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Integrative analysis of C. elegans modENCODE ChIP-seq
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The C. elegans modENCODE Consortium has defined in vivo binding sites for a large array of transcription factors by ChIP-
seq. In this article, we present examples that illustrate how this compendium of ChIP-seq data can drive biological insights
not possible with analysis of individual factors. First, we analyze the number of independent factors bound to the same
locus, termed transcription factor complexity, and find that low-complexity sites are more likely to respond to altered
expression of a single bound transcription factor. Next, we show that comparison of binding sites for the same factor across
developmental stages can reveal insight into the regulatory network of that factor, as we find that the transcription factor
UNC-62 has distinct binding profiles at different stages due to distinct cofactor co-association as well as tissue-specific
alternative splicing. Finally, we describe an approach to infer potential regulators of gene expression changes found in
profiling experiments (such as DNA microarrays) by screening these altered genes to identify significant enrichment for
targets of a transcription factor identified in ChIP-seq data sets. After confirming that this approach can correctly identify
the upstream regulator on expression data sets for which the regulator was previously known, we applied this approach to
identify novel candidate regulators of transcriptional changes with age. The analysis revealed nine candidate aging reg-
ulators, of which three were previously known to have a role in longevity. We experimentally showed that two of the new
candidate aging regulators can extend lifespan when overexpressed, indicating that this approach can identify novel
functional regulators of complex processes.

[Supplemental material is available for this article.]

The development of chromatin immunoprecipitation (ChIP) fol-

lowed by quantification by microarray (ChIP-chip) or high-

throughput sequencing (ChIP-seq) has enabled the identifica-

tion of transcription factor binding sites in vivo (Ren et al. 2000;

Johnson et al. 2007). These DNA sites bound by transcription

factors can be used to characterize DNA binding motifs, identify

novel regulated targets, and understand a transcription factor’s

biological function through analysis of its targets (Spitz and

Furlong 2012; Wang et al. 2012). Identification of targets for

factors that play cooperative roles during development can pro-

vide insight into the redundant and specific functions of the in-

dividual factors, as well as the molecular mechanisms through

which multiple factors interact to regulate gene expression (for

review, see Spitz and Furlong 2012).

The Caenorhabditis elegans modENCODE Consortium has gen-

erated 98 ChIP-seq data sets identifying directly bound targets

for 57 transcription factors in one or more developmental stages

(Supplemental Table 1; Zhong et al. 2010; Niu et al. 2011). Similar

efforts by the ENCODE and modENCODE Consortia as well as ef-

forts from individual laboratories have identified targets bound by

hundreds of transcription factors in humans, the mouse, and fly

(MacArthur et al. 2009; Negre et al. 2011; Garber et al. 2012; Gerstein

et al. 2012). Compendia of ChIP-seq data sets can be used to

construct regulatory networks and to find novel pairs of tran-

scription factors with similar sets of bound targets that suggest new

cases of transcription factor co-association (Niu et al. 2011; Gerstein

et al. 2012). Additionally, in combination with data sets describing

histone modifications and other measures of chromatin state, such

compendia can be used to predict gene expression (Cheng et al.

2011, 2012; Marbach et al. 2012). These examples illustrate how

combining data for many transcription factors can provide emer-

gent insights about gene regulation that cannot be found by

studying one factor by itself.

Efforts to profile transcription factor binding by the ENCODE

and modENCODE Consortia, as well as by many groups, have

revealed a high degree of overlap between the binding sites of dif-

ferent transcription factors (Gerstein et al. 2010; The modENCODE

Consortium 2010; Garber et al. 2012; for review, see Biggin 2011).

Studies of transcription factor complexity, defined as the total

number of transcription factors bound to each genomic region,

have revealed that highly occupied target (HOT) regions (bound by

many transcription factors) and low-complexity regions (bound by

one or only a few factors) are functionally different in many ways

(Gerstein et al. 2010; The modENCODE Consortium 2010; Garber

et al. 2012). Low-complexity binding sites are often enriched for

DNA binding motifs of the bound transcription factor, suggesting

that the transcription factor directly binds to DNA. In contrast,

high-complexity sites often show weaker or no enrichment for

the DNA binding motifs of bound transcription factors, sug-

gesting that the transcription factors may instead associate with

the region through protein–protein interactions (Moorman et al.

2006; Gerstein et al. 2010; The modENCODE Consortium 2010;

Yip et al. 2012). HOT regions are also associated with histone

modification profiles and chromatin signatures characteristic of

open chromatin in human and D. melanogaster, with strong en-

hancer activity in D. melanogaster, and with essential genes with

high levels of expression and ubiquitous expression across tissues
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in C. elegans (Gerstein et al. 2010; Negre et al. 2011; Kvon et al.

2012; Yip et al. 2012).

In this work, we further explore how integration of multiple

ChIP-seq data sets can enable insights not possible from a single

ChIP experiment. First, we address the question of how to identify

the subset of ChIP-seq targets that are likely to be factor-responsive.

