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Anthropogenic disturbances and global climate change are causing large-scale
biodiversity loss and threatening ecosystem functions. However, due to the lack of
knowledge on microbial species loss, our understanding on how functional profiles
of soil microbes respond to diversity decline is still limited. Here, we evaluated the
biotic homogenization of global soil metagenomic data to examine whether microbial
functional structure is resilient to significant diversity reduction. Our results showed
that although biodiversity loss caused a decrease in taxonomic species by 72%, the
changes in the relative abundance of diverse functional categories were limited. The
stability of functional structures associated with microbial species richness decline in
terrestrial systems suggests a decoupling of taxonomy and function. The changes
in functional profile with biodiversity loss were function-specific, with broad-scale
metabolism functions decreasing and typical nutrient-cycling functions increasing. Our
results imply high levels of microbial physiological versatility in the face of significant
biodiversity decline, which, however, does not necessarily mean that a loss in total
functional abundance, such as microbial activity, can be overlooked in the background
of unprecedented species extinction.

Keywords: biodiversity loss, ecosystem function, metabolism, nutrient-cycling, functional stability

INTRODUCTION

Species loss caused by human activities exceeds natural background levels by several orders of
magnitude (Pimm et al., 1995; Purvis et al., 2000). It is therefore essential to understand the
consequences of biodiversity decline in ecosystem processes and functioning (Purvis and Hector,
2000; Dıaz et al., 2003). As a result of global biodiversity loss, heterogeneous species are replaced
by homogenous thrivers (McKinney and Lockwood, 1999), leading to biotic homogenization at
global scales (Olden et al., 2004). Most studies simulating species loss use the random and trait-
independent extinction models (Naeem et al., 1994; Tilman et al., 1996, 1997a,b; Van Der Heijden
et al., 1998; Hector et al., 1999; Kennedy et al., 2002) and assume that species can go extinct in any
order. However, biodiversity decline is generally nonrandom (Purvis et al., 2000; Solan et al., 2004),
because the few “winners” that replace many “losers” are not randomly distributed in taxonomy or
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ecological groups (McKinney and Lockwood, 1999; Olden et al.,
2004). Thus, studies that adopted a directed species loss model,
such as experiments that nonrandomly remove species or
functional types from established communities (Dıaz et al.,
2003; Chen et al., 2020), are more powerful for discerning how
extinction realistically affect ecosystem functioning.

Despite being the major regulator for global biogeochemical
cycles, the contribution of microbial diversity to ecosystem
functions has been obscured until the last decade (Philippot
et al., 2013; Wagg et al., 2014; Bastida et al., 2016; Delgado-
Baquerizo et al., 2016b). Understanding the relationship between
microbial composition and function at a global scale is
essential for predicting changes in ecosystem function under
various environmental disturbances (Torsvik and Ovreas, 2002;
Wellington et al., 2003; McGill et al., 2006). Although microbial
communities are highly heterogeneous, their overall functions
have been found to be similar (Louca et al., 2016), possibly
attributable to the functional redundancy of soil microbes
(Rosenfeld, 2002; Allison and Martiny, 2008). The extent of
decoupling between taxonomy and function may also differ
between “general” ecosystem processes carried out by a wide
range of microbes, such as substrate decomposition (Yin et al.,
2000; Rousk et al., 2009; Banerjee et al., 2016), and “special”
functions specialized by particular microorganisms (Schimel and
Körner, 1995; Balser et al., 2002), such as methane production.
Yet, most microbial species loss studies used a random extinction
model to create a gradient of microbial diversity achieved
by serial dilutions (Peter et al., 2011; Philippot et al., 2013;
Delgado-Baquerizo et al., 2016a). Hence, our knowledge on
how soil biodiversity loss and simplification of soil community
composition influence microbial functional profiles across the
globe is still limited.

