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Patients with Nijmegen Breakage Syndrome (NBS) suffer from recurrent infections due

to humoral and cellular immune deficiency. Despite low number of T lymphocytes and

their maturation defect, the clinical manifestations of cell-mediated deficiency are not

as severe as in case of patients with other types of combined immune deficiencies and

similar T cell lymphopenia. In this study, multicolor flow cytometry was used for evaluation

of peripheral T lymphocyte maturation according to the currently known differentiation

pathway, in 46 patients with genetically confirmed NBS and 46 sex and age-matched

controls. Evaluation of differential expression of CD27, CD31, CD45RA, CD95, and

CD197 revealed existence of cell subsets so far not described in NBS patients. Although

recent thymic emigrants and naïve T lymphocyte cell populations were significantly lower,

the generation of antigen-primed T cells was similar or even greater in NBS patients than

in healthy controls. Moreover, the senescent and exhausted T cell populations defined

by expression of CD57, KLRG1, and PD1 were more numerous than in healthy people.

Although this hypothesis needs further investigations, such properties might be related

to an increased susceptibility to malignancy and milder clinical course than expected in

view of T cell lymphopenia in patients with NBS.

Keywords: Nijmegen Breakage Syndrome, T lymphocyte maturation, flow cytometry, primary immune deficiency,

immune senescence, immune exhaustion

INTRODUCTION

Nijmegen Breakage Syndrome (NBS) (MIM #251260) is a rare autosomal recessive disease
belonging to a group of chromosomal instability disorders. The disease is caused by mutations
in NBN gene (MIM #602667) encoding nibrin. The defect leads to defective response to
DNA double strand break repair occurring both physiologically and in response to ionizing
radiation and radical-producing agents (1–6). The principal clinical manifestations of the
syndrome include progressive microcephaly, dysmorphic facial features, mild growth retardation,
mild-to-moderate intellectual disability, and an increased predisposition to malignancies (7–10).
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Due to humoral and cellular immune deficiency (11–14) patients
with NBS suffer from recurrent infections. Low concentration
of serum immunoglobulins and/or inadequate specific antibody
response (13), are caused by general B cell lymphopenia
(11, 15–17) and/or lower frequency of switched memory B-cells
(18). Severe impairment in T-cell dependent antigen response
and features of defective cellular immunity have been attributed
to T cell lymphopenia and defective T lymphocyte maturation
(13, 18, 19).

This prospective study was initiated in attempt to describe
peripheral T lymphocyte maturation profile in patients with NBS
according to the currently known differentiation pathway (20).

PATIENTS AND METHODS

Peripheral EDTA-K2 anticoagulated blood samples were
collected between November 2016 and December 2018 from 46
patients with common Slavic 657del5 mutation in nibrin (21),
and from 46 healthy subjects, with the same female-to-male ratio
as in the study group. Detailed clinical data were collected at
the time of patient’s (or healthy control’s) visit in the outpatient
department. None of the patients was treated for malignancy
or demonstrated other features of lymphoproliferation at their
enrollment into the study. In case of previous malignancy, the
interval between initiation of the study and the end of treatment
associated with remission was at least 2 years. All healthy controls
have been sex and age-matched and met additional requirement
of smallest possible deviation from the patient’s age. They were
also free from infections and have not been vaccinated recently.

Distribution of basic lymphocyte populations, including T,
B, NK, as well as T helper and cytotoxic lymphocytes, were
determined by flow cytometry using the lyse-no-wash approach
and Multitest six-color cocktails of antibodies with Trucount
tubes, to determine absolute cell counts of respective cell
populations (Becton Dickinson, cat. no. 644611) (Table 1).
Antibody manufacturer’s instructions were followed during the
staining procedure. At least 15,000 events were acquired to BD
FACSCanto II flow cytometer, with lymphocyte gate based on
CD45 expression and side scatter characteristics. Lyse-no-wash
settings for the FACS Canto Clinical software were used without
any custom modification. Briefly, 50 µl aliquots of blood were
incubated with optimally titered antibodies for 15min in room
temperature. The incubation was followed by erythrocyte lysis
using 0.45ml of BD FACSLysing Solution (BectonDickinson, cat.
no. 349202) diluted according to the manufacturer’s instructions.
Definition of basic lymphocyte subsets, i.e., T, B, NK, CD4,
and CD8T lymphocytes was performed according to standard
procedures (22). Absolute numbers of individual cell subsets