Often, only a subset of targets that are directly bound by a tran-

scription factor are observed to change expression upon either an

increase or decrease in the activity of that transcription factor (e.g.,

an average of 58% of ChIP-seq targets for 37 transcription factors in

yeast [Gao et al. 2004], 26% of NANOG targets and 50% of POU5F1

targets in mice [Loh et al. 2006], and ;10% of hlh-1 targets in

C. elegans [Kuntz et al. 2012; for review, see Spitz and Furlong

2012]). By analyzing ChIP-seq data in combination with data sets

describing genes altered upon single transcription factor pertur-

bation, we find that low-complexity ChIP-seq targets are more

likely to be factor-responsive than are high-complexity targets.

Second, we use the large number of data sets to identify

transcription factors that have different sets of targets identified in

multiple developmental stages. Analysis of the low-complexity

targets for one such transcription factor, UNC-62/Homothorax,

enabled us to characterize two mechanisms by which it may as-

sociate with distinct targets in different tissues: tissue-specific alter-

native isoforms, and differential co-association with LIN-39/HOX.

Third, we show that a compendium of ChIP-seq data sets can

be used to screen for candidate regulators that bind to the upstream

regions of genes that change expression in an expression profiling

experiment. We validated this approach by using previously pub-

lished gene expression profiling data to show that HLH-1 and SKN-1

can be correctly identified as transcription factors that bind to the

upstream regions of genes responsive to hlh-1 and skn-1, respectively.

We then applied this approach to find candidate upstream regulators

of age-regulated genes and identified nine transcription factors,

five of which extend lifespan in either overexpression or knock-

down experiments.

Results
Efforts to experimentally identify direct targets of transcrip-

tion factors have revealed an unexpected degree of complexity

among transcription factor binding sites (Gerstein et al. 2010; The

modENCODE Consortium 2010; Garber et al. 2012). To explore

the distinct functions of low- and high-complexity binding sites,

we performed analysis on 98 ChIP-seq data sets generated by the

C. elegans modENCODE Consortium that identifies direct binding

sites for 57 transcription factors (Supplemental Table 1). For each

ChIP-seq binding site, we defined complexity as the maximum

number of transcription factors that are bound within that geno-

mic region (The modENCODE Consortium 2010; Garber et al.

2012). We observed a wide range of binding events; for example,

a DNA site in the pat-3 promoter (a previously characterized target

of HLH-1) (Fukushige et al. 2006) has HLH-1 binding sites that are

bound by three, eight, and 16 other transcription factors (;5%,

14%, and 28% of the 57 factors considered). In contrast, the pro-

moter region of translation elongation factor 1-alpha homolog eef-

1A.1 and RFC (DNA replication factor) family gene rfc-4 contains

a region bound by 44 different transcription factors (77%) (Fig.

1A,B). The 98 ChIP-seq data sets showed a wide range of com-

plexity profiles, ranging from experiments in which more than

half of binding sites are bound by eight or less total transcription

factors to those with more than half bound by 38 or more tran-

scription factors (Supplemental Table 1).

HOT regions

Previously, 304 highly occupied target (HOT) regions were defined

as those bound by 15 or more out of 23 transcription factors

(Gerstein et al. 2010). We re-annotated HOT regions as 296 regions

bound by 38 or more of the 57 assayed transcription factors (>65%,

equivalent to the previous definition) (Fig. 2A; Supplemental

Datafile 2). We observed that HOT regions tended to be positioned

close to the transcriptional start site of genes, unlike regulatory

enhancers that can act at a long distance (Krivega and Dean 2012);

specifically, 83% of HOT regions were within 1000 bp of the

transcriptional start site, whereas only 59% of low-complexity

binding sites (with eight or less factors bound) were located within

1000 bp of the transcriptional start site (P < 10�10 by Fisher’s exact

test) (Fig. 2B).

We found that many specific gene classes were overrepresented

among HOT-associated genes, including SL2 transcripts, snoRNA

transcripts, and genes encoding ribosomal subunit proteins (each

P < 10�5 by Fisher’s exact test). Gene ontology analysis indicated

enrichment for genes involved in multiple aspects of embryonic

and larval development as well as reproduction (Supplemental

Table 2), consistent with the previous finding that HOT-associated

genes are expressed at a high level, are expressed ubiquitously in

all tissues, and have essential functions (Gerstein et al. 2010).

In contrast, genes that are highly expressed at only specific points

in the worm life-cycle, such as vitellogenin and collagen genes,

were not associated with HOT regions (zero out of six and zero out

of 159, respectively).