With the advances in molecular biological technologies,
metagenomics have been increasingly used as a promising tool
(Tringe et al., 2005) for studying the relationship between
functional and taxonomic diversities (Fierer et al., 2012a,b, 2013;
Pan et al., 2014; Leff et al., 2015; Souza et al., 2015). Using
metagenomics, the abundance of each gene can be assigned to
a particular process, and numerous ecosystem functions can
be examined simultaneously in one soil sample (Allison and
Martiny, 2008). The assessment of multiple functions at the same
time acknowledge the importance of multifunctionality (Hector
and Bagchi, 2007) and can avoid overestimating functional
redundancy (Gamfeldt et al., 2008). To date, open-source web
servers are publicly available for metagenomic analyses of
taxonomic and functional diversities at global scales (Nelson
et al., 2016; Ramírez-Flandes et al., 2019), which enable in silico
evaluation of changes in functional profiles responding to
microbial species loss. Thus, a synthetic metagenome-enabled
estimate of microbial community and function resulting from
biotic homogenization is urgently needed.

Here, we constructed five pairs of taxonomic and functional
datasets to evaluate five levels of sequential species loss based
on 933 soil metagenomes publicly available from 56 MG-RAST
studies published in 56 peer-reviewed papers (Figures 1, 2A and
Supplementary Table 1). On the basis of this global metagenomic
study, we tested our hypotheses that: (1) compared to dramatic

taxonomic variation, microbial functional structures are resilient
to biodiversity loss, and (2) microbial homogenization caused
differential responses in functional profiles between “general”
and “special” processes.

MATERIALS AND METHODS

Data Collection
To ensure the quality and integrity of the collected metagenomic
data, we only used soil metagenomes that have been published
in peer-reviewed publications to construct our metagenomic
dataset. Using the key words, such as “soil metagenome,”
“shotgun sequencing,” and “MG-RAST,” we obtained a total
of 933 soil metagenomes from the MG-RAST server based
on 56 peer-reviewed publications from 2012 to 2019 around
the world (Figure 1), which have directly submitted their soil
shotgun sequences with/without assembly to the MG-RAST
database with public accessibility. Detailed information is given
in Supplementary Table 1, including Study ID, MG-RAST
ID, sample name, publication, latitude (LAT) and longitude
(LONG), base pair, sequence hits of taxonomy, and function.
The geographic coordinates of LAT and LONG of each soil
metagenome were directly originated from publications or
metadata in the MG-RAST server.

We downloaded data of soil taxonomic compositions and
functional categories at each level based on the information of
Study ID and/or MG-RAST ID from the MG-RAST server. We
used the RefSeq (Tatusova et al., 2014; phylum, class, order,
family, and genus levels) database as taxonomic compositions
and the Subsystems (Overbeek et al., 2013; 1, 2, 3, and
function levels) database as functional profiles. We preferred the
Subsystems database over the KEGG Orthology (Kanehisa et al.,
2015), Clusters of Orthologous Groups (Galperin et al., 2015),
and Non-supervised Orthologous Groups (Huerta-Cepas et al.,
2016) databases, because it has diverse classifications at level
1, allowing comparison of significant variation among different
functional categories at this level.

We performed analyses using default settings in the MG-
RAST server. Specifically, we set the maximum e-value cutoff at
1e-5, minimum identity cutoff at 60%, and minimum alignment
length at 50 (Meyer et al., 2008). To construct a sequential
reduction of microbial species, we added each major phylum to
the database step by step in descending order of their relative
abundance. Specifically, to generate a functional profile with only
one phylum of Proteobacteria, in the “Analysis” of the MG-RAST
server, we chose “Subsystems” as “source,” selected “function”
as “level,” and added “Proteobacteria,” the taxonomic phylum
that we are interested, in “taxonomy filter” with “RefSeq” as
source, and “phylum” as level. In the same way, Proteobacteria
and Actinobacteria were selected to represent two remaining
phyla. Five remaining phyla were Proteobacteria, Actinobacteria,
Bacteroidetes, Acidobacteria, and Firmicutes. Eight remaining
phyla were Proteobacteria, Actinobacteria, Bacteroidetes,
Acidobacteria, Firmicutes, Verrucomicrobia, Planctomycetes,
and Chloroflexi. Thus, we created functional profiles of five
levels of sequential species loss named by the remaining phylum
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FIGURE 1 | Global distribution of soil metagenomes. Locations of 933 soil metagenomes from 56 publications used in this study. Legends show seven groups of
publication periods. Sample sizes of each group are given in parentheses.

numbers, which were all 75 phyla (All), 8 phyla (Eight), 5 phyla
(Five), 2 phyla (Two), and 1 phylum (One; Figure 2A).