Abbreviations: NBS, Nijmegen Breakage Syndrome; RTE, recent thymic

emigrants; TN, naïve T lymphocytes; TSCM, memory T lymphocytes with stem-

cell like properties; TCM, central memory T lymphocytes; TEM, effector memory

T lymphocytes; TEMRA, revertant terminal effector memory T lymphocytes

expressing CD45RA; L-TEMRA, low differentiated revertant terminal effector

memory T lymphocytes expressing CD45RA; H-TEMRA, high differentiated

revertant terminal effector memory T lymphocytes expressing CD45RA; TD,

terminally differentiated T lymphocytes.

were calculated based on proportion of the respective cell
subpopulation and absolute lymphocyte count (22).

Peripheral T lymphocyte maturation profile was analyzed
according to the currently known differentiation pathway,
using six-color cocktails of mouse fluorochrome-associated
monoclonal antibodies specific for human receptors and
differential expression of CD27, CD31, CD45RA, CCR7
(CD197), and CD95 (23) (details on monoclonal antibodies
are presented in Table 1). Co-expression of CD31 and
CD45RA was used to identify recent thymic emigrants
among CD4+ lymphocytes and a population of naïve T
CD8+ lymphocytes including also recently emigrating cells
from the thymus. All remaining cell subsets have been
identified both within CD4+ and CD8+ T lymphocyte
populations. Naïve population (TN) has been identified as
CD27+CD45RA+CD197+, memory T lymphocytes with stem
cell-like properties (TSCM) as CD27+CD45RA+CD95+,
central memory (TCM) as CD27+CD45RA−CD197+, effector
memory (TEM) as CD27+CD45RA−CD197−, terminal effector
memory expressing RA (TEMRA), as CD27−CD45RA+CD95+,
including low- (L-TEMRA, CD27+CD45RA+CD197− and
high-differentiated H-TEMRA, CD27−CD45RA+CD197−),
and late effector memory/terminally differentiated subsets
(TD), as CD27−CD45RA−CD197. We also analyzed features
of immunosenescence manifested by expression of CD57 and
KLRG1 (24), as well as features of exhaustion associated with
expression of PD1 (CD279) (25, 26). Briefly, 100 µl of peripheral
blood samples were incubated with an adequate amount of
antibodies for 15min in darkness in room temperature. The
sample was then lyzed with BD FACSLysing solution (Becton
Dickinson), washed twice with wash buffer (PBS+0.1% sodium
azide), and after suspending in wash buffer—acquired into
appropriately calibrated BD FACS Canto II cytometer and
analyzed with BD Facs Diva v.7 software. Gating strategy applied
throughout the study is presented on Figure 1. The same
approach was applied for both CD4+ and CD8+ T lymphocytes.
Patient data were compared with results obtained in healthy
controls collected during the study, and the differences were
analyzed with Mann-Whitney and Fischer’s exact tests.

The study was approved by the Bioethical Committee at
the Children’s Memorial Health Institute, Warsaw (Poland) and
carried according to Helsinki Declaration. Written consent for
participation was obtained from all patients older than 16 years,
and parents or legal guardians in case of patients younger
than 16 years.

RESULTS

The study group included 46 NBS patients aged 0.6–38.7 years
(median 12.1 year), with female to male ratio 27:19, and 46
healthy sex-matched controls at similar age (0.6–39.8 year,
median 11.9, p= NS).

Patients with NBS demonstrated significantly lower
proportion and absolute lymphocyte count in comparison
to healthy controls (27.2 vs. 46.8%, p < 0.01, and 1,330 vs. 2,676
cells/µl, p < 0.01). T lymphocytes composed significantly lower
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TABLE 1 | Six-color antibody panels for composition of the T cell compartment analysis.

