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Abstract
We propose two strategies to improve the quality of tractography results computed from dif-

fusion weighted magnetic resonance imaging (DW-MRI) data. Both methods are based on

the same PDE framework, defined in the coupled space of positions and orientations, asso-

ciated with a stochastic process describing the enhancement of elongated structures while

preserving crossing structures. In the first method we use the enhancement PDE for contex-

tual regularization of a fiber orientation distribution (FOD) that is obtained on individual vox-

els from high angular resolution diffusion imaging (HARDI) data via constrained spherical

deconvolution (CSD). Thereby we improve the FOD as input for subsequent tractography.

Secondly, we introduce the fiber to bundle coherence (FBC), a measure for quantification of

fiber alignment. The FBC is computed from a tractography result using the same PDE

framework and provides a criterion for removing the spurious fibers. We validate the pro-

posed combination of CSD and enhancement on phantom data and on human data,

acquired with different scanning protocols. On the phantom data we find that PDE enhance-

ments improve both local metrics and global metrics of tractography results, compared to

CSD without enhancements. On the human data we show that the enhancements allow for

a better reconstruction of crossing fiber bundles and they reduce the variability of the tracto-

graphy output with respect to the acquisition parameters. Finally, we show that both the

enhancement of the FODs and the use of the FBCmeasure on the tractography improve

the stability with respect to different stochastic realizations of probabilistic tractography.

This is shown in a clinical application: the reconstruction of the optic radiation for epilepsy

surgery planning.
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1 Introduction
Diffusion weighted magnetic resonance imaging (DW-MRI) is a non-invasive technique for
the characterization of biological tissue microstructure [1]. In brain white matter, water mole-
cules diffuse predominantly along axonal fibers. This results in an observable macroscopic ori-
entation dependence in the DW signal, that is measured by scanning the tissue in multiple
orientations and gradient strengths. To model the angular anistropy of the diffusion profile,
diffusion tensor imaging (DTI) [2] is widely used, but this has the limitation that only a single
fiber direction can be estimated per voxel [3]. It is estimated in [4] that more complex fiber
configurations occur in approximately 90% of the white matter voxels. To overcome this, high
angular resolution diffusion imaging (HARDI) techniques are used, that can describe more
complex (crossing) fiber configurations. An overview of HARDI techniques can be found in
[5]. Here we use the method of constrained spherical deconvolution (CSD) [6], that from the
initial diffusion data constructs a fiber orientation distribution (FOD), which models the distri-
bution of fibers along different directions.

Tractography methods are often used in the DW-MRI pipeline to provide insight in the
structural connectivity of the white matter bundles. Independently of the model used for inter-
preting the DW-MRI data, noise originating from the scanner, acquisition artifacts and partial
volume effects [7] are likely to result in spurious (aberrant) fibers in the tractography output.
To improve the data on which the tractography is performed, different regularization methods
can be used. Methods exist that apply filtering for the reduction of noise directly on the
DW-MRI data [8–10], other methods aim to regularize the DTI tensor fields [11–15]. On
HARDI data the regularization can be performed on individual voxels [16–18] or in combina-
tion with the local spatial information [19–23].

We introduce two new strategies based on the same underlying principle to improve fiber
alignment in tractography results, in order to have more reliable information on the structural
connectivity of brain. First we perform contextual regularization to the FOD obtained with
CSD, see Fig 1A, and secondly we introduce a fiber to bundle coherence (FBC) measure that
can be applied to any fiber bundle to classify and remove spurious fibers, see Fig 1B. Both
approaches are based on a partial differential equation (PDE) framework introduced in [24–
27], where the Fokker-Planck equation of a stochastic process for enhancement of elongated
structures is considered. These type of PDE-based enhancement methods have been widely
used for the processing of 2D-images. In this framework, images are represented in the
extended space of positions and orientations via a stable invertible orientation score [28], that
associates to every location an orientation distribution of the local image features (lines and
contours). Then, the stochastic processes for contour completion [29–34] and contour
enhancement [35–37] (see Fig 2A) on this extended space R2 ⋊ S1 induce crossing preserving
completion and enhancement of lines [28].

The DW-MRI data that we use is naturally defined on the coupled space R3 ⋊ S2 of 3D posi-
tions and orientations. As in the 2D case, crossing preserving enhancement of line structures is
required, for which we use the 3D extension of the 2D stochastic process for contour enhance-
ment, introduced in [25]. The linear PDE corresponding to this stochastic process can be
solved by convolution of the initial condition with the kernel of the PDE. This kernel is also a
function on the position-orientation space and can be seen as a transition distribution from the
origin (in position and orientation) to neighboring elements. From the stochastic point of
view, the kernels arise as limits of the accumulation of infinitely many sample paths drawn
from the stochastic process, illustrated in Fig 2A. For mathematical details of the underlying
stochastic processes of the PDEs, see [27 §10.1]. The general idea needed for this article is
sketched in Fig 2. In Fig 2B and 2C we show the contour enhancement kernel using glyph
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visualization on a grid, each glyph being a polar (red, 2D) or spherical (blue, 3D) graph plot
where in every orientation the (spherical) radius is proportional to the value of the kernel. This
type of visualization is used throughout the paper for functions defined on the space of posi-
tions and orientations.

Fig 1. The proposed pipeline of the paper.CSD is used to estimate an FOD from DW-MRI data. The FOD is enhanced (A) with PDE techniques. Then a
deterministic or probabilistic tractography is applied to the (enhanced) FOD (probabilistic shown here, with coloring indicating the fiber direction). In the lower
right figure, we applied our coherence quantification method (B), based on the same PDE framework, which shows that blue fibers are well aligned (high
Fiber to Bundle Coherence (FBC)) and yellow fibers are spurious (low FBC). The green arrows indicate the steps in which the contextual PDEs are used.

doi:10.1371/journal.pone.0138122.g001
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Recently, many authors [23, 25, 27, 34, 38–42] demonstrated the advantages of contextual
processing of DW-MRI data. The general rationale behind contextual processing is to include
alignment of local orientations and their surroundings (i.e. the context) on the coupled space of
positions and orientations. For this alignment of local orientations, roto-translations are needed,
which imposes a non-Euclidean structure in the PDE-based processing as we explain in Section
2.2. More details on the embedding ofR3 ⋊ S2 in the roto-translation group SE(3) can be found
in [25]. This demonstrates how either the completion or enhancement PDEs can be used to
extrapolate DTI information to increase the angular resolution and resolve some fiber crossings.
This idea was shown to be promising in clinical experiments [38, 39], but in some cases extreme
parameters had to be set to obtain clear maxima at crossings (where DTI data is inadequate).
Therefore in this paper we introduce and test the combination of CSD with contextual

Fig 2. Stochastic interpretation of the contour enhancement kernels. A. Accumulation of 300 sample paths drawn from the underlying stochastic
process of the contour enhancement PDE in R

2⋊ S1, projected on the xy-plane.B. The contour enhancement kernel arises from the accumulation of
infinitely many sample paths. The gray-scale contours indicate the marginal of the kernel, obtained by integration over S1, the red glyphs are polar graphs
representing the kernel at each grid point.C. The contour enhancement kernel oriented in the positive z-direction in R

3⋊ S2 can be visualized on a grid with
glyphs that in this case are spherical graphs.

doi:10.1371/journal.pone.0138122.g002
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enhancements. The method proposed in [34] uses an advection-diffusion equation (that we
called contour completion above) to improve HARDI data to obtain connectivity measures. In
our work we rely on a purely diffusive process, contour enhancement, which in contrast to con-
tour completion does not suffer from singularities [27] and is less sensitive to small perturba-
tions of the initial conditions. This property makes the enhancement process more suited to be
combined with the sharp angular distributions produced by CSD. As the methods mentioned
above still result in broad angular distributions, they need to be combined with some sharpening
method. To this end, a geometric morphological sharpening based on erosions was presented in
[23, 27, 42]. Another related method presented in [40, 41] is the so-called fiber continuity model
in which purely spatial regularization is considered in combination with spherical deconvolu-
tion as alternative to the non-negativity constraint in the classical CSD [43]. In Section 2.2 we
demonstrate the importance of including also an angular regularization term.