Low-complexity targets tend to respond to altered
transcription factor expression

Next, we asked whether binding site complexity was predictive as

to whether the expression of a target gene was altered in response

to changes in a bound factor. For this analysis, we selected two

transcription factors (HLH-1 and SKN-1) with binding targets

characterized from ChIP-seq experiments and responsive genes

identified from overexpression or knockdown expression experi-

ments. The first, HLH-1, is a helix-turn-helix transcription factor

that is the C. elegans ortholog of MYOD1 and is a key regulator of

muscle differentiation and development (Fukushige and Krause

2005; Lei et al. 2009). Previous experiments identified 2128 genes

that were significantly induced upon overexpression of HLH-1 in

early embryos (Fukushige et al. 2006; Fox et al. 2007), and ChIP-seq

experiments from modENCODE indicate that HLH-1 binds to

4191 genes in mixed embryos (Niu et al. 2011). The second, SKN-1,

is a bZIP domain–containing transcription factor that is orthologous

to NRF1/2/3. SKN-1 plays roles in specification of intestinal,

muscular, and pharyngeal cell fates of the EMS blastomere and in

the response to oxidative stress (Bowerman et al. 1992; Maduro

et al. 2001; An and Blackwell 2003; Tullet et al. 2008). DNA

microarray experiments profiling skn-1 knockdown in worms ex-

posed to oxidative stress identified 91 SKN-1–responsive genes

(Park et al. 2009), and modENCODE ChIP-seq data sets identified

sites bound by SKN-1 associated with 3572 genes in L1-stage larvae

and 3131 genes in L2-stage larvae (with Q-value # 10�5) (Niu et al.

2011). For each, binding sites were associated with genes if they

were located within the gene body or within 5 kb upstream of the

annotated transcription start site (see Methods).

By using these data sets, we asked whether the complexity

score for an HLH-1 or SKN-1 binding site correlated with factor-

responsive targets. First, we determined the overlap between the
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list of HLH-1–activated genes and the set of genes with HLH-1

binding sites with complexity of at most n, with n ranging from

one to 57 factors associating to the same genomic locus. We observed

that low-complexity sites tended to be associated with genes that were

HLH-1–responsive, whereas inclusion of

intermediate- and high-complexity sites

yielded fewer HLH-1–responsive targets

(Fig. 3A; Supplemental Fig. 1A). Using the

Matthews correlation coefficient to opti-

mize the trade-off between the increased

percentage of HLH-1–responsive genes at

low-complexity thresholds and the in-

creased number of targets when inter-

mediate- and high-complexity sites are

included, we found that a complexity

score of eight provided the optimal

threshold for HLH-1 (Fig. 3A). Using

this cutoff, 39.5% (591) of the 1496 genes

associated with HLH-1 binding regions

with a complexity score of eight or less

were activated by HLH-1 (3.1-fold enriched,

x2 = 1047). This was a 99% improvement

over regions with a complexity score of

nine or more, and a 49% improvement

over using all HLH-1 binding sites, which

were only 1.6-fold and 2.1-fold enriched (x2 = 132 and 789), re-

spectively (Fig. 3B).

Next, we applied the same complexity criteria to determine

whether the complexity of SKN-1 binding sites was also correlated

Figure 1. Examples of highly occupied and low-complexity regions of transcription factor binding. Binding of 57 transcription factors in one or more
developmental stages (98 ChIP-seq data sets in total) were obtained from the C. elegans modENCODE Consortium and are shown for two examples. Data
sets are shown in identical order to Supplemental Table 1. (A) Binding proximal to translation elongation factor 1-alpha homolog eef-1A.1. An ;450-nt
HOT region indicated by the red dashed box is significantly enriched for binding in ChIP-seq analyses of 44 different transcription factors. Transcription
factor complexity (the number of factors with ChIP-seq binding sites overlapping that position) is shown at the top. (Below) Regions of significant
enrichment (Q-value # 10�5) observed in each of the 98 ChIP-seq data sets are shown as black boxes. (B) Low-complexity HLH-1 binding proximal to HLH-
1–activated target pat-3 is shown.

Figure 2. Highly occupied target (HOT) regions. (A) The histogram indicates the number of genomic
regions observed for different binding complexities. In blue, thousands of low-complexity regions are
bound by eight or fewer factors; in red, 296 HOT regions are bound by 38 or more transcription factors. (B)
HOT regions tend to be located close to the transcription start sites (TSSs) of genes. The cumulative dis-
tribution plot shows the cumulative fraction of regions (y-axis) that have a maximal distance to the nearest
annotated TSS indicated on the x-axis. HOT regions have significantly shorter distances to nearby TSSs than
low-complexity regions (P = 1.7 3 10�23; Kolmogorov-Smirnov test). Results shown here are for all an-
notated genes (WS220); similar results were observed using only protein-coding genes (data not shown).
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with responsiveness to decreased activity of skn-1. The first SKN-1

ChIP-seq data set (from L2 larvae) identified 579 low-complexity tar-

gets and 1668 intermediate- and high-complexity targets bound by

SKN-1. We found that genes associated with the low-complexity sites

showed a 4.8-fold enrichment for activation by SKN-1 (P = 6.3 3 10�22

by x2 test). In contrast, the intermediate- and high-complexity targets

were not significantly enriched for skn-1–responsive genes (Fig. 3C).