Tube FITC PE PerCP APC APC/Cy7 PE/Cy7

Trucount CD3 (SK7)a CD16/CD56 (B73.1)a/(NCAM16.2)a CD45 (2D1)a CD19 (SJ25C1)a CD8 (SK1)a CD4 (SK3)a

1 CD45RO (UCHL1)b CD31 (WM59)b CD3 (SK7)a CD4 (SK3)a CD8 (SK1)a CD45RA (HI100)b

2 CD27 (L128)a CD197 (150503)b CD3 (SK7)a CD4 (SK3)a CD8 (SK1)a CD45RA (HI100)b

3 CD27 (L128)a CD8 (SK1)a CD3 (SK7)a CD95 (DX2)a CD4 (SK3)a CD45RA (HI100)b

4 KLRG1 (SA231A2)c CD8 (SK1)a CD3 (SK7)a CD57 (HCD57)c CD4 (SK3)a CD279 (EH12.1)b

Clones are shown between brackets, manufactures by characters.
aBD Biosciences, San Jose, CA, USA.
bPharmingen, San Diego, CA, USA.
cBiolegend, San Diego, CA, USA.

proportion and absolute count in NBS patients than in healthy
controls (52.7 vs. 72.9%, p < 0.01, and 667 vs. 1,949 cells/µl,
p < 0.01). Similar observation was made for CD4+ (25.9 vs.
43.1%, p < 0.01, and 322 vs. 1,074 cells/µl, p < 0.01) and CD8+
T lymphocyte subsets (16.7 vs. 22.8%, p < 0.01, and 234 vs.
612 cells/µl, p < 0.01), as well as B lymphocytes (8.7 vs. 14.1%,
p < 0.01, and 103 vs. 359 cells/µl, p < 0.01). In contrast, NK
composed a significantly greater population in NBS patients
than in healthy controls (32.3 vs. 9.7%, p < 0.01, and 388 vs. 236
cells/µl, p < 0.01; Figure 2).

We found several aberrancies in the T lymphocyte maturation
profile in NBS patients in comparison to healthy controls,
both in terms of relative and absolute counts of individual
cell populations. Populations of lymphocytes identified as
CD31+CD45RA+ and CD27+CD45RA+CD197+, were
significantly less numerous in NBS patients than in healthy
controls, both within the CD4+ (median 6.6 vs. 48.9%, 25 vs. 534
cells/µl p < 0.01, and 11.6 vs. 67.6%, 46 vs. 732 cells/µl, p < 0.01,
respectively) and CD8+ cell subset (median 32.7 vs. 59.4%, 73
vs. 400 cells/µl, p < 0.01, and 13.7 vs. 48.6%, 25 vs. 302 cells/µl,
p < 0.01, respectively; Figures 3, 4). Despite poor generation
of naïve cells, we identified lack of differences in proportions
of TSCM, considered to be the youngest antigen-primed T cell
population, between NBS patients and healthy controls (median
2.1 vs. 1.8% CD4+, p = NS and 6.8 vs. 6.6% CD8+, p = NS),
although significant differences in absolute counts of these cells
were still detected both within CD4+ (8 vs. 18 cells/µl, p <

0.01), and CD8+ subset (12 vs. 42 cells/µl, p < 0.01). TCM
composed significantly greater proportion of lymphocytes in
NBS patients than in healthy controls (28.6 vs. 16.8% T CD4+,
p < 0.01 and 4.3 vs. 2.8% T CD8+, p < 0.01), but significant
differences in absolute counts were found only within the CD4+

cell subset (CD4+ 86 vs. 184 cells/µl, p < 0.01; CD8+ 13 vs.
16 cells/µl, p = NS). TEM composed a significantly greater
population of T CD4+ in NBS patients (median 24.4 vs. 10.5%,
p < 0.01, and 83 vs. 109 cells/µl, p < 0.01), with a similar
population within T CD8+ lymphocytes (median 18.9 vs. 17.1%,
p = NS), however, still significantly lower absolute number of
cells from this population (46 vs. 99 cells/µl, p < 0.01). Low
differentiated revertant CD45RA+ T lymphocytes composed
similar populations within CD4+ and CD8+ cells in NBS
patients in relation to healthy controls (median 1.7 vs. 1.8%, p =
NS, and 9.1 vs. 13.9%, p = NS, respectively). On the other hand,