Statistical Analyses
Our soil metagenomic data were collected from studies
conducted in different locations with different sampling sizes
and sequencing depths, which may lead to some bias to our
results. To overcome such limitation and minimize bias in
sequencing depths among different studies, we standardized
the data to relative abundance by dividing hits of taxonomic
compositions and functional categories at each level by total
hits. Based on the relative abundance of functional categories
at the function level and taxonomic compositions at the genus
level, we further calculated Bray–Curtis similarity to construct a
pairwise Bray–Curtis similarity matrix in PRIMER 7 (Plymouth
Routines in Multivariate Ecological Research Statistical Software,
v7.0.13, PRIMER-E Ltd., Plymouth, United Kingdom; Clarke
and Gorley, 2015). Based on the pairwise Bray–Curtis similarity

matrix, we conducted principal coordinates analysis (PCoA)
and one-factor permutational multivariate analysis of variance
(PERMANOVA) of the main test (pseudo-F statistics) and
pair-wise test (pseudo-t statistics) in PRIMER 7 to examine
how beta-diversity of the taxonomic composition at the genus
level (Taxonomy) and functional profiles at the function level
(Function) was affected by sequential species loss. To show the
normalized relative abundance of all functional categories at
level 1 affected by sequential removal of phyla, we constructed
a heat map using dendrograms of hierarchical cluster analysis
HeatMapper (Babicki et al., 2016) to group functions based on
“Average Linkage” as the clustering method and “Spearman Rank
Correlation” as the distance measurement method. To assess the
effects of species loss on the beta-diversity of different functions,
we separated functional profiles by functional categories at level
1. Based on the relative abundance of functional categories at the
function level in each function, we further calculated Bray–Curtis
similarity and performed one-factor PERMANOVA of the main
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FIGURE 2 | Significant species loss. (A) Names of remaining phyla following
sequential species loss. (B) The species (S) and individuals (N) of taxonomic
compositions at the genus levels and functional categories at the function
levels affected by sequential species loss.

test in PRIMER 7 to estimate the statistical significance (pseudo-
F) in the beta-diversity of different functions affected by species
loss. We used Pearson’s correlations to assess the relationships
between the reduction of species and individuals in taxonomy
and function, as well as the statistical significance (pseudo-F) of
the changes in different functions and their relative abundance
along sequential species loss.

To examine the potential interactions of taxonomic
compositions and functional categories across the globe, we
performed the co-occurrence network analysis using the
Molecular Ecological Network Analyses Pipeline1 (Zhou et al.,
2011; Deng et al., 2012). We standardized the relative abundance
of taxonomic compositions at the genus level and functional
categories at level 3 to meet the pipeline’s requirements and
further submitted it to construct the network with default
settings, including: (1) only keeping the species present in
more than a half of all samples; (2) only filling with 0.01 in
blanks with paired valid values; (3) taking the logarithm with

1http://ieg4.rccc.ou.edu/MENA/

the recommended similarity matrix of Pearson’s correlation
coefficient; and (4) calculation order to decrease the cutoff from
the top using regress Poisson distribution only. We generated a
default cutoff value (similarity threshold, St) for the similarity
matrix to assign a link between the pair of species. Then, we ran
the global network properties, the individual nodes’ centrality,
and the module separation and modularity calculations based
on default settings using greedy modularity optimization. We
exported and visualized network files using the Cytoscape
software (Shannon et al., 2003).

RESULTS

Significant Reduction of Both Microbial
Taxonomic and Functional Species
Reducing microbial phylum numbers from all 75 to only 8
dominant bacterial phyla significantly decreased the taxonomic
species by 48% (Figure 2B). Further removing three phyla
(Verrucomicrobia, Planctomycetes, and Chloroflexi) only
triggered a reduction in taxonomic species by 5%. However,
these two steps of species loss each caused a decrease in
taxonomic individuals, which is the total number of hits of all
species, by 9%. Further removals of three phyla (Bacteroidetes,
Acidobacteria, and Firmicutes) diminished the taxonomic
species by 30% and individuals by 18%. Reduction from two
phyla (Proteobacteria and Actinobacteria) to only Proteobacteria
led to the greatest reduction in taxonomic individuals by 32%
and a decline in species by 20%. Thus, the decrease in taxonomic
individuals (Pearson’s correlation r2 = 0.95, p< 0.0001) was more
linear than species (Pearson’s correlation r2 = 0.82, p < 0.0001).
For functional species and individuals, sequential reduction
of phylum numbers caused a linear reduction in functional
species by an average of 7% (Pearson’s correlation r2 = 0.97,
p < 0.0001) and individuals by 17% (Pearson’s correlation
r2 = 0.98, p < 0.0001) for each step of simulated species loss.