We obtained a similar result for the second SKN-1 ChIP-seq

data set (from L1 larvae), which has 344 low-complexity targets

and 2301 intermediate- and high-complexity targets. Although

this set showed surprisingly low overlap with the ChIP-seq per-

formed in L2 larvae (only 16% of L1 low-complexity binding sites

also bound in L2 larvae), SKN-1 (L1) low-complexity targets still

showed a 4.3-fold enrichment for activation by SKN-1 (P = 7.5 3

Figure 3. Low binding site complexity correlates with factor-responsive expression. (A) Using 4191 significant HLH-1 binding sites identified by the
modENCODE Consortium (Niu et al. 2011), the set of genes with HLH-1 binding sites with complexity less than or equal to n (for n = 1–57) was
identified. Each set was then compared to 2128 genes activated upon HLH-1 overexpression (Fukushige et al. 2006; Fox et al. 2007), with the
percentage of directly bound targets activated indicated in red. Except for complexities of two or less, binding sites with lower complexity had higher
precision in predicting HLH-1–activated genes. By use of the Matthews correlation coefficient (in blue) to weight both false-positives and false-
negatives, a complexity of eight or less was identified as optimal for predicting factor-responsive targets (indicated by *). (B) Using only binding sites
with complexity of eight or less significantly improves prediction of HLH-1–responsive binding. (Circles) The set of genes with any HLH-1 binding site
(top) or only those with low-complexity or intermediate/high-complexity binding sites (bottom). The overlap with HLH-1–activated genes is indicated
in red, with the expected overlap indicated by white hash marks. Significance of enrichment was calculated by Yates’ x2 test. (C,D) The same
complexity criteria significantly delineate SKN-1 targets in L2 and L1 larvae. Circles indicate 91 SKN-1–activated genes (Park et al. 2009), with the
percentage overlap with SKN-1 ChIP-seq data sets indicated in blue and expected overlap indicated by white hash marks. Low-complexity regions for
SKN-1 in L2 larvae (C ), and L1 larvae (D), are enriched for genes responsive to skn-1 knockdown. Enrichment significance was determined by Fisher’s
exact test. The set of all SKN-1 targets in L1 was not significantly enriched for SKN-1–activated genes (1.1-fold-enriched, P > 0.5), indicating that the
correlation between SKN-1 binding in L1 larvae and SKN-1–responsive expression is only observed when binding site complexity is taken into
account.
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10�7) (Fig. 3D). In contrast, neither intermediate- and high-com-

plexity targets nor all SKN-1 (L1) targets were significantly enriched

for skn-1–activated genes. Thus, without incorporating infor-

mation from the 97 other ChIP-seq data sets, analysis of the SKN-1

(L1) ChIP-seq data set on its own would not show any enrichment

for skn-1–responsive genes. Additionally, these results indicate that

the complexity criteria trained using the HLH-1 data sets can be

applied to analysis of other transcription factors. Training using

the SKN-1 data sets themselves gave a different cutoff for maxi-

mal correlation, but showed the same anti-correlation between

binding site complexity and factor-responsive expression (Sup-

plemental Fig. 1B). The number of transcription factors bound

to each base in the C. elegans genome is listed in Supplemental

Datafile 1 to enable incorporation of binding site complexity in

future analyses.

In addition to binding site complexity, a gene can be regu-

lated by many transcription factors binding to multiple distinct

sites. However, we found that incorporation of gene-level com-

plexity did not improve the ability to distinguish factor-responsive

from nonresponsive targets compared with incorporation of binding

site-level complexity (Supplemental Fig. 1C). This result suggests

that the correlation of binding site complexity with factor-re-

sponsive targets is not simply due to the number of transcription

factors associated with the entire gene promoter.

Tissue specificity of transcription factor targets

Next, we explored whether the target genes bound by a transcrip-

tion factor were enriched for expression in the tissue where the

factor is known to be expressed. We obtained lists of genes with

expression significantly enriched in a variety of tissues (e.g., in-

testine or neurons) and tissue subtypes (e.g., A-class neurons)

(listed in Supplemental Table 3; Roy et al. 2002; Zhang et al. 2002;

Colosimo et al. 2004; Fox et al. 2005; Pauli et al. 2006; Von Stetina

et al. 2007; Spencer et al. 2011). For each list of tissue-enriched

genes, we performed pairwise comparisons with low-complexity

targets from every ChIP-seq data set, identifying many significant

transcription factor target–tissue pairings (Supplemental Fig. 2).

To test this approach, we identified 13 factors that had a high

correlation with at least one tissue-enriched gene list and had

expression patterns described in WormBase (Harris et al. 2010).

In 12 of the 13 cases, the targets were enriched for expression in

a tissue in which the transcription factor was expressed (Supple-

mental Fig. 3).

Tissue-specific gene regulatory networks controlled
by UNC-62 Homothorax

Although modENCODE ChIP-seq experiments were performed

using whole worms, binding of a transcription factor to distinct

target genes in different developmental stages could occur if the

factor was expressed in one tissue at one stage but another tissue at

a later stage, or acted with different cofactors in the different stages.

We identified four transcription factors (PHA-4, FOS-1, SKN-1, and

UNC-62) for which targets identified in different developmental

stages were enriched for expression in different tissues. We ana-

lyzed one of these transcription factors (UNC-62) as a proof-of-

principle that one can use genomic analyses to uncover potential

underlying molecular mechanisms responsible for binding site

specificity.