more differentiated stages of TEMRA, i.e., H-TEMRA composed
significantly higher proportions of T cells in NBS patients than in
healthy controls (median 1.2 vs. 0.4% T CD4+, p< 0.01, and 20.6
vs. 6.3% T CD8+, p < 0.01). The same observation was made
for TEMRA identified as CD27−CD45RA+CD95+ (median 0.7
vs. 0.1% T CD4+, p < 0.01, and 6.8 vs. 3.2% T CD8+, p < 0.05).
In terms of absolute counts L-TEMRA were significantly less
numerous within both CD4+ and CD8+ populations (7 vs. 24
cells/µl, p < 0.01, and 24 vs. 81 cells/µl, p < 0.01, respectively),
but no significant differences were found either for H-TEMRA (5
vs. 4 cells/µl, p= NS and 40 vs. 39 cells/µl, p= NS, respectively)
or total TEMRA identified as CD27-CD45RA+CD95+ (2 vs.
1 cells/µl, p = NS and 16 vs. 19 cell/µl, p = NS, respectively).
The most differentiated stage of CD27−CD45RA−CD197− T
lymphocytes composed patients significantly greater proportion
of both CD4+ and CD8+ cell subsets in NBS patients in
comparison to healthy controls (median 13.0 vs. 3.2% T CD4+,
p < 0.01, and 7.4 vs. 3.5% T CD8+, p < 0.01, respectively), but
statistical difference in absolute count was found only in case
of CD4+ cell subset (44 vs. 30 cells/µl, p < 0.01), with similar
counts of TD cells within CD8+ subset (22 vs. 15 cells/µl,
p= NS; Figures 3, 4).

Significant differences between NBS patients and healthy
controls were found in expression of senescence markers CD57
and KLRG1, especially in terms of proportion of cells expressing
the studied cell markers. CD57 was present on median 5.9 vs.
0.5% T CD4+ (p < 0.01) and 25.2 vs. 9.6% T CD8+cells (p <

0.01), with significant differences in absolute counts of CD57+

CD4+ cells (17 vs. 4 cells/µl, p < 0.01), but not within the CD8+

cell population (52 vs. 50 cells/µl, p= NS). Similar observation
was made for KLRG1, which was detected on median 46.0 vs.
7.2% T CD4+ lymphocytes (p < 0.01) (120 vs. 54 cells/µl, p <

0.01) and 88.0 vs. 44.4% T CD8+ lymphocytes (p < 0.01). No
statistically significant difference in absolute count of KLRG1+

CD8+ lymphocytes was found (163 vs. 177 cells/µl, p = NS;
Figure 5).

PD1 as a marker of exhaustion was detected on a significantly
higher proportion of both CD4+ and CD8+ lymphocytes in
NBS patients than in healthy controls, with median CD4+PD1+

lymphocytes composing 10.7 vs. 2.6% (p< 0.01) and CD8+PD1+

composing 7.3 vs. 3.3% (p < 0.01). However, statistical
differences in absolute counts between the study cohort and
healthy controls were found only within CD4+ population (33
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FIGURE 1 | Evaluation of basic lymphocyte subsets. Patients with NBS demonstrated significantly smaller general population of lymphocytes, with disturbed

distribution of T (CD3+), T CD4+ (CD3+CD4+), T CD8+ (CD3+CD8+), NK (CD3−CD16+CD56+), and B (CD19+) lymphocyte subsets in comparison to healthy

controls. Individual results in respective study cohorts are presented as circles. Median values are presented as bars with numerical values. Statistical significance:

** <0.01. (A) Relative counts and (B) absolute counts.

vs. 29 cells/µl, p = 0.0198), but not within CD8+ cells (16 vs. 23
cells/µl, p= NS; Figure 5).

DISCUSSION

This study for the first time presents a detailed analysis
of T lymphocytes and their subpopulations that reflect the

development of T cells in periphery in a large cohort
of patients with Nijmegen breakage syndrome. Thus, our
observations extend and supplement earlier information on T cell
development in this rare, but still underestimated disease.