Stable Microbial Functional Composition
Despite Taxonomic Variation
Our simulated species loss resulted in a dramatic shift in
beta-diversity of taxonomy. The Bray–Curtis pairwise similarity
of taxonomy among samples gradually increased from an
average of 66.1 to 74.6%, indicating a trend of community
simplification. Hence, the taxonomic compositions of only one
phylum, Proteobacteria, revealed the greatest pairwise similarity
(Supplementary Figure 1). PCoA showed that the taxonomic
structure became more and more distinct from that of all
75 phyla as more phyla were removed (Figure 3A), probably
due to the reduction of taxonomic diversity (Figure 3B).
The taxonomic compositions in two phyla (Proteobacteria and
Actinobacteria; pair-wise pseudo-t = 19.4–27.8, p < 0.001) and
one phylum (Proteobacteria; pair-wise pseudo-t = 39.7–46.2,
p < 0.001) were most distinct from others (Supplementary
Table 2). PERMANOVA indicated that simulated species loss
overall caused 23.2% of beta-diversity variation in taxonomy
(pseudo-F = 824.9, p < 0.001; Supplementary Table 2).
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FIGURE 3 | Dramatic taxonomic variation. (A) Principal coordinate analysis
(PCoA) showing the beta-diversity of taxonomic compositions at the genus
level affected by sequential species loss. The error bars represent the
standard deviation of data ranges. Variation explained by two principal
coordinate dimensions is given in parentheses by percentage. p values and
Sq. root of PERMANOVA are also given. (B) Relative abundance of dominant
taxonomic compositions at the phylum level (mean > 0.2%) affected by
sequential species loss.

Compared to taxonomy, the beta-diversity of function was
less influenced by our simulated species loss. The Bray–Curtis
pairwise similarity of function (54.0–55.4% on average) was not
significantly affected by a series of phylum number reductions
(Supplementary Figure 1). PCoA showed that the five functional
profiles mostly overlapped with each other, although that of
one remaining phylum (Proteobacteria) was separated from the
others (Figure 4A). PERMANOVA indicated that simulated
species loss in general could only explain 10.7% of beta-diversity
variation of functional profiles (pseudo-F = 99.3, p < 0.001;
Supplementary Table 2), considerably less significant than
taxonomy, in which species loss treatments could explain 23.2%
of beta-diversity variation in taxonomic composition (pseudo-
F = 824.9, p < 0.001). Pair-wise tests also confirmed that the
statistical significance between different levels of species loss was
lower in functional profiles (pseudo-t = 6.2–14.6, p < 0.001)
than taxonomic compositions (pseudo-t = 11.1–46.2, p < 0.001;
Supplementary Table 2).

Despite significant reduction in species and individuals, the
relative abundance of dominant functional categories remained
stable across different levels of species loss (Figure 4B). To
inspect the slight changes in functional structures induced by
the simulated species loss, a heat map was used to show the
normalized relative abundance of dominant functional categories
at level 1 (Figure 4C). When phyla were sequentially removed
from the datasets, broad-scale metabolism functions with higher
relative abundance began to decrease. These included clustering-
based subsystems, carbohydrates (CHO), amino acids and
derivatives, protein metabolism, cofactors, vitamins, prosthetic
groups, pigments, DNA metabolism, and RNA metabolism
(RNA), which generally decreased by 0.4–1.6% on average. The
opposite trend was found in typical nutrient-cycling functions
of iron acquisition and metabolism, nitrogen metabolism,
phosphorus metabolism (PHM), potassium metabolism, and
sulfur metabolism, with an average increase of 0.2%, while stress-
response functions, such as cell wall and capsule, metabolism
of aromatic compounds, membrane transport, motility and
chemotaxis, nucleosides and nucleotides, regulation and cell
signaling, stress response (STR), and virulence, disease, and
defense, which increased by 0.4% on average. In summary,
the variation in the relative abundance of functional categories
was limited and function-specific, leading to stable functional
structures across different levels of species loss.

