuNPs–MBA–Ab bioprobe was 2 µL; the
amount of LIN–BSA conjugate was 0.2 mg/mL.

To investigate the impact of the Raman reporter bioprobe, AuNPs–MBA–Ab in amounts ranging
from 1 to 5 µL were dotted on a sample pad of the strip (Figure 7a). For the coating antigen immobilized
on the test line, LIN–BSA with concentrations ranging from 0.2 to 0.5 mg/mL were investigated,
respectively (Figure 7b). The amount of these components is shown to have no significant influence on
assay sensitivity (Figure 7).
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Figure 7. Calibration curves of the SERS-based LFIA of LIN for various LIN–BSA conjugate and
AuNPs–MBA–Ab bioprobe amounts. (a) The amount of AuNPs–MBA–Ab bioprobe was 1 µL (1)
and 4 µL (2); (b) the amount of LIN–BSA conjugate was 0.2 mg/mL (1) and 0.5 mg/mL (2). B and B0

(B0 ≈ 1000 a.u.) correspond to the SERS intensities of MBA at 1077 cm−1, when standard and zero LIN
solutions were applied to the sample pad, respectively. The error bars indicate the standard deviations
for three measurements.

When the LIN–BSA concentration and a loading of an AuNPs–MBA–Ab bioprobe increased, the
Raman intensities decreased. In contrast, a decrease in the amount of Raman reporter bioprobe and
the concentration of the immobilized LIN–BSA conjugate allowed for the expansion of the dynamic
range of the detected LIN concentrations. Therefore, the optimal amount of LIN–BSA conjugate
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was 0.2 mg/mL and the amount of AuNPs–MBA–Ab bioprobe added to the strip was 2 µL. The
results shown in Figure 8 indicate that the dynamic linear range of the SERS-based LFIA varies from
2.8× 10−6 to 10 ng/mL with a detection limit of 1.4× 10−6 ng/mL. Such improved analytical characteristics
can be explained by the high sensitivity of SERS detection toward a reporter molecule, which allows
for simultaneous reduction in the amount of immobilized LIN-BSA conjugate and the Au-MBA-Ab
reporter bioprobe. Not enough attention is being paid to the development of LFIA for LIN. According
to the data shown in Table 1, most studies are devoted to the development of conventional colorimetric
LFIAs for the detection of LIN, including instances where LIN is part of a panel of antibiotics (multiplex
assay format).
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optimal assay conditions: The amount of AuNPs–MBA–Ab bioprobe was 2 µL; the LIN–BSA conjugate
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from MBA reporter molecule at 1077 cm−1 measured from 10 points along the middle of the test line.

Table 1. Lateral flow immunoassay (LFIA) tests for lincomycin detection.

Target Analyte LFIA Formats Signal Marker Limit of Detection References

Lincomycin (and
chloramphenicol, tetracycline) Multiplex LFIA 30 nm AuNPs 0.4 ng/mL [37]

Lincomycin (and gentamicin,
kanamycin, streptomycin,

neomycin)
Multiplex LFIA 15 nm AuNPs 2.5 ng/mL [38]

Lincomycin Fluorescence
LFIA

Fluorescent
microspheres 0.69 ng/mL [23]

Lincomycin (and clindamycin,
pirlimycin)

Conventional
LFIA 20 nm AuNPs 10 ng/mL [39]

Lincomycin Indirect LFIA 30 nm AuNPs 8 pg/mL [24]

Abbreviations: AuNPs—gold nanoparticles.

Replacing AuNPs with fluorescent microspheres made it possible to achieve a small gain in the
assay sensitivity [23]. However, a significant decrease in the detection limit of LIN was achieved
in our previous study (up to 8 pg/mL) when an indirect LFIA was implemented. In this study, the
implementation of SERS readout technique in AuNP-based LFIA using the same immunoreagents
revealed an approximately three orders of magnitude improvement in assay sensitivity. It should,
however, be pointed out that such high sensitivity is resulted not only from the implementation
of effective readout techniques but also from the excellent characteristics of the applied antibodies,
the affinity of which was 1.15 × 109 M−1 (according to information provided by the manufacturer).
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To date, the integration of immunoassay, in particular LFIA, with the SERS detection technique for
the development of highly sensitive quantitative test systems is just getting started. Nevertheless,
a number of studies prove the effectiveness of this method for the determination of target analytes
at low concentrations [30,40–42]. The current study demonstrates excellent performance of the test
system reached by the integration of the SERS technique with LFIA, and this integration may be
considered as a potential tool for sensitive screenings of antibiotics. However, SERS technique,
which is attractive because of its ability to detect extremely low analyte concentrations, is difficult to
classify as point-of-care testing unless it is a handheld Raman reader format. As a result of the steps
taken to design simple and portable SERS-based LFIA readers, the commercial availability of such
devices may be expected in the future [43,44]. On the contrary, AuNP- and QD-LFIAs are fast and
cheap out-of-laboratory techniques available today, the results of which can be quantified even using
smartphones or handheld readers [45,46]. Therefore, the choice of appropriate technique is influenced
by the object of study.

4. Conclusions

In the current study, several LFIA approaches using the antibiotic LIN as the relevant contaminant
of food products were performed and compared, including conventional AuNP-based LFIA, fluorescent
QD-based LFIA, and SERS-based LFIA. AuNP- and QD-based LFIAs are confined to the limit of
detection of the nanodispersed label used and the analyses were carried out in the direct competitive
format with use of anti-LIN antibodies labeled with AuNPs or QDs. The colorimetric AuNPs-based
LFIA was characterized by the detection limit of 0.4 ng/mL. The replacement of the colorimetric
marker with a fluorescent one resulted in a slight enhancement in sensitivity (the detection limit was
0.2 ng/mL). To address current challenges of LFIA biosensors associated with the lack of sensitivity
and limits in quantitative analysis, the novel SERS-based LFIA for LIN was developed. The limit
of detection determined by SERS experiments was 1.4 × 10−6 ng/mL. Notably, the sensitivity of
AuNP- and QD-based LFIAs are defined by the detection limit of the nanodispersed marker on the
test strip, while in the case of SERS-based LFIA an indirect registration of the signal from the Raman
reporter molecule using a highly sensitive device is performed. Therefore, the ordinary comparison of
the detection limits achieved using the considered three approaches is not quite legitimate and the
choice of a nanodispersed marker and a signal detection technique should be determined by several
parameters, in particular, the aim of the study, facilities of the laboratory, the nature of the target analyte
and requirements to its maximum residue limits. The proposed SERS-based LFIA, which possesses
both high sensitivity and quantitative evaluation capabilities, confirms the effectiveness of the SERS
technique for the sensitive detection of target analytes. This implies that handheld Raman readers for
quantitative LFIA could potentially facilitate sensitive point-of-care tests. To our knowledge, ours is
the first report of quantitative LIN detection by fluorescence and SERS-based LFIA, which also presents
a promising tool for other contaminants.

Supplementary Materials: The following are available online at http://www.mdpi.com/2079-6374/10/12/198/s1.
Figure S1: Competitive curve for the ELISA of LIN. The detection limit of LIN (IC10) is 0.08 ng/mL, its concentration
causing 50% inhibition of the antibody binding (IC50) is 0.69 ng/mL. The error bars indicate the standard deviations
for three measurements.
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