1.1 Contributions
The first contribution of this article is to study the combination of the widely used CSDmethod
with a regularization induced by the enhancement PDE acting on the FOD. Since the FOD
obtained with CSD consists of sharp angular profiles, it is well-suited as an initial condition for
the enhancement PDE, that typically has a smoothing effect on the orientation distributions.
The contextual regularization method reduces non-aligned crossings in the FOD, allowing for a
better alignment of fibers when tracking is applied on the enhanced FOD.We show that this
method is therefore useful to reduce the number of false positive fibers, but mainly to find more
true positives in the tractography output. Although in this paper we compare to the classical
CSDmethod, the PDE enhancements can also be applied to extensions of this method [44–48].

The second contribution of this article is to introduce the fiber to bundle coherence (FBC)
measure. The motivation for this measure is that, especially probabilistic, tracking methods
typically produce spurious fibers that should be removed from the tractography. In contrast to
the first approach, this method serves as a post-processing tool. For the computation of the
FBC we regard the fiber bundle as a set of oriented points, by considering for every fiber point
also the local tangent to the fiber. We construct a density using the enhancement PDE with an
initial condition that is a sum of superposed δ-distributions at every oriented point in the bun-
dle. The construction of such a density from tracks relates to track density imaging [49] and
track orientation density imaging [50], though here the use of the contour enhancement ker-
nels, Fig 2, allows to use a sparse set of fiber tracks. The FBC, a measure for spuriousness of
fibers, is computed by efficient integration of this fiber-based density. Fibers that are most spu-
rious according to the FBC can be removed from the tractography, resulting in a better aligned
fiber bundle. Complementary to the first method, this FBC measure has the purpose to remove
false positives in a tractography.

1.2 Structure of the Article
Section 2 covers theory of the individual parts of the pipeline as outlined in Fig 1, consisting of
CSD, PDE enhancements, tractography and coherence quantification in Sections 2.1–2.4,
respectively. In Section 3 we provide extensive validation of the combination of CSD and PDE
enhancements and the FBC, using three experiments:

1. First we use the Tractometer evaluation system [51, 52] on the ISBI 2013 HARDI recon-
struction challenge dataset [53], a digital phantom with known ground truth, to demon-
strate how contour enhancement improves both the local FOD reconstruction and the
global connectivity of fiber bundles compared to CSD, see Section 3.1.
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2. In Section 3.2 we show on a human DW-MRI dataset, containing different crossing bundles,
that CSD combined with enhancements yields an FOD that is more robust with respect to
the b-value and the number of gradient directions used in the acquisition. Furthermore, we
make a comparison with earlier work involving erosions and nonlinear diffusion of FODs
directly applied to a DTI-model [23, 27], that was based on the same data. We show that
with our method the glyphs are sharper at the locations where bundles cross.

3. Finally in Section 3.3, we show an experiment with clinical data in which we reconstruct the
optic radiation (OR) to determine the position of the tip of the Meyer’s loop, that is of inter-
est in epilepsy surgery planning [23, 54–57]. Accurate estimation of this position is difficult
due to the presence of spurious fibers in the reconstruction of the OR. We show that both
the FOD enhancement and the FBC measure, see Fig 1, and in particular the combination
of the two allow for a more stable determination of the tip of the Meyer’s loop. Here ‘more
stable’means less variation with respect to stochastic realizations in the probabilistic tracto-
graphy results.

Conclusions and a discussion can be found in Section 4.

2 Methods
In this paper it is assumed that we have HARDI data as input, from which we derive an FOD U
that models the orientation of fibers in each voxel, i.e. U : R3 × S2 ! R

+. For this we use CSD
[6], concisely described in Section 2.1, as it gives sharp angular profiles and is able to distin-
guish multiple fiber directions within a voxel.

Then we use the enhancement PDE for diffusion of the FOD U, coupling spatial and angular
information. The combination of CSD and such enhancement is a powerful method to obtain
an enhanced FOD in which the coherence inherent in the data is included, providing a more
coherent input for the tractography. The enhancement technique is explained in Section 2.2.

We use the MRtrix algorithm [6] for both deterministic and probabilistic tractography to
estimate the structural connectivity in the brain. In the deterministic tractography, fiber tracks
are obtained by integrating a directional field, given an initial position and direction. The direc-
tional field is given by the locally maximal orientations in the glyphs. In contrast to determin-
istic tractography, the probabilistic tractography method of MRtrix samples the orientations
from the entire FOD and does not use just the maxima. More difficult paths can be recon-
structed than with deterministic tracking, but typically also many spurious fibers are produced
due to the probabilistic sampling. Both the deterministic and the probabilistic method are
explained in more detail in Section 2.3.

In Section 2.4 we introduce our new technique to quantify the coherence of fibers with
respect to all the fibers in a bundle, based on the same PDE theory as employed for the contex-
tual enhancement in Section 2.2. We explain how the kernel of the enhancement PDE is used
to construct a tractography-based density, how the FBC is computed and how this measure is
able to classify spurious fibers in a tractography.

2.1 A Brief Review of CSD
In CSD it is assumed that at each voxel position y the measured signal Sy : S

2 ! R can be repre-
sented by a spherical convolution of the FOD fy : S

2 ! R with a response function K : S2 ! R,
that is estimated from the data [58]. Since the spherical deconvolution to determine the FOD is
ill-posed, a non-negativity constraint is included as in [43, 59]. Then, given the signal Sy(n) for
a sample of orientations n 2 S2, the solution of CSD is found by iteratively solving the
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minimization problem:

f iþ1
y ðnÞ ¼ argmin

g2L2ðS2Þ

Z
S2
jðK�S2gÞðnÞ � SyðnÞj2dsðnÞ

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Data Driven

þ l2
Z
S2
jðLf iy

ðgÞÞðnÞj2dsðnÞ
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Regularization

; ð1Þ

for i = 1,. . .,imax, with imax the maximum number of iterations. Here K 2 L2(S
2) is aligned with

and symmetric around the z-axis, the convolution �
S2 is the usual S

2 spherical convolution
[60], dσ(n) is the Jacobian of the surface measure in orientation n and λ is a parameter to influ-
ence the trade-off between the data driven term and regularization term. The linear operator
Lh: L2(S

2)! L2(S
2) in the regularization term gives the non-negativity constraint and is

defined by:

ðLhf ÞðnÞ ¼ f ðnÞHðth � hðnÞÞ; for given h 2 L2ðS2Þ; ð2Þ
whereH is the Heaviside function and τh is a threshold equal to a fixed factor τ times the mean
of h. The initial function f 0y for the iteration is computed by taking only the data driven term of

Eq (1). The iteration stops when successive iterations yield the same result, typically after 5 to
10 iterations [59]. Throughout the paper, we call U the FOD obtained by

Uðy;nÞ ¼ f imax
y ðnÞ: ð3Þ

In practice CSD is performed using spherical harmonics with a maximal spherical harmonic
order of 8 (lmax = 8) as discussed in [61].

Improvements to the original CSD exist to modify and improve the response function,
either by recursive calibration or auto-calibration [44, 45], by using multiple acquisition shells
[46] or by including anatomical data [47, 48]. The latter two methods aim to reduce the partial
volume effects, where CSD is likely to produce spurious fiber orientations. These partial vol-
ume effects can occur when in a voxel multiple tissues or multiple bundles with different orien-
tation are present. Here we use the classical CSD as it is the basic technique available in several
neuroimaging packages. However, we stress that our method is not restricted to this type of
CSD. In any case, our method aims to reduce non-aligned crossings in the FOD, also the ones
induced by partial volume effects, as we will show in several experiments in this paper. Further
improvement of the methodology can be expected when including recently extended and more
elaborate CSD techniques [45, 46, 48], but this is left for future work.