For many years CD45 isoforms were used to differentiate
between naive (CD45RA+CD45RO−) and memory
(CD45RA−CD45RO+) T lymphocytes (27, 28). Along with
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FIGURE 2 | Gating strategy for evaluation of T lymphocyte maturation process. Lymphocyte subsets were identified by differential expression of CD27, CD31,

CD45RA, CD95, and CD197. T lymphocytes were gated based on CD3 vs. side scatter characteristics. Identification of individual populations is presented for T

helper cells. Identical strategy was used for T CD8+ cell subsets. (A) T helper and T suppressor cells were identified within T cell gate as CD3+CD4+ and CD3+CD8+,

respectively. (B) RTE CD31+CD45RA+ were identified within the CD3+CD4+ gate. (C) Two additional gates: CD27+ and CD27− were set. (D) Within CD27+ gate TN

have been defined as CD27+CD45RA+CD197+, TCM as CD27+CD45RA−CD197+, TEM as CD27+CD45RA−CD197−, and low-differentiated effector RA+

L-TEMRA as CD27+CD45RA+CD197−). (E) High differentiated effector RA+ (H-TEMRA CD27−CD45RA+CD197−) and terminally differentiated (TD,

CD27−CD45RA−CD197−) have been identified within the CD27− gate. (F) CD95 gate was drawn within the T CD4+ gate. (G) Two populations were identified within

CD95+ gate: TSCM (CD27+CD45RA+CD95+), and effector RA+ (TEMRA, CD27−CD45RA+CD95+). (H) Identification of cells with positive expression of CD57,

KLRG1, and PD1 on the whole T CD4+ population.

the development of more refined methods of cell analysis, it was
found that other surface markers, such as CD197 corresponding
to chemokine receptor CCR7 (29–31), CD27 (32–34), CD31
(35), and CD95 (36, 37), used in combination with CD45RA
offered significantly more detailed view into the T lymphocyte
maturation process (20). New combinations of markers allowed
unique identification of recent thymic emigrants among T
CD4+ cells (CD31+CD45RA+) (35, 38). In contrast to CD4+,
the population of CD31+CD45RA+CD8+ T lymphocytes
includes also a naïve subset (39, 40). Several newly identified
populations, such as CD27−CD45RA+CD197+CD95+

(currently known as TEMRA) or CD27+CD45RA+ CD95+

(currently known as TSCM), have been initially identified among
T CD8+ cells and only later among T CD4+ lymphocytes

(29, 41). The newly identified cell subsets were also found
to demonstrate varying effector capabilities (42–44) and
significant differences in response depending on stimulating
antigen (45–47).

Nibrin is known to participate in T cell development (48, 49)
by affecting thymic output (50) and the V(D)J rearrangement
process (6, 51, 52) resulting in increased proportions in T
lymphocytes expressing TCRγδ receptor (19) and shift toward
increased proportions of cells in mature development stages
(14, 19, 53). The purpose of this prospective study was to provide
more detailed description of the T lymphocyte maturation
process in patients with Nijmegen Breakage Syndrome than
available from previous reports (19, 53). We also searched for
differences in the process between healthy subjects and patients
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FIGURE 3 | Peripheral T helper cell maturation was significantly disturbed. Individual results in respective study cohorts are presented as circles. Median values are

presented as bars with numerical values. Statistical significance: NS, not significant, ** <0.01. (A) Median relative counts of T helper cell subsets in NBS patients in

relation to normal control. Patients with NBS demonstrated significantly lower proportions of RTE and naïve helper cells, and significantly higher proportions

(Continued)
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FIGURE 3 | of TCM, TEM, H-TEMRA, TEMRA, and TD lymphocytes. There was no statistical difference between TSCM and L-TEMRA. (B) Median absolute counts of

T helper cell subsets in relation to normal control. Patients with NBS demonstrated significantly different absolute counts of all analyzed T helper subsets, except for

H-TEMRA and TEMRA.

with the DNA double-strand break repair defect caused by
mutations in NBN gene.