UNC-62 is the ortholog of Homothorax/Meis and is a cofactor

of the HOX transcription factor LIN-39. unc-62 is involved in the

development of the nervous system, hypodermis, and vulva as well

as in aging, and acts through both HOX-dependent and HOX-in-

dependent functions (Van Auken et al. 2002; Yang et al. 2005;

Curran and Ruvkun 2007; Jiang et al. 2009; Potts et al. 2009; Van

Nostrand et al. 2013). An alternative splicing event in unc-62

produces two transcripts that include either exon 7a or 7b,

encoding alternative N termini of the DNA binding TALE homeo-

domain (Van Auken et al. 2002). Using isoform-specific fluorescent

reporters UNC-62(7a) was observed to be predominantly expressed

in the intestine starting at the L3 larval stage and continuing

through adulthood, whereas UNC-62(7b) was expressed in neu-

rons, the ventral nerve cord, vulval precursor cells, and hypoder-

mis beginning in embryos and continuing through adulthood

(Fig. 4A; Van Nostrand et al. 2013).

The modENCODE Consortium performed UNC-62 ChIP-seq

experiments in L1, L2, and L3 larvae (which express only unc-

62(7b)) (see Supplemental Fig. 4), as well as young adults (which

express both unc-62(7a) and unc-62(7b)). We identified seven low-

complexity UNC-62 binding sites in L1 larvae, 47 in L2 larvae, 231

in L3 larvae, and 339 in young adults; due to the low number of

targets, we removed the L1 data set from additional analyses. We

observed that UNC-62 showed a dramatic shift in binding between

L2/L3 larvae and adults; 62% of UNC-62 L2 peaks overlapped re-

gions enriched in L3, but only 13% of L2 peaks and 5% of L3 peaks

were enriched in young adults (Fig. 4B).

We performed three comparisons of the binding targets of

UNC-62 in the L2/L3 stages to the young adult stage: overlap with

binding sites of cofactor LIN-39, tissue-specific expression of target

genes, and differential motif enrichment. First, we found that 45%

of low-complexity UNC-62 binding sites in L2 larvae and 42% of

low-complexity L3 binding sites overlapped low-complexity LIN-

39 binding sites, reflecting the known shared functions of UNC-62

and LIN-39 during these larval stages. In contrast, only 2% of low-

complexity UNC-62 young adult binding sites were also bound by

LIN-39, indicating that these transcription factors likely have di-

vergent roles at this stage (Fig. 4B). Second, we found that UNC-62

low-complexity targets in the L2 and L3 larval stages were enriched

for genes with neuronal expression, similar to HOX LIN-39 targets

in the L3 larval stages (Fig. 4C). In contrast, the UNC-62 young adult

targets were enriched for genes expressed predominantly in the

intestine. These profiles match the expression of the isoforms of

unc-62, as unc-62(7a) is expressed in the intestine in young adults,

and both unc-62(7b) and lin-39 are expressed in neuronal tissues (as

well as other tissues) in larvae (Fig. 4A; Wagmaister et al. 2006).

Third, we performed a de novo search to identify DNA

motifs contained within the UNC-62 peaks using the central

100-nt region of low-complexity UNC-62 binding sites in L3 and

young adults. We identified two similar motifs: (1) a motif with

consensus sequence GTGACA that is enriched in both the L3 and

the young adult stages (2.8-fold, P = 0.0007 for the L3 stage and

3.4-fold, P = 1.3 3 10�7 for the young adult stage), and (2) a motif

with consensus sequence TTGACA motif that was significantly

enriched in young adult (3.3-fold, P = 1.5 3 10�22) but not in the

L3 larval stage (1.7-fold enriched relative to flanking regions, P > 1

after Bonferroni correction; 2.0-fold enriched, P = 5.6 3 10�5 in

young adult binding sites relative to L3 binding sites) (Fig. 4D).

Both motifs contain the core TGACA sequence previously de-

scribed as the binding site for Drosophila Homothorax (Noyes et al.

2008).

In summary, these results suggest that multiple mechanisms

may direct stage-specific binding of UNC-62 to its targets: (1) dif-

ferential use of the LIN-39 cofactor in specifying binding targets in

Integrative ChIP-seq analysis in C. elegans
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neurons compared with the intestine, and (2) binding to distinct

DNA motifs by the UNC-62(7a) versus the UNC-62(7b) isoform.

Similar analysis could suggest mechanisms for tissue specificity for

additional factors that could be dissected with further experi-

mental exploration.

Identifying upstream transcription factors involved
in regulating gene expression changes from genome-wide
profiling experiments

A commonly arising question in high-throughput gene expression

profiling experiments is to identify upstream transcriptional reg-

ulators that may be responsible for causing the observed tran-

scriptional differences. Given the increasing availability of ChIP-

seq data sets describing transcription factor targets, one approach

to find such candidate regulators is to search for transcription

factors that bind to the upstream regions of differentially expressed

genes (Lachmann et al. 2010; Zambelli et al. 2012). Rather than test

all of the targets from the ChIP-seq experiments, we use only the

low-complexity targets as this subset is enriched for factor-re-

sponsive targets.