2.2 Contour Enhancement (Step A)
To improve alignment of neighboring glyphs of the FOD U, recall the glyph field visualization
in Figs 1 and 2C, we apply contextual enhancements. Before we specify the PDE we consider
for this enhancement, we first need to express the notion of alignment in mathematical terms.
To this end, let us consider Fig 3, where it is shown that the notion of alignment cannot be sup-
ported by a decoupled, flat Cartesian product R3 × S2 with the combined Euclidean distance. It
is clear that the green bar at (y1,n1) is better aligned with the gray bar at (y0,n0) than the orange
bar at (y2,n2), even though the distances in the space R3 × S2 are equal, i.e.ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2
R3ðy0;y1Þ þ d2

S
2ðn0;n1Þ

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2
R3ðy0;y2Þ þ d2

S
2ðn0;n2Þ

q
. This means that in order to appro-

priately describe the concept of alignment, we must consider more than just the amount of spa-
tial displacement and the amount of change in orientation. Coupling these two types of motion
(via rigid body motions) is a solution to this problem [25]. The coupling follows very naturally
by expressing the motion of an oriented particle (y,n) in terms of a moving frame of reference
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determined by its orientation. That is, spatial movement along the orientation n should be
much cheaper than spatial movement in the plane orthogonal to n. This creates a natural
anisotropy for spatial movement. For angular motion we need isotropy. This extra structure
can be obtained by embedding the space of positions and orientations in the rigid body motion
group. This means that an element (y,n) 2 R

3 × S2 is identified with the rigid body motion (y,
Rn), where Rn is any rotation matrix such that Rnez = n, with ez 2 S2 pointing to the north
pole. We denote this space of coupled positions and orientations by R3 ⋊ S2, so we have

R
3 � S2 ∋ ðy;nÞ $ ðy;RnÞ 2 R

3 ⋊ S2: ð4Þ

The group R3 ⋊ S2 is equipped with the following (non-commutative) group product:

ðy;RÞðy0;R0Þ ¼ ðyþRy0;RR0Þ: ð5Þ

This product moves oriented elements in a shift-twist fashion, rather than by a rotation fol-
lowed by an independent translation. Due to this shift-twist group product in Eq (5), we auto-
matically express motion of oriented particles in terms of a moving frame in R

3 ⋊ S2, which

Fig 3. The concept of alignment requires a coupling of positions and orientations. The pair of position and orientation (y0,n0) is better aligned with (y1,
n1) than with (y2,n2), even though spatial and angular distances are equal. Formally we can say that the sub-Riemannian distance on R

3⋊ S2 [27] is smaller
between (y0,n0) and (y1,n1).

doi:10.1371/journal.pone.0138122.g003
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makes this space well-suited for the application of our contextual enhancements. Nevertheless,
in the remainder of this article this space can still be regarded as the Cartesian 5D space R3 ×
S2, where we secured the coupling of positions and orientations via our specific choice of differ-
ential operators and diffusions that are applied.

To improve alignment of FOD glyphs, we use a particular diffusion process called contour
enhancement that uses both spatial and angular diffusion in the extended space of positions
and orientations [25]. Given a structure (think of a fiber bundle) in this space, see Fig 4, we
apply spatial diffusion only in the direction of the structure, not in the spatial plane perpendic-
ular to it. Angular diffusion is applied in the plane tangent to S2 at the point n. This diffusion
process enhances elongated structures, while preserving crossing structures, and is given by a
Fokker-Planck type of system, a linear diffusion equation on R

3 ⋊ S2. For t� 0, y 2 R
3, n 2 S2

this system can be expressed as:

@tWðy;n; tÞ ¼ ðD33ðn � ryÞ2 þ D44DS2ÞWðy;n; tÞ;
Wðy;n; 0Þ ¼ Uðy;nÞ:

ð6Þ
(

HereW(y; n; t) is a scale space representation in (R3 ⋊ S2) × R
+ [62]. The symbolry denotes

the gradient with respect to the spatial variables and ΔS2 is the Laplace-Beltrami operator on
the sphere. Parameters D33 > 0 and D44 > 0 are related to the amount of spatial and angular
diffusion, respectivly. Parameter t� 0 is the diffusion time of the contour enhancement pro-
cess. It can be seen as a Brownian motion process, recall Fig 2A, where particles are allowed to
spatially move back and forth in the direction they are heading, or change their direction, but
are not allowed to step aside (comparable to the movement of a car).

We refer to the solution of Eq (6) as the enhanced FOD. It can be obtained via a finite differ-
ence scheme [63], or via a convolution with a kernel pt : R

3 ⋊ S2 ! R
+:

Wðy;n; tÞ ¼ ðpt�R3⋊S2UÞðy;nÞ
¼ R

S2

R
R3ptððRn0 ÞTðy� y0Þ;RT

n0nÞ � Uðy0;n0Þ dy0dsðn0Þ: ð7Þ

Fig 4. Diffusion in the space of positions and orientations. Spatial diffusion is applied in the direction of the fiber (left), angular diffusion is applied in the
tangent plane perpendicular to the fiber direction (right).

doi:10.1371/journal.pone.0138122.g004
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A basic approximation to the exact Green’s function of the contour enhancement PDE is

known [25] and can be written as the product of Green’s functions pR
2⋊S1

t in the following way:

ptðy;nÞ ¼
8ffiffiffi
2

p D33t
ffiffiffiffiffiffiffiffiffiffiffi
ptD44

p � pR2⋊S1
t ðz=2; x; bÞ � pR2⋊S1

t ðz=2;�y; gÞ; ð8Þ

with n = n(β,γ) = Rex,γ Rey,β ez = (sinβ, −cosβ sinγ, cosβ cosγ)T, β 2 [−π,π), g 2 � p
2
; p
2

� �
. The R2

⋊ S1 kernels are given by

pR
2⋊S1

t ðx; y; yÞ ¼ 1

32pt2D44D33

e�
ffiffiffiffiffiffiffiffiffiffi
ENðx;y;yÞ

4t

p
; ð9Þ

with

ENðx; y; yÞ ¼ y2

D44

þ 1

D33

yy
2
þ y=2

tan ðy=2Þ x
� �2

 !2

þ 1

D44D33

�xy
2

þ y=2
tan ðy=2Þ y

� �2

: ð10Þ

To avoid numerical errors, we use the estimate y=2
tan ðy=2Þ � cos ðy=2Þ

1�ðy2=24Þ for jyj < p
10
. This approxima-

tion is easy to use and allows for efficient implementation [64].
From the approximation kernel in Eq (8) it can be seen that problems could occur when

either D33 = 0 or D44 = 0. To this end, a necessary and sufficient condition for the existence of a
smooth solution kernel for the evolution process in Eq (6) is given by the Hörmander require-
ment [65]. This condition applies to more general situations than the one here, see e.g. [25],
but for the specific case of contour enhancement the requirement is satisfied iff D33,D44 > 0.
Setting D44 = 0 would result in a singular non-smooth kernel, which has numerical disadvan-
tages. More importantly, apart from this theoretical issue the need for both spatial and angular
diffusion can also be argued from a practical point of view, as is illustrated in Fig 5. We use an
artificial example in which a curved fiber bundle is present, shown in the left figure. When the
input is diffused with D44 = 0 as in the middle of Fig 5, the peaks stay distinct and point in the
wrong direction. On the other hand, when D44> 0 as in the right figure, due to the angular

Fig 5. The importance of including angular diffusion. (Left) artificial input data of a curved bundle. (Middle) diffusion with D33 > 0, D44 = 0. (Right) contour
enhancement with D33,D44 > 0. Fiber propagation with D44 = 0 leads to crossing artefacts rather than smooth fiber enhancement.

doi:10.1371/journal.pone.0138122.g005
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diffusion the peak is redirected and the glyphs lie better aligned with the fiber bundle. Hence
D44 > 0 is needed to ensure the crucial interaction between different orientations. Finally we
recall the relation between Tikhonov regularization and diffusion, see e.g. [25], which allows us
to connect diffusion with D44 = 0 with the fiber continuity model in [40, 41]. This model does
not suffer from the inconvenience of considering only spatial regularization, as they represent
the FOD in a truncated spherical harmonic basis. When the enhancements are used in combi-
nation with probabilistic tractography, we first apply a standard sharpening deconvolution
transform to the FOD as described in [18], to maintain the sharpness of the FOD.