The distribution of relative and absolute counts of basic
lymphocyte subsets, i.e., T, B, NK, CD4+, and CD8+ T
lymphocytes in the cohort under study did not differ from
previous reports (7, 14, 15, 19, 50, 53). It was found that
the naïve T lymphocytes subpopulation in NBS patients was
significantly smaller in comparison to healthy controls, both
within CD4+ and CD8+ cells, as expected in view of the
previously reported reduced expression of CD45RA (19, 53).
Our data demonstrated also, that thymic production of T helper
lymphocytes measured by proportions and absolute counts of
CD31+CD45RA+ cells was ineffective (50, 53) and resulting
in significantly lower number of naïve T CD4+ cells in NBS
patients than in control subjects (Figure 3). The population
of T CD8+ lymphocytes described by CD31+CD45RA+

immunophenotype was significantly more numerous than of
naïve CD8+ cells (Figure 4). Even though CD31+CD45RA+

within T CD8+ are not limited to recent thymic emigrants
(40), significantly lower proportions of CD31+CD45RA+ and
TN indicate that thymic production of naïve T CD8+

lymphocytes is significantly affected by the mutated variant
of nibrin.

Unexpectedly, TSCM were found to compose similar
proportions of CD4+ and CD8+, with significantly
smaller absolute number of cells in NBS patients than
in controls. Unaware of their existence, authors of
previous reports included TSCM among naïve CD45RA+

cells, as sharing common phenotypic characteristics
(CD27+CD45RA+CD45RO−CD197+) (19, 53). Their
functional properties are however completely different, as
TSCM are antigen-experienced, and they exhibit effector activity
in contrast to quiescent naïve T lymphocytes (36, 54, 55).
Therefore, it seems that despite low thymic production, T
lymphocytes in patients with NBS have enough potential to
differentiate from naïve into more mature TSCM, but it is
not sufficient to overcome low thymic production. Yet, this
increased proliferative potential in comparison to physiology,
might in turn potentially lead to the increased susceptibility
to malignancies of lymphoid origin observed in NBS patients
(9, 10).

Homeostatic proliferation ensures the longevity of TCM
in absence of cellular differentiation or activation. After
proliferation, TCM can efficiently differentiate into effector
cells (56). These processes seem not to be affected negatively
by mutations in NBN, as TCM compose significantly greater
proportion of both CD4+ and TCD8+ lymphocytes. TEM, which
are potent effectors in healthy subjects, are also generated in
greater proportions in NBS patients in comparison to healthy
controls, but only within the CD4+ T lymphocyte population
(Figure 3).

Similarly as in case of naïve cells, neither TCM, TEM, nor
L-TEMRA within T CD4+ helper cells reached absolute counts
observed in healthy controls. H-TEMRA and TEMRA composed
similar populations, while TD CD4+ were even more numerous
in NBS patients than in controls. Among CD8+ T lymphocytes,
TEM, and L-TEMRA were significantly less numerous, while
TCM, H-TEMRA, TEMRA, and TD reached similar absolute
counts as in healthy controls (Figure 4). The explanation of
important differences in maturation and proliferative potential
between CD4+ and CD8+ lymphocytes reflected by the number
of cells within individual populations requires more detailed
molecular and functional analyses.

Preliminary data regarding age-related distribution of
individual cell populations indicate that thymic output is deeply
defective in almost all age groups. The defect seems to be more
pronounced in younger children. In several patients, the absolute
counts of all antigen primed CD4+ lymphocyte populations
reached normal or almost normal counts. Adults appear to be
an exception from this general observation, as recent thymic
emigrants and naïve cells may reach low normal limits in some
patients (Supplementary Figure 1A). This however does not
mean that more cells are produced, as low limits of normal ranges
in adults are lower than in young patients. Yet, more cells appear
to be generated in several adults for antigen-primed populations.
CD8+ T lymphocytes appear to behave differently in many terms
(Supplementary Figure 1B). Deep defect in thymic production
was observed in children and most adolescents, but not in adults.
Children below 2 years of age seem to generate normal cell
counts since reaching H-TEMRAmaturation stage, while several
patients from other age groups produce almost normal or normal
counts of earlier antigen-primed cell populations. Moreover,
several adolescents and adults seem to generate even higher than
normal cell counts from the analyzed cell populations. These
observations and their clinical context need to be verified in
relation to larger group of healthy controls, when age related
normal values will be established (study in progress).