The effects of simulated species loss on the relative
abundance and beta-diversity of 25 dominant functions were
function-specific (Figure 5). ANOVA showed that the statistical
significance (F value) of the effect of simulated species loss
varied among functional categories, which was independent on
their relative abundance. The most affected functions were CHO,
STR, and PHM (Supplementary Table 3). When functional
composition was renormalized by the relative abundance of each
gene at function levels within each functional category at level
1, PERMANOVA revealed that the responses of renormalized
functional beta-diversity depended on relative abundance,
with the statistical significance (pseudo-F value) of dominant
functions positively associated with their relative abundance
(Pearson’s correlation r = 0.51, p< 0.001, n = 25; Supplementary
Table 4). However, certain exceptions existed as the beta-diversity
of CDC (pseudo-F = 97.2, p < 0.001) and PHM (pseudo-
F = 104.8, p< 0.001) was significantly shifted by simulated species
loss, which only accounted for lower proportions of 0.9 and 1.3%,
respectively (Supplementary Table 4).

Decoupling Co-occurrence Networks of
Taxonomy and Function in Response to
Species Loss
Generally, when all 75 phyla were present, the microbial
taxonomic network had greater numbers of total nodes, total
links, average connectivity, average clustering coefficient, average
geodesic distance, and modularity than the functional network
(Figure 6), indicating that microbial taxonomic compositions
interact more intensely than functional categories, with most of
the taxonomic interactions occurring within the same phylum
(module), such as major phyla of Proteobacteria, Actinobacteria,
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FIGURE 4 | Stable functional structure. (A) Principal coordinate analysis (PCoA) showing the beta-diversity of functional profiles at the genus level affected by
sequential species loss. The error bars represent the standard deviation of data ranges. Variation explained by two principal coordinate dimensions is given in
parentheses by percentage. p values and Sq. root of PERMANOVA are also given. (B) Relative abundance of dominant functional categories at level 1 (mean > 1%)
affected by sequential species loss. (C) Heatmaps showing normalized relative abundance of dominant functional categories at level 1 (mean > 1%) affected by
sequential species loss. Dendrograms of hierarchical cluster analysis grouping functions are shown. AAD, amino acids and derivatives; CBS, clustering-based
subsystems; CDC, cell division and cell cycle; CHO, carbohydrates; CVP, cofactors, vitamins, prosthetic groups, pigments; CWC, cell wall and capsule; DNA, DNA
metabolism; FAL, fatty acids, lipids, and isoprenoids; IAM, iron acquisition and metabolism; MAC, metabolism of aromatic compounds; MEM, membrane transport;
MIS, miscellaneous; MOT, motility and chemotaxis; NIT, nitrogen metabolism; NUC, nucleosides and nucleotides; PHM, phosphorus metabolism; POT, potassium
metabolism; PPT, phages, prophages, transposable elements, plasmids; PRO, protein metabolism; RCS, regulation and cell signaling; RES, respiration; RNA, RNA
metabolism; STR, stress response; SUL, sulfur metabolism; and VDD, virulence, disease, and defense.

and Bacteroidetes. In particular, 15% of the taxonomic links were
negative, while functional networks had 29% negative links.

Simulated species loss caused a significant decline in the
size and complexity of taxonomic networks. The number of
nodes decreased linearly with simulated species loss (Pearson’s
correlation r2 = 0.95). The number of links began to decline when
the remaining phyla were less than eight, with negative links
reduced to 0%. Overall, the number of nodes and links reduced by
56 and 67%, respectively, and the average connectivity decreased
by 25% when the number of phyla was reduced from 75 to one.
Since most interactions were within modules of similar species,
phylum reduction also reduced the network modularity. Despite
the shrinkage of taxonomic networks, functional networks
showed no consistent change in response to simulated species
loss (Figure 6). The number of nodes and links and the average
connectivity were reduced when species loss began, but rose again
when the remaining phylum decreased to only Proteobacteria.
The proportion of negative links was stabilized in the range of 26–
35% across different levels of species loss. With lower modularity
compared to taxonomic networks, the interaction of functional
networks was present across different functional categories.