2.3 Tractography
As the next step in the pipeline we use the MRtrix tractography algorithm [6], as implemented
in http://www.brain.org.au/software/index.html#mrtrix, version 0.2.12. It allows us to perform
deterministic and probabilistic fiber tracking on spherical harmonic representations of the
(enhanced) FOD. To have a fair comparison between trackings on the FOD and the enhanced
FOD, we use the parameter settings as explained next.

• In the deterministic tracking of MRtrix, seed points are randomly selected from a seed
region. The initial direction is sampled randomly and every next step follows the direction of
the most aligned FOD maximum. If this maximum is below a threshold value, the fiber ter-
minates. This threshold (cutoff) is set to 10% of the maximal angular response of the FOD.
There is no constraint on the maximal curvature of the fibers. To prevent that fibers have an
initial direction that is not aligned with the fiber bundle, we force the initial direction to be
approximately in the direction of the maximal FOD peak, by setting the initial cutoff to 0.9.
The step size is set to 1/10th of the voxel size as is suggested in [6]. Tracks proceed in both
directions from the seed point and terminate either when they hit the boundary of the vol-
ume or mask (if applicable), or due to the threshold stopping criterion.

• In the probabilistic case, starting from the seed region, every next step follows a direction
randomly sampled from the FOD. Here we set the minimal radius of curvature to 1 mm, the
default value in the MRtrix algorithm. Optionally, a target region of interest is used to select
only those fibers that cross this region.

The methods proposed in this paper are not tied to the type of tractography used. In the
Experiment and Results section we validate our methods combined with both deterministic
and probabilistic tractography, on synthetic and real data. In the phantom experiment
described in Section 3.1, our preference for deterministic tractography is due to the fact that
deterministic tractography was reported in [52] to perform better in the considered dataset
than probabilistic tractography. Since only a seed region is specified and no additional infor-
mation is used to filter out spurious fibers, it is difficult to assess the quality of the probabilistic
tractography results with respect to the used measures. The same holds for the experiment on
real data in Section 3.2. On the other hand, on the optic radiation application of Section 3.3
where both a seed and end region are specified, a probabilistic method is required for a more
thorough delineation of the fiber bundle. Actually, in many clinical applications in which the
fiber configuration can be even more complex than the phantom data we have considered, it
might be preferable to use probabilistic tractography, because more information can be pro-
vided to the neurologists. Then they can decide, in combination with all of the other clinical
information at their disposal, which aspects of the tractography result are to be trusted.

Streamlines from a probabilistic tractography result that are anatomically implausible can
be removed with scoring methods [23, 56] or by imposing anatomical constraints. Even when
using these methods, the filtered tractography output can still contain fibers that deviate from
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the fiber bundle and are likely to be spurious. In the next section, we propose a coherence mea-
sure for fibers in a fiber bundle in order to classify these spurious fibers.

2.4 Coherence Quantification of Fiber Bundles (Step B)
In this section we introduce our second contribution of the paper, a fiber to bundle coherence
(FBC) measure to quantify the coherence of each fiber with respect to all other fibers in the
bundle, recall Fig 1B. A spurious fiber, as schematically shown in Fig 6, is isolated from or
poorly aligned with the bulk of the tracks and is therefore unlikely to represent the underlying
brain structure. Fibers with low coherence, i.e. a low FBC, can then be classified as spurious.

To classify a fiber as spurious, we first construct a density by regarding each fiber as a super-
position of δ-distributions in R

3 ⋊ S2 and convolving this distribution with the kernel in Eq
(8). This density is independent of the underlying data and is based purely on the collection of
fibers Γ. Integration of this density along a part of length α of a fiber gives a local measure for
the coherence of that part.

Next we explain the mathematical techniques that support the idea in Fig 6. We denote the
fibers from a tractography output by yi(s) 2 R

3, 1� i� N, 0� s� li, with s the arc length
parameter, li the total length of fiber i and N the number of fibers. Now let niðsÞ ¼ _yiðsÞ be the
tangent of the fiber, so that γi(s) = (yi(s),ni(s)) forms a curve (fiber) in R

3 × S2. By construction,
ni(s) points in the forward direction of the fiber. Since in DW-MRI data antipodal orientations
are identified, we also consider �g iðsÞ ¼ ðyiðsÞ;�niðsÞÞ. The complete fiber bundle is defined as
G :¼ fgi j i ¼ 1; . . . ;Ng [ f�g i j i ¼ 1; . . . ;Ng. A discrete formulation of a fiber i with Ni

points is given by:

gji ≔ giðsjÞ ¼ ðyiðsjÞ;niðsjÞÞ ¼: ðyj
i;n

j
iÞ; sj ¼ j� 1

Ni � 1
li; j ¼ 1; � � � ;Ni: ð11Þ

This way there are Ntot ¼ 2
PN

i¼1 Ni elements in Γ. Now we regard every point gji as a δ-dis-

tribution in R
3 ⋊ S2 centered around ðyj

i;n
j
iÞ. A density for the entire bundle is then con-

structed as follows:

FGðy;nÞ ¼
1

Ntot

X2
s¼1

XN
i¼1

XNi

j¼1

dðyj
i
;ð�1Þsnj

i
Þðy;nÞ; ð12Þ

with index j running over points within a fiber, i running over all fibers and σ taking care of
including forward and backward orientations. We use the same evolution process as in Eq (6)
in which F = FΓ now serves as initial condition, to create a diffused density (y,n) 7!WF(y,n,t):

@tWFðy;n; tÞ ¼ ðD33ðn � ryÞ2 þ D44DS2ÞWFðy;n; tÞ;
WFðy;n; 0Þ ¼ Fðy;nÞ:

ð13Þ
(

We solve the system in Eq (13) by convolution with the corresponding kernel, recall Fig 2, and
call this the local FBC (LFBC):

LFBCð�;GÞ ¼ WFð�; tÞ ¼ ðpt�R3⋊S2FÞð�Þ; ð14Þ

with the shift-twist convolution as given in Eq (7). This is illustrated in Fig 6 in the 2D case.
We can now define the FBC for fiber γi with respect to the bundle Γ as the integral of this den-
sity along the fiber:

FBCðgi;GÞ ¼
1

li

Z li

0

LFBCðgiðsÞ;GÞ ds: ð15Þ
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This results in a global property of the fiber, but spurious fibers often only locally deviate from
the bundle as in Fig 6. To this end, we compute for each fiber the minimum of such integrals
along the fiber over intervals of length α:

FBCaðgi;GÞ ¼ min
a2½0;li�a	

1

a

Z aþa

a

LFBCðgiðsÞ;GÞ ds: ð16Þ

The parameter α defines the scale over which spuriousness of fibers can be detected and is
much smaller than the average fiber length. Our primary interest is not the FBCα value itself,
but rather how it compares to the average coherence of fibers in the bundle, so finally we define
the relative fiber to bundle coherence (RFBC) as:

RFBCðgi;GÞ ¼
FBCaðgi;GÞ
AFBCðGÞ : ð17Þ

Here AFBC(Γ) is the average fiber to bundle coherence indicating the overall coherence of the
N fibers in the bundle Γ, defined as

AFBCðGÞ ¼ 1

N

XN
i¼1

FBCðgi;GÞ: ð18Þ

To summarize, the RFBC(γi,Γ) of a fiber γi in a bundle Γ is a measure for how well aligned the
least aligned part of γi is, compared to the average coherence of the total bundle.