Results of our study demonstrate that evaluation of the T
lymphocyte maturation process in NBS patients by differential
expression of only CD45RA/RO isoforms is misleading. Despite
unsatisfactory thymic production, the generation of effector
cells seemed quite effective and probably explaining relatively
low incidence of clinical manifestations associated with cellular
immune deficiency (17). Despite differences in biological
properties, both TCM and TEM were correctly included in
previous reports within the increased CD45RO+ population (19).
The same applied to the terminally differentiated populations,
which were generated in significantly greater proportions in
NBS patients in comparison to controls. TEMRA, which develop
in parallel with TD (57), represent a revertant population that
re-express CD45RA, but also express CD45RO isoform. They
must have been incorrectly included in both naïve and memory
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FIGURE 4 | Peripheral T CD8+ lymphocyte maturation was significantly disturbed. Individual results in respective study cohorts are presented as circles. Median

values are presented as bars with numerical values. Statistical significance: NS, not significant, * <0.05, ** <0.01. (A) Relative counts of T CD8+ cell subsets in NBS

patients in relation to normal control. Patients with NBS demonstrated significantly lower proportions of T CD8 cells with phenotype corresponding to RTE

(Continued)
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FIGURE 4 | (CD31+CD45RA+) and naïve cells, and significantly higher proportions of TCM, H-TEMRA, TEMRA, and TD lymphocytes. There was no statistical

difference in relative distribution of TSCM, TEM, and L-TEMRA. (B) Absolute counts of individual studied CD8+ T lymphocyte populations. Significantly smaller

populations of CD31+CD45RA+, TN, TSCM, TEM, and L-TEMRA cells were observed in NBS patients in comparison to controls. TEM, H-TEMRA, TEMRA, and TD

composed similar populations in NBS and healthy cohorts.

FIGURE 5 | Expression of senescence (CD57, KLRG1) and senescence (PD1=CD279) cell markers. Statistical significance: NS, not significant, * <0.05, ** <0.01.

(A) Patients with NBS demonstrated significantly elevated proportions of T lymphocytes (from both CD4+ and CD8+ subsets) with features of senescence (expression

of CD57 and KLRG1), as well as exhaustion (CD279) than healthy controls. (B) T helper cells composed significantly more numerous populations of cells expressing

(CD57, KLRG1, and CD279) in NBS patients than healthy controls. No statistical difference in absolute counts within the studied populations was found among T

CD8+ lymphocytes.
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populations (19, 53). Therefore, previous reports overestimated
both the population of naïve cells defined as CD45RA+, and
memory population of CD45RO+ cells (19, 53).

Mutations in the NBN gene are known to be associated
with the telomere-initiated senescence (58, 59). We analyzed
the features of pre-term senescence of T lymphocytes in
NBS patients by evaluating the expression of CD57 and
KLRG1. Although CD57+ T lymphocytes are known to
demonstrate cytotoxic abilities (49, 60, 61), the expression
of CD57 is also associated with proliferative instability,
correlating directly with the number of cell divisions and
inversely with telomere length (43, 62). We found significantly
increased proportions of CD57+ T lymphocytes both among
CD4+ and CD8+ populations (Figure 5). This, however,
could not be correlated (or solely correlated) to increased
proportions of cytotoxic cells raised during viral infections, as no
difference in CD57 expression between patients demonstrating
chronic EBV viremia or EBV-free were observed (study
in progress).

Surface expression of an inhibitory killer-cell lectin-like
receptor G1 (KLRG1) identifies T lymphocytes that have
undergone a large number of cell divisions (63). In healthy
subjects, predominant expression of KLRG1 is observed on
TEM and TEMRA cells (64). Both populations demonstrate
potent effector functions, but are unable to proliferate (65).
We found significantly increased proportions of KLRG1+ cells,
corresponding to significantly increased proportions of TEM
and TEMRA lymphocytes in patients from the study group
(Figure 3). Similar suggestion regarding preterm T lymphocyte
senescence in NBS was previously made by Meijerset al.,
based on results of studies performed in a significantly smaller
group of patients (50). Therefore, considering the reported
association of CD57 and KLRG1 with immune senescence (49,
66) and results of our flow cytometric experiments we conclude
that patients from the study group demonstrate features of
preterm senescence.