DISCUSSION

Forecasting the changes in microbial functional in case
of realistic extinction scenarios in terrestrial ecosystems is
important for biodiversity conservation and management when
confronting global environmental perturbations (Peter et al.,
2011; Philippot et al., 2013; Delgado-Baquerizo et al., 2016a).
Most insights into the evaluation of ecosystem functioning in
response to biodiversity decline are based on animal and plant
communities (Chen et al., 2020), but microbial communities
differ fundamentally from macroorganisms due to their high
diversity and physiological versatility (Peter et al., 2011). In this
study, we clearly showed that a relatively stable functional profile
calculated by relative abundance could be maintained in face of
dramatic species decline in microbial communities (Figure 4B),
as microbial communities have high taxonomic variability but
stable functional structure (Louca et al., 2016). It implies a high
extent of functional redundancy in the soil microbial community
across the globe. It should be noted that while removing phyla
may result in a loss of genera, it does not necessarily lead to
the loss of function unless the function concerned happens to be
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FIGURE 5 | Function-specific effects. The ANOVA statistical significance (F
value), the PERMANOVA statistical significance (pseudo-F value), and relative
abundance of 25 dominant functional categories at level 1 (mean > 0.5%)
influenced by sequential species loss. AAD, amino acids and derivatives;
CBS, clustering-based subsystems; CDC, cell division and cell cycle; CHO,
carbohydrates; CVP, cofactors, vitamins, prosthetic groups, pigments; CWC,
cell wall and capsule; DNA, DNA metabolism; FAL, fatty acids, lipids, and
isoprenoids; IAM, iron acquisition and metabolism; MAC, metabolism of
aromatic compounds; MEM, membrane transport; MIS, miscellaneous; MOT,
motility and chemotaxis; NIT, nitrogen metabolism; NUC, nucleosides and
nucleotides; PHM, phosphorus metabolism; POT, potassium metabolism;
PPT, phages, prophages, transposable elements, plasmids; PRO, protein
metabolism; RCS, regulation and cell signaling; RES, respiration; RNA, RNA
metabolism; STR, stress response; SUL, sulfur metabolism; and VDD,
virulence, disease, and defense.

restricted to the removed phyla. Therefore, the functions tested
in our study were based on the relative abundance of more than
twelve thousands of specific genes, which provided the details of
functional composition with resolution finer to function levels.
Considering the functions that happen to be restricted to a
specific phylum, we can identify the relationship of the loss of
certain phyla and specific functions.

Yet, the degree of functional redundancy in soil microbes
really depends on the levels of manipulated variation in
community diversity or the strength of disturbances. Using a
dilution-to-extinction approach, some studies have shown that
the loss in microbial diversity significantly affects functioning,
such as microbial respiration, carbon decomposition, and
nitrogen cycling (Peter et al., 2011; Philippot et al., 2013; Delgado-
Baquerizo et al., 2016a). In our simulation, only 53 and 54% of
the total number of individuals in taxonomy and function were
removed from the datasets, respectively (Figure 2), which were
much less than the dilution-to-extinction approach that induced
reductions by orders of magnitudes. However, all these studies of
microbial species loss simulation focused on random extinction
scenarios, as it is experimentally impossible to directly remove
certain microbial groups sequentially. In reality, extinction risk
is typically high for rare species with small populations (Solan
et al., 2004), because they are more vulnerable to environmental
perturbations. If the extinction direction is random, we could
simply attribute the stable functional structures to proportionally
declined functional abundances. However, we used a biodiversity
loss approach that reflects a more realistic scenario by removing
less-common species first, so that highly abundant bacterial
phyla, such as Proteobacteria and Actinobacteria, remained till
the end to represent the “winning” survivors. Nevertheless, we
found a nearly constant functional structure in the simplified
communities compared to diverse ones with Archaea, Bacteria,
and Eukaryota. It should be noted that in this study, the order of
taxon removal was based on the relative abundance at the phylum
level. Thus, future studies could examine the effect of ranking the
abundance at the genus level or even applying random species
loss as comparison for similar analyses.