To test the validity of this approach, we analyzed four ex-

pression profiling experiments: (1) genes induced following over-

expression of HLH-1, (2) genes decreased upon knockdown of

SKN-1, (3) genes decreased upon knockdown of UNC-62, or (4)

genes that have altered expression during aging. We chose the

Figure 4. Distinct sets of targets bound by UNC-62 in L2/L3 larvae and adults. (A) Strains expressing isoform-specific unc-62 translational reporters
show stage- and tissue-specific expression (Van Nostrand et al. 2013). (Left) unc-62(7a):GFP is not observed in early larval stages but is highly expressed in
the intestine in late larval stages and young adults (YA). (Right) unc-62(7b):GFP is not observed in the intestine at any stage but is expressed in the
hypodermis (hyp), the ventral nerve cord (vnc), and other neurons (neu). Strains were imaged in a glo-4(ok623) background to limit gut autofluorescence.
(B) The overlap of ChIP-seq binding sites for UNC-62 in L2 and L3 larvae, young adults (YA), and HOX transcription factor LIN-39 in L3 are shown as the
percentage of binding sites in the smaller set that are also bound in the larger. (C ) Targets bound by UNC-62 in L2, L3, and YA, as well as those bound by
LIN-39 in L3 larvae, were compared to genes enriched for expression in various tissues (Roy et al. 2002; Zhang et al. 2002; Colosimo et al. 2004; Fox et al.
2005; Pauli et al. 2006; Von Stetina et al. 2007; Spencer et al. 2011). Colors indicate the correlation between low-complexity target genes and genes with
tissue-enriched expression for the indicated tissue. Tissues are clustered according to broad tissue types, and the specific tissue for each column is listed in
Supplemental Figure 2 and Supplemental Table 3. (Int) Intestine; (Hyp) hypodermis; (BWM) body wall muscle. (D) A de novo motif search with RSAT
(Thomas-Chollier et al. 2012) identifies sequences significantly enriched in the 100-bp central core region of UNC-62 binding sites. A total of 200-bp
flanking regions on either side of this core were used as the background sequence set. Both motifs contain the D. melonogaster Homothorax motif (TGACA)
(Noyes et al. 2008).

Van Nostrand et al.

946 Genome Research
www.genome.org



first three data sets as positive controls, as the upstream regulator

was present in the modENCODE database. For the fourth data

set, we chose aging as a complex process for which transcrip-

tional changes are likely the effect of altered activity of multiple

regulators.

For HLH-1, we compared the set of 2128 HLH-1–activated

genes to low-complexity target genes from each of the 98 ChIP-seq

data sets, and we found that HLH-1 ChIP-seq data set was the most

significantly enriched for genes that change expression upon

HLH-1 overexpression (3.1-fold enriched, P < 10�100, x2 = 1047)

(Fig. 5A). For SKN-1, we performed a similar analysis on the 91

genes that decrease expression following skn-1 knockdown (Park

et al. 2009). Out of 98 ChIP-seq data sets, the top two were SKN-1

ChIP-seq data sets (4.8-fold enriched, P = 6.3 3 10�22 in the L2

larval stage and 4.3-fold enriched, P = 7.5 � 10�7 in the L1 stage,

respectively) (Fig. 5B). For the SKN-1 ChIP-seq experiment using L1

worms, analysis using all binding sites does not show enrichment

for genes responsive to skn-1 knockdown, indicating that SKN-1 is

only identified as an upstream regulator of genes responsive to

SKN-1 when low binding site complexity is incorporated (Sup-

plemental Fig. 5C; as discussed in Fig. 3D).

However, when we compared the ChIP-seq data sets against

115 genes that are activated by and 67 genes repressed by UNC-62

in young adults (Van Nostrand et al. 2013), neither stage-matched

UNC-62 ChIP-seq targets from young adult worms nor UNC-62

targets in the L2 or L3 stage showed significant overlap (Fig. 5C;

Supplemental Fig. 5D). This false-negative result may reflect that

knockdown of unc-62 activity results in expression changes of a

small number of direct targets, which subsequently leads to a cas-

cade of gene expression changes of secondary indirect targets.

Thus, the degree to which transcriptional changes are composed of

primary, direct targets instead of secondary, indirect ones repre-

sents a limitation for this approach.

A potential confounding factor is that the significance level

depends on the number of genes identified in the ChIP-seq ex-

periments, which would undesirably favor ChIP-seq experiments

with a large number of targets. To address this concern, we de-

veloped a method using a naı̈ve Bayes classifier, in which each

binding site is given a RP (responsiveness-predictor) score as a

function of both its complexity as well as its significance Q-value

(see Methods). We then selected the top-scoring 500 sites in order

to compare an equal number of binding sites from each ChIP-seq

data set against each other as described above.

First, we independently trained a model to predict targets that

are induced by HLH-1 overexpression for each ChIP-seq data set.