In practice, we evaluate the convolution in Eq (14) only in the fiber points. We compute the
LFBCðgki ;GÞ, the diffused density in the oriented point gki ¼ ðyk

i ;n
k
i Þ, recall the notation in Eq

(11), as follows:

LFBCðgki ;GÞ ¼
1

Ntot

X2
s¼1

XN
j¼1

XNj

q¼1

pt RT
ð�1Þsnq

j
ðyk

i � yq
j Þ;RT

ð�1Þsnq
j
nk

i

� 	
ð19Þ

whereRnl
j
is any rotation matrix such thatRnl

j
ez ¼ nl

j, index q sums the contributions along a

fiber, index j runs over all the fibers and σ as before. The FBCα can then be computed as

Fig 6. Construction of the LFBC. The local fiber to bundle coherence (LFBC) is constructed for a set of fibers (gray lines), illustrated in 2D for simplicity, as
follows. Every local tangent in the tractography contributes to the density, by considering it as a δ-distribution. We convolve this with the contour
enhancement kernel, shown on the left for two points, visualized as in Fig 2 and with the coloring indicating the contribution of the kernel to the LFBC. Doing
so for all points, fiber points that are isolated from or badly aligned with other fibers receive low contributions, such as the outlying fiber. The LFBC along the
fibers is displayed on the right.

doi:10.1371/journal.pone.0138122.g006
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follows:

FBCaðgi;GÞ ¼ min
a2½0;Ni�a	

1

a

Xaþa

k¼aþ1

LFBCðgki ;GÞ; ð20Þ

where a,α 2 N in this discrete case, so the LFBC is summed along short intervals of the fiber.
Likewise, the AFBC can be computed as

AFBCðGÞ ¼ 1

N

XN
i¼1

1

Ni

XNi

k¼1

LFBCðgki ;GÞ: ð21Þ

We apply this method in Section 3.3 for quantifying the coherence of tractography results of
the optic radiation and classifying the spurious fibers.

3 Experiments and Results
In this section we extensively test the performance of our CSD enhancement method (A) and
the FBC method (B), recall Fig 1 and Sections 2.2 and 2.4, in three different experiments:

• We use the HARDI Reconstruction Challenge dataset [65], which is artificial data with
known ground truth, to quantitatively evaluate the CSD enhancement method (A) on deter-
ministic tractography in Section 3.1.

• In Section 3.2 we show on DW-MRI human brain data that the enhancement (A) have a pos-
itive effect on deterministic tractography, for different acquisition protocols of the data. Fur-
thermore, on this DW-MRI dataset and on the phantom dataset we compare our method to
previous work [27], where a DTI-based FOD is used in combination with nonlinear PDE
flow.

• In the third and last experiment, we reconstruct the optic radiation in human clinical data,
see Section 3.3. We include an extensive evaluation of our methods, the enhancement of the
FOD (A) and the use of the FBC to classify and remove spurious fibers (B), and the combina-
tion of both methods. We show that the reproducibility of the probabilistic tractography has
increased, resulting in a more stable localization of the tip of the Meyer’s loop.

For all datasets Mathematica [67] was used to perform the contour enhancement algorithm
and the CSD, which in practice produces the same results as the MRtrix CSD implementation
when the same deconvolution kernel is used. MRtrix software [6] was used to perform fiber
tractography. The coherence quantification was implemented in C++. In Section 3.1 we make
use of the Tractometer [51, 52] (http://www.tractometer.org/) to evaluate tractography results.
Visualization was done in either the FiberNavigator (https://github.com/scilus/fibernavigator,
[68]), Mathematica, or the open source vIST/e tool (Eindhoven University of Technology,
Imaging Science & Technology Group, http://bmia.bmt.tue.nl/software/viste/).

3.1 HARDI Reconstruction Challenge
The following experiment is performed on a digital phantom dataset that was designed for the
ISBI 2013 Reconstruction Challenge [66, 69]. It is used in combination with the Tractometer
[51, 52], as a benchmark to compare different reconstruction and tracking methods. The phan-
tom is inspired by the Numerical Fiber Generator [70] and the code to reproduce it is freely
available as part of the Python package Phantomas (http://www.emmanuelcaruyer.com/
phantomas.php). This synthetic dataset is of size 50 × 50 × 50 voxels with a resolution of 1 × 1
× 1 mm3. It consists of 27 simulated white matter bundles, designed to resemble challenging
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branching, kissing and crossing structures at angles between 30 and 90 degrees, with various
curvature and bundle diameters ranging from 2 mm to 6 mm. An image indicating the ground
truth fiber configuration is shown in the centre of Fig 7.

The idea behind the signal simulation is that every voxel is subdivided into multiple sub-
voxels, each one with its own attenuation profile. The final signal arrives from integrating the
contribution of all the sub-voxels. Then, it is possible to combine multiple compartment types
in every voxel with added Rician noise. This allows for modelling complex configurations as
well as taking into account partial volume effects. While the Numerical Fiber Generator uses a
tensor-like model to simulate the signal in the sub-voxels, Phantomas uses a CHARMED-
based model [71]. The CHARMEDmodel based on the Söderman-Jönsson cylinder model
[72] captures well the non-Gaussian behaviour of the diffusion signal for large b-values. The
main reason why we selected the ISBI phantom is that it is linked with the Tractometer that
allows for performing quantitative evaluations of the tractography results, using global metrics
as demonstrated in the subsequent experiments.

For the experiments presented in this section we used 64 uniformly distributed gradient
directions using a b-value of 3000 s/mm2 with different signal to noise ratios (SNRs). We use
spherical harmonics in CSD with maximal order 8, resulting in 45 estimated coefficients on
each position. We then enhance the resulting FOD functions using our contour enhancement
algorithm with varying parameters. From the evolutions described in Eq (6) we see by a basic
rescaling argument that it is sufficient to vary t and the ratio D33/D44. The larger this ratio, the
more preference the spatial diffusion gets over the angular diffusion, resulting in elongated ker-
nels (visualized by thin glyphs). A smaller ratio D33/D44 is better suited in regions where the
curvature of bundles is higher (visualized by thicker glyphs). The higher the diffusion time t,
the more context is taken into account. When t is too large, fiber bundles with high curvature
can be damaged or false positives could be created. Taking this into consideration, we choose
our parameters as follows: we fix spatial diffusivity parameter D33 = 1.0, we take the angular
diffusivity parameter D44 2 {0.005,0.01,0.02,0.04} and diffusion times t 2 [0, 5].

Tractography results for the entire dataset are shown in Fig 7. We can recognize the positive
effect of the enhancements on deterministic tractography: we see less dropouts, better aligned
fibers and better continuation of fibers at crossings. An extensive quantification of the perfor-
mance of our method is done at the voxel level using the FODs and at the macroscopic level
using tractography in Sections 3.1.1 and 3.1.2, respectively. Both sections support the results
summarized in Fig 8.

3.3.1 Local Metrics. We compare reconstructed FODs locally with the ground truth using
only the orientation of the peaks. LetM be the set of voxels v in the white matter mask, then we
denote the ground truth number of peaks in a voxel v by Nv and the orientations corresponding
to the peaks by nv

i;true, i = 1,. . .,Nv.

Maxima of the constructed FOD are found by evaluating the FODs on a 60th order icosahe-
dron tessellation with 18606 antipodally symmetric points, giving an angular resolution of less
than 1 degree. Maxima are taken into account only if it exceeds a threshold of 0.1, the same
value we use as threshold in the tractography. Let Ov

est be the set of peak orientations in voxel v
estimated from the FOD. The average angular error in degrees can then be computed by:

W ¼
P
v2M

PNv

i¼1

min
n2Ov

est

180

p
arccos ðjnv

i;true � njÞP
v2M

Nv
: ð22Þ

In the top row of Fig 8 we show the effects contour enhancement for different ratios ofD33

andD44 upon variation of the diffusion time. The results are given for substantially low SNR
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levels 10, 6 and 4 and 2. These SNRs are computed w.r.t. the non-DW image. Specifically, if the
b = 0 intensity is 1 then the standard deviation of the Rician noise distribution is 1/SNR. In all
cases a clear improvement is found compared to CSD without enhancements and the more
noise, the more the angular error is decreased. Higher diffusion times give better results and
around t = 5 the angular error is almost stable. It can also be seen that the combination of CSD
with enhancements at lower SNRs gives lower angular errors than just CSD for the higher SNRs.