Interestingly, species loss did not reduce microbial taxonomic
species and individuals in the same magnitude. For example,
the first step of reduction to eight dominant bacterial phyla
reduced nearly half of the taxonomic species but only caused
a reduction of taxonomic individuals by 9%, suggesting that
the removed 77 microbial phyla, including Archaea, Bacteria,
and Eukaryota, included more diverse species but less relative
abundance compared to the rest of the phylum-removing steps.
On the contrary, sequential reduction of phylum numbers caused
a linear reduction of both functional species and individuals,
suggesting that although sequential species loss may cause an
unequal decline of taxonomic species, the functional abundance
was more proportionately reduced by each step of phylum
number reduction. However, a steady functional response to
species loss was calculated by relative abundance, so a significant
reduction of total functional abundances, such as microbial
activity, can cause serious damage to ecosystems if functional
richness is lost together with microbial species.

In addition, the functions measured in the previous studies
were limited to simple broad-scale functions, which cannot
provide a broad and detailed picture of multiple functions
performed by different microbes, particularly when high
microbial diversity in terrestrial ecosystems was considered.
By comparing metagenomes of microbial communities, tens
of thousands of functions can be evaluated at the same
time, enabling deep assessment of higher level of functional
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FIGURE 6 | Co-occurrence networks. Network graphs of taxonomic compositions at the genus level (Taxonomy) and functional categories at level 3 (Function)
affected by sequential species loss. Node color represents classification of taxonomic compositions at phylum levels and functional categories at level 1. A black
edge indicated a positive interaction between two nodes, while a red edge indicated a negative interaction. The summary of key network indexes is given in the
table. AAD, amino acids and derivatives; CBS, clustering-based subsystems; CHO, carbohydrates; CVP, cofactors, vitamins, prosthetic groups, pigments; CWC, cell
wall and capsule; DNA, DNA metabolism; FAL, fatty acids, lipids, and isoprenoids; MAC, metabolism of aromatic compounds; MEM, membrane transport; MIS,
miscellaneous; NUC, nucleosides and nucleotides; PRO, protein metabolism; RES, respiration; RNA, RNA metabolism; STR, stress response; and VDD, virulence,
disease, and defense.

diversity in our simulation. More importantly, the single
or limited microbiomes tested in previous studies are too
restricted to elucidate the relationship between taxonomic
and functional diversities in a global perspective. Our results
were simulated based on worldwide soil metagenomic datasets,
covering various biomes, and hence can represent the diverse
traits of soil microorganisms and strongly support that
potential functional profile can be prospectively decoupled from
taxonomic composition under certain circumstances, as has
been suggested in a previous study (Louca et al., 2018). It is
often assumed that genome streamlining (Morris et al., 2012)
and horizontal gene transfer (David and Alm, 2011), common
in prokaryotic populations, have contributed to the functional
similarity among distinct taxa. Some studies have observed a
linear relationship between functional and taxonomic diversities,
suggesting a somewhat dependency of microbial functional
profiles on taxonomic compositions (Fierer et al., 2012b, 2013;
Leff et al., 2015). Our study differs from these experiments in that
the RefSeq database was used for taxonomic assignment, whose
diversity was greater than traditional ribosomal RNA databases

commonly applied in previous research. Thus, we found that
the taxonomic dissimilarity, pseudo-F value, was one order of
magnitude larger than the function, leading to a decoupling of
function from taxonomy in terrestrial microbial community as
functional diversity remains relatively more stable.