Similar to before, we observed that the HLH-1 ChIP-seq data set

was the best of all of the modENCODE ChIP-seq data sets at pre-

dicting hlh-1–induced genes; specifically, the top 500 HLH-1

binding sites were 4.5-fold enriched for induction by hlh-1 (P <

10�100, x2 = 761) (Supplemental Fig. 5A,B). Next, we asked whether

RP scores (trained to weight ChIP-seq parameters using HLH-1

data) could be used to infer regulators for the SKN-1 data set.

Consistent with the earlier results, we observed that the only data

sets showing significant enrichment were the two SKN-1 ChIP-seq

data sets; specifically, SKN-1 targets in L1 larvae were 3.6-fold

enriched (P = 7.9 3 10�9), and those in L2 larvae were 5.1-fold

enriched (P = 9.8 3 10�9) for skn-1–activated genes (Fig. 5D). This

method did not, however, improve the correlation between UNC-62

binding and unc-62–responsive expression (Supplemental Fig. 5E).

In summary, our analysis correctly identified the hlh-1 and

skn-1 transcription factors as upstream regulators of genes that

change expression following hlh-1 overexpression or skn-1 knock-

down, respectively. These results indicate that it is possible to iden-

tify upstream regulators in silico from a gene expression profiling

experiment by screening ChIP-seq data sets. In one case (SKN-1 in L1

larvae), the upstream regulator is only identified once binding site

complexity is incorporated.

Identification of novel aging regulators

Encouraged by the success of using ChIP-seq data to infer upstream

transcriptional regulators for gene signatures in two out of three

Figure 5. Identifying candidate regulators of expression profiling data
sets. To predict candidate regulators of genes altered in expression pro-
filing experiments, low-complexity targets from each of the 98 ChIP-seq
data sets were compared against (A) 2128 genes activated by hlh-1
(Fukushige et al. 2006; Fox et al. 2007), (B) 91 genes activated by skn-1
(Park et al. 2009), or (C ) 115 genes decreased upon knockdown of unc-62
(Van Nostrand et al. 2013). For each ChIP-seq data set (y-axis), the x-axis
indicates the overlap between low-complexity targets and genes altered
in the transcriptome profiling experiment, with enrichment indicated by
positive values and depletion by negative values. (A) HLH-1 low-com-
plexity ChIP-seq targets in mixed embryos (MxE) showed the greatest
enrichment for hlh-1–activated genes ([*] P < 10�100, x2 = 1047 by Yates’
x2 test). (B) SKN-1 targets in L2 larvae (P = 6.3 3 10�22), followed by SKN-1
targets in L1 larvae (P = 7.5 3 10�7) showed the greatest enrichment for
skn-1–activated genes. (C ) UNC-62 targets did not correlate with unc-62-
activated genes, potentially indicating that most genes with decreased
expression upon unc-62 knockdown are secondary targets of UNC-62. (D)
To control for the different number of targets between ChIP-seq data sets,
we developed a score (based on a naı̈ve Bayes classifier) for each binding
site that reflects both the binding site significance (Q-value) as well as
binding site complexity. This classifier was trained on the set of HLH-1
ChIP-seq targets and hlh-1–activated genes, and the 500 binding sites for
each ChIP-seq data set with the highest scores were then tested on skn-
1–activated genes. By use of this method, SKN-1 targets showed the
greatest correlation (3.6-fold enriched, P = 7.9 3 10�9 in L1 larvae and 5.1-fold
enriched, P = 9.8 3 10�9 in L2 larvae) for skn-1–activated genes.

Integrative ChIP-seq analysis in C. elegans

Genome Research 947
www.genome.org



cases, we turned to analysis of genes that change expression during

aging. To screen for putative aging regulators, we compared each

set of transcription factor targets against 1106 genes with altered

expression during aging (Budovskaya et al. 2008). We performed

this screen using both scoring methods: (1) using only those

binding sites with low complexity (Fig. 6A), and (2) using the 500

binding sites with the highest RP scores for each ChIP-seq data set

(Fig. 6B). The two approaches are complementary, as the first uses

only significant binding peaks (even if they are few in number),

whereas the second uses an equal number of binding sites across

data sets in order to improve sensitivity for data sets with fewer

binding sites (but may include sites bound weakly by the tran-

scription factor). We identified nine transcription factors that are

significantly enriched for binding to age-regulated genes with at

least one of the two methods; six of the nine were significantly

enriched using both methods.

Modulation of the activity of three of the nine (ELT-3, UNC-

62, and SKN-1) has previously been shown to increase lifespan.

ELT-3 is involved in age-regulated changes in the hypodermis, and

increased expression of ELT-3 (via knockdown of repressors ELT-5

or ELT-6) extends lifespan (Budovskaya et al. 2008). HOX cofactor

UNC-62 is involved in age-regulated changes in the intestine, and

unc-62 knockdown in adults increases lifespan (Curran and Ruvkun

2007; Van Nostrand et al. 2013). SKN-1 is involved in mediating the

oxidative stress response, and overexpression of an activated form

of SKN-1 increases lifespan (Tullet et al. 2008; Przybysz et al. 2009).