Fig 7. Tractrography results on the ISBI Challenge dataset. Deterministic tractography results of CSD (left) and enhanced CSD (right) with SNR = 2 (top)
and SNR = 4. The colors correspond to the direction of the fibers. The dataset consists of crossing, branching and kissing fiber bundles. The tractography on
enhanced CSD results in better aligned fibers and a fuller reconstruction of the bundles. The ground truth configuration of the bundles is depicted in the
center.

doi:10.1371/journal.pone.0138122.g007
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There is no significant difference in the FODs between the different D44 values. Even though
it is visible that more angular diffusion leads to fatter glyphs, for the orientation of the peaks
the precise value of D44 is not of great importance: the angular errors for D44 = 0.005 are
slightly smaller, but there is not much difference with the higher values of D44.

3.1.2 Global Metrics. At the macroscopic level we are interested in the impact of the
enhanced local reconstruction on the quality of the global connectivity. The deterministic

Fig 8. Quantitative evaluation of the effect of enhancements. Evolution of the local error and global metrics for three different choices of D44 and four
different SNRs as we increase the diffusion time t. The top row shows the average angular error of the FOD peaks, the rows below show the average bundle
coverage (ABC), connection to seed ratio (CSR) and the valid connection to connection ratio (VCCR), computed from the tractography results.

doi:10.1371/journal.pone.0138122.g008
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MRtrix tractography is used as described in Section 2.3, with seeds randomly selected in the
white matter mask. The tracks have a minimum length of 10 mm and new seed points are cho-
sen until 10000 streamlines are selected. For every FOD, the tractography is repeated five times
with the same settings, to average out the variability in the tracking algorithm output. We then
use the Tractometer [52] to perform a fiber tracking analysis based on the ground truth and
the five results are averaged. The Tractometer outputs values for various metrics, from which
we use the Valid Connections (VC), Invalid Connections (IC) and No Connections (NC).
They indicate the percentage of tracks that correctly connect, incorrectly connect or do not
connect gray matter areas in the dataset, respectively. We also use the Average Bundle Cover-
age (ABC), the percentage of voxels in a bundle that is crossed by a valid streamline, averaged
over all bundles. We combine the (VC), (IC) and (NC) in two metrics introduced in [73]:

• Connection to Seed Ratio (CSR), which represents the probability that a generated fiber actu-
ally connects two gray matter areas, computed as 100%−NC.

• Valid Connection to Connection Ratio (VCCR), the probability that a connecting fiber is
correct, computed as VC/(VC+IC).

The results for the ABC, CSR and VCCR with the same enhancement parameters and SNRs
as for the local metric are given in Fig 8. Similar remarks hold for the global metrics as for the
angular error. For all three metrics and all SNRs the enhancements lead to an improvement
compared to CSD, the only exception being the ABC for SNR = 10 and D44 = 0.02. Further-
more, as the SNR decreases, the larger diffusion times are beneficial and the more significant
the improvement is. The best results are obtained for D44 = 0.005. We expect that truncation of
the spherical harmonics already introduces some angular smoothing of the FODs on this artifi-
cial dataset, explaining the small effect of D44 in the experiments. Furthermore, we see that the
diffusion time t truly acts as a regularization parameter, resulting in a robustness for the met-
rics with respect to the SNRs: the higher the diffusion time, the smaller the differences in the
metrics between the different SNRs.

Seeding from the white matter voxels can lead to an over-representation of the number of
fibers in longer fiber bundles with respect to the shorter bundles [74]. The longer bundles
thereby have a larger contribution to the global metrics than the shorter bundles, which could
lead to an overestimation of the fiber bundles. As proposed in [75], we compared the global met-
rics when seeding from the gray/white matter interface for CSD and one specific set of enhance-
ment parameters. The global metrics for that seeding strategy were slightly lower for CSD and
comparable when including enhancements. For the sake of comparing our enhancement
method with CSD, we therefore believe it is fair to use seeding from the white matter mask.

The convincing improvement in the global metrics is supported by Fig 9, that shows a selec-
tion of the fiber bundles in the dataset. It can be seen that after enhancements, there are more
valid connections in the green bundle and less wrong exits in the red bundle, leading to a higher
(VCCR) and a better bundle coverage. The glyphs in the top row show that the enhancements
improve alignment of glyphs, especially at the boundary of the fiber bundles, where the original
CSD result tends to suffer from partial volume effects.

3.2 Evaluation and Comparison on DW-MRI Data
In this experiment we consider a DW-MRI dataset of a part of a human brain, previously used
in [27]. The study was approved by the local ethical commitee of Maastricht University, and
informed written consent was obtained from the subject. Although the dataset consists of only
10 axial slices, the corpus callosum, corona radiata and superior longitudinal fasciculus are
(partly) present in the data. We show that the combination of CSD and enhancement is well-
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suited for different combinations of the b-value and the number of gradient directions used in
the acquisition. Furthermore, we make a qualitative comparison with the DTI-based method of
[27] on this dataset and conclude with a brief quantitative comparison with this method on the
dataset of 3.1.

3.2.1 Robustness with Respect to the Acquisition Parameters. The acquisition was per-
formed on a 3T Siemens Allegra scanner, with FOV 208x208mm and voxel size 2x2x2mm.
During the data acquisition, a brain region consisting of 10 axial slices was scanned with the
following combinations of b-values and No, the number of orientations: b = 1000 s/mm2 with
No = 49, b = 1000 s/mm2 with No = 121 and b = 4000 s/mm2 with No = 49. The SNR in the
non-DW image was estimated to be approximately 3 using the approach of [76] as imple-
mented in Dipy [77]. We use again CSD with spherical harmonics up to order 8. The higher

Fig 9. Comparison of CSD and enhanced CSD on the ISBI dataset. The top row shows that glyphs visualizing the FOD are better aligned, especially at
the boundary of the bundle. In this case, color corresponds to the radius of the glyph. The bottom row depicts the tractography results, showing only the
streamlines that pass through the indicated spheres. Here the SNR = 4 and the parameters used for the enhancements are D33 = 1.0, D44 = 0.02, t = 4.0. The
ground truth image with the same viewpoint as the bottom figures is depicted on the left.

doi:10.1371/journal.pone.0138122.g009
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b-value is obtained by using a stronger gradient pulse, making the acquisition more sensitive to
detail in the tissue structure, but also inducing a lower SNR. Increasing the number of gradient
directions gives a better angular resolution. We use deterministic tractography, with three seed
regions manually selected in the middle of the corpus callosum, corona radiata and superior
longitudinal fasciculus.

In the right column of Fig 10 we show that after enhancements, the FOD allows for a more
coherent reconstruction of the three bundles. Especially in the region where the three bundles
come together, it can be seen that the fibers have a better propagation through the crossings.
Moreover, the FODs after enhancements are very similar to each other, visible in the glyph
visualization, leading to three tractography results supporting similar fiber bundles. This is an
improvement with respect to CSD without enhancement, shown in the left column of Fig 10.
There we find more noisy FODs with more variation between the different protocols. This is
also reflected in the tractography results, that contain more spurious fibers than after the
enhancements.

We conclude, just like in the first experiment on the phantom data, that applying enhance-
ments induces more robust tractography also on real DW-MRI data, in this case in the sense
that it is less sensitive to the acquisition parameters b and No.

3.2.2 Comparison with a DTI-based FOD. In the next experiment we compare the per-
formance of our combination of CSD with enhancements with the method in [27] which pro-
posed to combine DTI with non-linear PDE-based enhancement obtained from successively
applying erosions and diffusions. Let us briefly describe this method, for details we refer to
[27], and an implementation of the PDE enhancements can be found in the HARDI package
for Mathematica available at (http://bmia.bmt.tue.nl/people/RDuits/HARDIAlgorithms.zip).
First an FOD on positions and orientations that we call UDTI was constructed via a transforma-
tion of the tensor field D fitted to the data [2], according to the following definition [27, 78]:

UDTIðy;nÞ ¼
1

4p
R
O

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det ðDðxÞÞp

dx
:ðnTD�1ðyÞnÞ�3

2: ð23Þ

This FOD is then sharpened with PDE erosions, a type of morphological enhancement adapted
from [15], on R

3 ⋊ S2 and regularized with nonlinear diffusions to find crossing structures
from DTI.