It is often assumed that microbial diversity reduction in
natural soils would affect specialized microbial functions, such
as nutrient-cycling processes, more significantly than broad-
scale metabolic functions (Yin et al., 2000; Rousk et al.,
2009; Banerjee et al., 2016). We did not evidence that
microbial functions of relatively lower abundances responded
more sensitively to species loss, as the statistical significance
(F value) of ANOVA was not dependent on the relative
abundance of each function (Figure 5). Interestingly, we
observed an opposite response that the broad-scale metabolisms
conducted by a wide range of soil microbes decreased
with community simplification, while typical nutrient-cycling
functions relatively increased thereafter. These trends were
mainly due to the order by which microbial community
were reduced, as the remaining “winners,” Proteobacteria and
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Actinobacteria, are often considered the major regulators of
terrestrial nutrient cycles (Dai et al., 2018, 2020). For example,
certain sulfate- and iron-reducing bacteria, Desulfovibrio and
Desulfobulbus, are Deltaproteobacteria (Muyzer and Stams,
2008), and some bacteria conducting N cycling, such as ammonia
oxidizers (Stephen et al., 1996) and rhizobia for N fixation
(Moulin et al., 2001), mainly belong to Alphaproteobacteria
or Betaproteobacteria. Due to the limitation of the functional
datasets that are primarily based on metabolic reconstructions of
bacterial genomes (Glass et al., 2010), we may underestimate the
contribution of those microbes other than the major remaining
bacterial phyla to soil nutrient cycling, since archaea and fungi
are discovered to play an important role in driving terrestrial
biogeochemical cycles (Offre et al., 2013), especially carbon and
nitrogen functions (Read and Perez-Moreno, 2003; Veresoglou
et al., 2012), such as methane production (Evans et al., 2019), and
ammonia oxidation (Stahl and De La Torre, 2012).

When examining the functional profile of each functional
category at level 1, which was detailed to specific function
levels, we found that the variation of the beta-diversity of
functions responding to species loss positively correlated with
their relative abundance, suggesting that the simulated reduction
of microbial species potentially affects the composition of the
high-abundance functional categories more significantly than
those of lower abundance. Therefore, microbial homogenization
caused different function-specific effects on the beta-diversity
of functional profiles between higher- and lower-abundance
functions. However, these differences may be merely because
functions with higher abundance contained more categories
of specific genes, which had higher relative abundance than
those of less abundant functions. Thus, the variation may
be more significant for the functional composition of more
abundant functions based on the calculation of the relative
abundance of each gene at function levels. When we calculated
the relative abundance of each functional category at level 1,
the statistical significance was independent on their relative
abundance. Thus, it is unlikely to draw a direct conclusion
that less abundant functions react to simulated species loss
less significantly than more abundant functions. Future studies
evaluating the functional changes caused by species loss
should emphasize on finer levels of functional resolution to
avoid missing the variation of functional profiles occurring
at finer levels.

Due to the relatively stable functional structure, the interaction
patterns of functional species were also similar across diversity
decline levels without any notable loss of certain functional
categories (Figure 6). Simulated species loss caused a significant
decline in the numbers of total nodes and negative links,
suggesting that when community simplification makes the
remaining microbes more uniform and similar to each other,
the microbial interactions become mostly cooperative (Faust and
Raes, 2012). Thus, soil microbes under community simplification
tended to respond to the environment in a similar fashion,
while distinct microorganisms before community simplification
competitively interact with each other, reflecting regulatory
or suppression relationships (Ma et al., 2018). However, the
removal of certain phyla may reduce the numbers of species

and individuals but did not affect the functional beta-diversity
based on the relative abundance, and thus did not affect the
overall interaction patterns in functions. The negative links
also remained stable across different levels of species loss,
showing that species loss did not make functional networks
more facilitative or inhibitive. These findings support potentially
decoupling responses of co-occurring patterns in taxonomy and
function under simulated species loss. Future research, using a
series of diversity reductions, to evaluate specific functions should
also focus on the co-occurring patterns of multiple functions,
which may help better elucidate the influence of species diversity
on ecosystem functioning.

CONCLUSION

For the first time, we present a comparison of five levels of soil
microbial diversities of taxonomy and function responding to
biodiversity loss based on global soil metagenomes across diverse
biomes. We reveal that the relative abundance of microbial
function can remain stable despite that taxonomic species
decrease dramatically, leading to biotic homogenization but
functional stability. Thus, biodiversity loss continuously shrinks
the size and complexity of taxonomic interaction networks
but did not affect the overall interaction patterns in functions.
Sequential species loss also caused the dominant functions
to change from broad-scale metabolism to typical nutrient-
cycling. This study has potentially far-reaching implications for
biodiversity conservation in species-rich terrestrial ecosystems
that have high levels of microbial physiological versatility in the
face of realistic species loss scenario.
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