Functional impairment of T lymphocytes termed
“exhaustion” is associated with an increased expression of
PD1 (24, 66). We have observed significantly higher proportions
of PD1+ T lymphocytes in NBS patients, both within T CD4+

and CD8+ subpopulations, which is in line with increased
proportions of lymphocytes at the terminal differentiation
stage. To our knowledge this feature has not been studied yet.
Considering the features of an excessive proliferative history
reflected by increased proportions of terminally differentiated
and KLRG1+ T lymphocytes and increased proportions of PD1+

cells found in the study group in comparison to healthy controls,
we conclude that T lymphocytes from NBS patients demonstrate
features of exhaustion.

The difference between absolute counts of CD4+ and
CD8+ lymphocytes demonstrating CD57, KLRG1, and PD1
expression appears to correspond with the observed differences
in distribution and cell counts of the studied cell subsets (24, 67,
68). Significance of this discrepancy requires further analysis in
context of clinical data.

We are aware of the limitations of the study. All experiments
have been performed by flow cytometry and did not include

either functional or molecular studies. Moreover, all references to
functional properties of individual cell populations are based on
published data. Such approach resulted mainly from limitations
of the available research material, as large proportion of patients
included minors, among them several below 2 years of age.
Although functional properties of cells expressing CD57 or
KLRG1 have not been evaluated in this study, premature
senescence and shortened telomeres have been demonstrated
in vitro in cultured NBN-mutated cells (69–71). Therefore, we
feel the conclusion regarding premature senescence in NBS
is justified.

In summary, we found significant aberration in peripheral T
lymphocyte maturation process in NBS patients in comparison
to physiological process. Despite low thymic production,
the identified aberrancies and functional properties of
individual T lymphocyte subpopulations lead to generation
of significantly larger populations of effector T cells in NBS
patients than in healthy people. Although this hypothesis
needs further investigation, such properties might be related to
an increased susceptibility to malignancy and milder clinical
course than expected in view of T cell lymphopenia in patients
with NBS.

DATA AVAILABILITY STATEMENT

The datasets generated for this study are available on request to
the corresponding author.

ETHICS STATEMENT

The studies involving human participants were reviewed and
approved by Bioethical Committee at the Children’s Memorial
Health Institute, Warsaw, Poland. Written informed consent to
participate in this study was provided by the participants’ legal
guardian/next of kin.

AUTHOR CONTRIBUTIONS

BP designed and supervised the flow cytometry experiments,
analyzed and interpreted the data, and wrote the draft. BW-K
designed the study, and collected and reviewed medical data.
EH-P and AW collected and reviewed medical data. KT and
UG performed the flow cytometry experiments. HG supervised
the study. All authors critically revised and commented on
the manuscript.

FUNDING

This project received funding from the European Union’s
Horizon 2020 research and innovation program under the ERA-
NET Cofound action no. 643578 and was supported by the
National Centre for Research and Development (NCBiR) under
the ERA-NET-E-Rare-3, JTC 2015 (Grant No. ERA-NET-E-
Rare/I/EuroCID/04/2016).

Frontiers in Immunology | www.frontiersin.org 10 June 2020 | Volume 11 | Article 1319

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Piatosa et al. T Lymphocyte Maturation in Nijmegen Breakage Syndrome

ACKNOWLEDGMENTS

The authors wish to thank all parents and/or patients and healthy
controls for participating in the study.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fimmu.
2020.01319/full#supplementary-material
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Thymic output is deeply defective in almost all age groups, although it is more

pronounced in younger children. In several patients, the absolute counts of all

antigen primed CD4+ lymphocyte populations may reach normal or almost normal

counts. Adults appear to be an exception from this general observation. Such

phenomenon is observed already for recent thymic emigrants and naïve cells,

which in some patients may reach lower normal limits (B). CD8+ T lymphocytes

appear to behave differently. Deep defect in thymic production is observed in

children and most adolescents, but not in adults. Children below 2 years of age

seem to generate normal counts since reaching H-TEMRA maturation stage, while

many patients from other age groups produce almost normal or normal counts of

antigen-primed cell populations. Several adolescents and adults seem to generate

in several cases even higher than normal cell counts from the analyzed cell

populations.
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