Previously in [27], the same dataset as in Fig 10 for acquisition parameters b = 1000 s/mm2

andNo = 49 was processed. Here we compare the FOD obtained with CSD, that we callUCSD

here, with UDTI in the top and bottom figures, respectively, of Fig 11. Unlike DTI, which is lim-
ited by the Gaussian assumption of the diffusion profile, CSD can estimate multiple fiber orien-
tations within a voxel. Furthermore, we see that the large glyphs in the Centrum Semiovale in
the bottom figure are not apparent inUCSD. Applying (linear) enhancements, as explained in
Section 2.2, to UCSD gives the second figure, and the approach in [27] using erosions/(nonlinear)
enhancements applied toUDTI gives the second figure from below. It can be seen that also the
enhanced DTI glyphs supports multiple fiber directions within voxels via extrapolation [27, 38],
but at the cost of high regularization. Another noticeable difference is the fact that the glyphs in
the CSD case are slimmer and crossings are more clearly defined. Whether two separate maxima
are visible at a crossing is less dependent on the diffusion parameters in the PDE diffusion.

Besides the visual comparison of the FOD glyphs, we provide deterministic tractography
results for both procedures in the middle of Fig 11. It can be observed that both methods pro-
duce reasonable results, although the one obtained from the enhanced DTI dataset seems over-
smoothed and outliers (indicated with the yellow arrow) can occur. This is due to the extreme
diffusion parameters needed to perform the FOD extrapolation. We find that visually the

Improving Fiber Alignment in HARDI via Contextual PDE Flow with CSD

PLOSONE | DOI:10.1371/journal.pone.0138122 October 14, 2015 20 / 33

http://bmia.bmt.tue.nl/people/RDuits/HARDIAlgorithms.zip


Fig 10. Comparison between CSD and enhanced CSD of tractography on human data. The tractography results on CSD and enhanced CSD data of the
corpus callosum (mostly red), coronia radiata (mostly blue) and superior longitudinal fasciculus (mostly green), with the color related to the fiber direction.
Enhancements are performed with D33 = 1.0, D44 = 0.02, t = 4.0. All three bundles are more apparent after enhancements and more fibers pass the
crossings.

doi:10.1371/journal.pone.0138122.g010
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Fig 11. Comparison of glyph fields and tractography results between enhanced CSD and a DTI-based FOD.Glyph visualization of an axial slice of a
dataset supporting the presence of the corpus callosum (mostly red), corona radiata (mostly blue) and superior longitudinal fasciculus (mostly green).
Contour enhancement for CSD is performed with D33 = 1.0,D44 = 0.02,t = 4. Erosions and nonlinear diffusions for the DTI-based method are done with
parameters as in [27]. The tractographies corresponding to the two methods are shown in the middle. Outliers such as the red fiber, indicated by the arrow,
occur due to the use of high regularization coefficients.

doi:10.1371/journal.pone.0138122.g011
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combination of CSD and linear enhancements yields better tractography than DTI combined
with erosions and nonlinear enhancements.

To provide a more quantitative and complete comparison of DTI, DTI and nonlinear
enhancements, CSD and CSD with linear enhancements, we also include results of the experi-
ment in Section 3.1 for the DTI methods, see Table 1. We heuristically determined good
parameter settings for the nonlinear enhancement of DTI: erosions [27] with D11 = 0.5, D44 =
0.2, t = 2.0 and diffusion [27 Eq. (55)] with D11 = 0.2, D33 = 1.0, D44 = 0.02 and t = 3. In Table 1
is shown that applying enhancements for contextual regularization of the FOD is beneficial for
both DTI and CSD. The lower the SNR, the more evident the improvements become. Further-
more, we see that in terms of the local metric, the angular error θ of the peak orientations, the
DTI methods can compete with the CSD based methods. However, the global metrics are sig-
nificantly higher for CSD based methods. The quantitative results on the phantom data in
Table 1 are in line with the qualitative comparison on real data in Fig 11.

3.3 Improved Reconstruction of the Optic Radiation
The optic radiation (OR) is a white matter fiber bundle connecting the primary visual cortex
and the lateral geniculate nucleus (LGN), see Fig 12. The most anterior part of the OR is called
the Meyer’s loop (ML), of which the exact location is of interest for treatment of temporal lobe
epilepsy [23, 54, 56, 57]. During neurosurgery, a part of the temporal lobe is resected. To ensure
that the OR remains intact to prevent visual field defect, it is crucial to know the distance from
the tip of the Meyer’s loop to the Temporal Pole (ML-TP) [55], which shows large interpatient
variability [79].

We use DW-MRI scans of four subjects, performed on a 3.0T Philips Achieva MR scanner,
with b = 1000 s/mm2, No = 32 and a spatial resolution of 2x2x2 mm. All subjects gave written
informed consent; the study was approved by the Medical Ethics Committee of Maastricht
University Medical Center (N 43386.068). The data is acquired from healthy volunteers, and
ground-truth ML-TP distance is not known. Therefore accuracy of this measure of our meth-
ods cannot be checked, instead we focus on consistency and reproducibility. We apply CSD to
the data to construct the FOD, with spherical harmonics up to order 6 requiring the estimation
of 28 coefficients (as 32 directions are insufficient to estimate the 45 coefficients when a spheri-
cal harmonic order 8 is used, when not using super-resolution as in [59]). We seed from the
LGN and include all fibers that reach the primary visual cortex. Both regions of interest are

Table 1. For two SNR values, the results are shown for the DTI method described in Section 3.2, with
or without nonlinear enhancements.We compare with CSD and a specific instance of enhanced CSD with
parameters D33 = 1, D44 = 0.01,t = 2. For local metric θ lower is better, for the other metrics higher is better. In
boldface are the best results for the DTI and CSDmethods.

SNR 4 DTI DTI enh CSD CSD enh

θ (deg.) 33.9 15.2 23.4 16.3

ABC (%) 14.3 18.1 32.9 37.9

CSR (%) 50.2 54.1 57.6 78.2

VCCR (%) 17.5 20.0 32.9 43.5

SNR 10 DTI DTI enh CSD CSD enh

θ (deg.) 23.8 13.0 14.9 11.1

ABC (%) 15.5 19.9 51.6 51.5

CSR (%) 69.1 64.6 82.8 85.5

VCCR (%) 17.1 24.3 56.4 57.2

doi:10.1371/journal.pone.0138122.t001
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selected manually on a T1-weighted image. We use probabilistic fiber tracking as described in
Section 2.3.

We demonstrate the effect of the enhancement of CSD and the use of the FBC measure in
Sections 3.3.1 and 3.3.2, respectively, in this relevant clinical setting. A quantitative comparison
of the four methods CSD (O), CSD + enhancement (A), CSD + FBC (B) and CSD + enhance-
ment + FBC (A+B) is provided in Section 3.3.3. We show that the enhancement and/or the
removal of spurious fibers, but in particular the combination of both methods, allows for a
more stable computation of the ML-TP distance than the original tractography result.

3.3.1 Effect of the Enhancement of CSD on Tractography of the OR. In this section, we
apply the PDE enhancement (step A) to the CSD FOD as before, with parameter settings D33 =
1, D44 = 0.01 and t = 2. After the enhancement we apply the sharpening deconvolution trans-
form [18] and probabilistic tractography with 10000 streamlines. We compare the results of
the tractography on the subjects both before and after the enhancement in Fig 13. We see that
the tracking on enhanced data generally shows less spurious fibers, and has a better pro-
nounced tip of the Meyer’s loop. However, the optic radiation is a highly curved structure,
where the advantage of the enhancement of elongated structures cannot be fully exploited. To
further reduce the spurious fibers, we explore our other approach in the next section.

3.3.2 Effect of the FBC measure on Tractography of the OR. In this section, we apply
probabilistic tractography on subject 1, with 20000 streamlines and including state of the art
data scoring as in [23] (only relying on the data term, i.e. λ = 0 in [23]), see Fig 14.

The kernel parameters for the coherence quantification (step B) are set to D33 = 1, D44 =
0.04 and t = 1.4 for the convolution [27]. Let Γ be the set of the 1000 most anterior fibers in a
tractography of the OR, that roughly form the Meyer’s loop. We compute the LFBC and subse-
quently the RFBC for all the fibers in Γ.

Fig 12. A reconstruction of the optic radiation and its positioning in the brain. The left figure shows how the OR is positioned in the brain, the close-up
on the right shows how the OR wraps around the ventricular system. The probabilistic tractography outputs many spurious fibers. The tip of the Meyer’s loop,
indicated by the orange sphere, is localized on a spurious fiber and is therefore very dependent on the realization of the tractography. As a result, the
distance from the Meyer’s loop to the Temporal pole (ML-TP) that is used in temporal lobe resection surgery, shows a high variation among different
tractography outcomes.

doi:10.1371/journal.pone.0138122.g012
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Then we take �maxðGÞ≔ max
g2G

RFBCðg;GÞ, the RFBC corresponding to the “central” fiber, in

the sense that it is most coherent with the fiber bundle. We define the filtered set Γ� as

G�≔fg 2 Gj RFBCðg;GÞ � �g; 0 � � � �max: ð24Þ

This means the parameter � acts as a threshold parameter and can be set such that fibers with a
high spuriousness are removed. The fiber point in Γ� that is closest to the temporal pole defines

Fig 13. Reconstructions of the optic radiation of four subjects with and without use of enhancements. For all subjects, the left image shows the result
on the original data, the right image shows the result on the enhanced FOD. The enhanced version generally gives less spurious fibers and has a more
pronounced tip of the Meyer’s loop.

doi:10.1371/journal.pone.0138122.g013
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the ML-TP distance. We repeat the probabilistic tractography five times with the same settings
on the same data, to qualitatively compare different stochastic realizations of the tractography
method. The original OR reconstructions are shown in the top row of Fig 14. We observe that
due to the presence of spurious fibers, the tip of the Meyer’s loop (indicated by the orange

Fig 14. The effect of filtering spurious fibers from a probabilistic tractography on subject 1 in five different instances. Top row: five different
instances of the probabilistic tractography of the OR, viewed from the top, selecting only the 1000 most anterior fibers. Bottom row: the result after filtering the
most spurious fibers for each of the instances. The red sphere indicates the temporal pole, the white volumes represent the LGN and the primary visual
cortex. The orange spheres are the positions with minimal ML-TP distance. The green sphere indicates the position of the tip averaged over the five
tractography results, before (top) or after filtering (bottom). There is less variation in the position of the tip of the Meyer’s loop in the bottom row, i.e. after
filtering, than in the top row. The fiber bundle in the left upper corner is the same as the one in Fig 12.

doi:10.1371/journal.pone.0138122.g014
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spheres) is estimated at different locations. When we set the threshold � = 0.1�max, removing in
these cases between 6% and 8% of the most spurious fibers, we obtain the results as shown in
the bottom row of Fig 14. It can be seen that the resulting fiber bundles are very similar to each
other, demonstrating less variation in the localization of the tip.

3.3.3 Quantitative Comparisons on Four Subjects. To support our claims of the two pre-
vious sections, we test the effect of our methods on the stability of the ML-TP distance under
different stochastic realizations. Here we perform probabilistic tractography with 10000 fibers
ten times with the same settings, for each of the four subjects and each of the four methods
(CSD, CSD + enh, CSD + FBC and CSD + enh + FBC). The FBC measure is computed from
the 1000 most anterior fibers as in the previous experiment and the threshold is set to � =
0.05�max. We compare the mean ML-TP distance and sample standard deviation determined
from the tracking results of each of the methods. The results are summarized in the boxplots in
Fig 15. The figure strongly supports the application of the enhancements methods. For subjects
1–3 the ML-TP distance shows much less variation when including the FBC. For all subjects
also (CSD + enh) gives more stable results than just CSD. Moreover, in all cases the combina-
tion (CSD + enh + FBC) outperforms CSD and for all but subject 1 the combined method

Fig 15. Boxplots of the ML-TP distances. For the four subjects, we show the mean of the ML-TP distance over ten tractography results, plus two standard
deviations. The four different methods are indicated with different colors. The combination CSD + enh + FBC is the most robust in producing stable results.

doi:10.1371/journal.pone.0138122.g015
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(CSD + enh + FBC) also gives better results than the enhancement or FBC individually. It
should be remarked that higher up the graph indicates a larger resection if used for pre-surgical
evaluation, which is not necessarily positive. However, we prefer to have a stable and reproduc-
ible method that can be used with a safety margin, then a method that is more conservative,
but shows large variations.

4 Conclusions and Discussion
We have proposed two new tools to improve alignment of fibers in tractography results: (A)
the combination of CSD with contextual PDE enhancements and (B) a fiber to bundle coher-
ence measure to classify spurious fibers. Both approaches rely on the same contextual process-
ing via PDEs on the space of coupled positions and orientations. We validate our methodology
with a variety of experiments on synthetic and human data.

In the first experiment we consider a digital phantom [66] that simulates DW-MRI data of a
challenging configuration of multiple neural-like fiber bundles for different noise levels, see Fig
7. The combination of CSD with enhancements and subsequent deterministic tracking was
extensively tested for varying enhancement parameters, see Fig 8. The enhanced FOD peaks
were compared with the ground truth fiber orientations, showing for all SNRs that the maxima
of the enhanced FOD coincide better with the ground truth peaks than without application of
enhancement. Also, this improvement is particularly high for very low SNR values. To quanti-
tatively evaluate the impact of the enhancement on the tractographies we used the Tractometer
evaluation system [52]. The results, shown in Fig 8 confirm the benefit, for all the metrics con-
sidered, of including the enhancement. Also an improved stability of the metrics with respect
to different enhancement parameters is observed. Furthermore, we found that data with a
lower SNR requires more regularization, obtained by choosing a higher diffusion time t in the
enhancement. These quantitative evaluations of local and global metrics are supported by the
qualitative results in Figs 7 and 9, where we saw that after enhancement fibers are better aligned
and propagate better through crossings.

The second experiment is performed on human data of a representative area of the brain
with crossing fiber bundles. We evaluate our combination of CSD and enhancement for three
different (single-shell) acquisition protocols, corresponding to different b-values and number
of gradient directions. We observed, see Fig 10, that whereas tractography on CSD without
enhancement showed notable differences between the three acquisition protocols, tractography
after our enhancement lead to a qualitatively similar reconstruction in all cases. This implies
that the application of enhancement in the processing pipeline makes the tractography results
less dependent on the scanning protocol used.

We use the same dataset and the phantom dataset to compare our method qualitatively and
quantitatively with previous work [23, 27] in which sharpening methods and nonlinear
enhancement PDEs are applied to DTI. We observed qualitatively on real data in Fig 11 and
quantitatively in Table 1 the advantage of CSD, that allows to use linear enhancements with
less extreme regularization parameters than with the DTI based method, resulting in a more
reliable tractography.

For our second approach to improve fiber alignment, we introduced a fiber to bundle coher-
ence measure that can be used for detecting and filtering spurious fibers. The fiber to bundle
coherence (FBC) is computed from a tractography based density that we constructed using the
same PDE foundation as in the first method. As an application we considered the reconstruc-
tion of the optic radiation, a fiber bundle of which the position of the anterior extent (the
Meyer’s loop) is of interest for temporal lobe resection surgery. Accurate and stable localization
of the tip of the Meyer’s loop is difficult due to the presence of spurious fibers, as shown in Fig
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12. We demonstrated in Figs 13, 14 and 15 that either by enhancement of the CSD FOD, or by
removing the most spurious fibers using the FBC measure leads to a robust probabilistic tracto-
graphy. In particular, the combination of both methods in one pipeline allows for a more stable
localization of the tip of the Meyer’s loop and a more stable determination of the Meyer’s loop
to Temporal Pole distance.

Our experiments show that our PDE enhancement methods for contextual processing are
an effective and widely applicable tool to both enhance CSD data and to remove spurious fibers
from tractographies. While we used CSD to construct an FOD, the PDE enhancement can be
applied to an FOD obtained with any other method. We have seen that both our methods
improve fiber alignment in tractography results and hence provide information on structural
connectivity of the brain white matter more robustly. In the future, we aim to improve this
framework by using data-adaptive smoothing, for example using local gauge frames [79].
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