To validate the role of the remaining six candidate aging

regulators (nhr-28, pqm-1, fos-1, C01B12.2, nhr-77, and nhr-76), we

asked whether increasing or decreasing their activity can increase

lifespan. We first performed RNAi to determine if reduction in

activity increased lifespan. We confirmed that knockdown of unc-62

in adults can significantly extend lifespan as reported previously

(Curran and Ruvkun 2007), but did not observe reproducible ex-

tension of lifespan for any of the novel candidates (Supplemental

Table 4).

To assay the lifespan phenotype of overexpression, we obtained

a transgenic strain from the modENCODE Consortium that carries

a low-copy randomly integrated fosmid that contains the desired

transcription factor (with a C-terminal GFP tag), additional flank-

ing genes as described below, and rescue marker unc-119. Strains

containing fosmids with pqm-1, fos-1, C01B12.2, or nhr-77, had

wild-type lifespan (Supplemental Table 5), whereas strains con-

taining either the nhr-28 or the nhr-76 fosmid showed significant

extension of lifespan (15%–30% and 6%–15%, respectively; each

P < 0.01 by log-rank test in three independent experiments) (Fig.

6C,D).

The first new candidate aging regulator, nhr-28, encodes a nu-

clear hormone receptor expressed in the pharynx, hypodermis, and

intestine (Reece-Hoyes et al. 2007). NHR-28 ChIP-seq experiments

performed on L4 larvae identified binding sites associated with 297

target genes that change expression with age (1.9-fold enriched, P =

5.6 3 10�36). The fosmid containing GFP-tagged NHR-28 also

contains ace-1 (encoding a class A acetylcholinesterase) and sur-7

(encoding a cation diffusion facilitator protein). The read density

of sequences across the nhr-28 gene region indicates that there

are approximately 15 integrated copies of the fosmid in the

modENCODE strain.

The second new candidate aging regulator is nhr-76, which

encodes a nuclear hormone receptor expressed in body wall mus-

cles, the intestine, excretory gland cell, pharynx, seam cells, and

vulval muscles (Miyabayashi et al. 1999). The fosmid containing

nhr-76 also contains the majority of the K11H12.9 transcript

(which encodes a protein kinase of unknown function) and is

present at three or four copies in the modENCODE strain. By use of

the naı̈ve Bayes–derived method that selects the top 500 NHR-76

peaks, the NHR-76 ChIP-seq data set was the second-most sig-

nificantly enriched for age-regulated genes out of all of the

modENCODE data sets (2.4-fold enriched, P = 1.3 3 10�15). How-

ever, by use of the first method that analyzed only the 50 significant

Figure 6. Identification of candidate regulators of aging. (A,B) The
ChIP-seq–based screening approach described in Figure 5 was applied to
the set of genes with altered expression during aging (Budovskaya et al.
2008). For each ChIP-seq data set, the correlation was calculated twice:
first, using all low-complexity binding sites (A), and second, using the 500
binding sites with the highest naı̈ve Bayes–derived score as described in
Figure 5D (B). (Bars) The P-value (log10) between age-regulated genes and
the indicated ChIP-seq targets, with enrichment indicated by positive
values and depletion indicated by negative values. For nine transcription
factors, significant overlap (P < 10�5) was observed using at least one of
the two approaches; six of nine were significant with both. (Black check-
marks) Three factors (ELT-3, UNC-62, and SKN-1) for which modulation
has been shown to increase lifespan (Curran and Ruvkun 2007; Budovskaya
et al. 2008; Tullet et al. 2008). (Red checkmarks) Factors for which the
modENCODE strain (which contains an integrated multi-copy fosmid
containing the listed transcription factor) has an extended lifespan. (C,D)
Lifespan of modENCODE-generated strains in which a strain containing
a fosmid with C-terminal GFP-tagged nhr-28 or nhr-76 was compared
with controls. Days of adulthood are indicated on the x-axis, and the
percentage of worms remaining alive is indicated on the y-axis. (C ) Strain
OP371 (containing a fosmid with GFP-tagged nhr-28) was compared with
three controls (RW10780, RW11206, and RW11175). The strain over-
expressing nhr-28 shows 15%–30% extension of lifespan relative to the
various controls (all P < 10�5 by log-rank test). (D) Strain OP203 (con-
taining a fosmid with GFP-tagged nhr-76) showed a 7%–15% increase in
mean lifespan relative to two controls (RW10780 and RW11206) (P < 0.01
against either). Lifespan data shown are from strains that were back-
crossed twice to wild-type; each lifespan experiment was performed twice
before backcrossing and gave similar results (Supplemental Table 5).
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low-complexity targets from the NHR-76 ChIP-seq experiment,

only 12 were found to show altered expression with age (3.3-fold

enriched, P = 0.00017). Thus, NHR-76 is an example where analysis

using the naı̈ve Bayes–derived method is more sensitive in revealing

candidate regulators.

A resource for identifying regulators of changes in C. elegans
expression profiling experiments

There are currently over 1000 C. elegans expression profiling ex-

periments listed in the GEO database showing transcriptional

changes at various developmental stages, at different growth con-

ditions, and in different mutant backgrounds. For each of these, the

ChIP-seq screening approach described above could be used to

identify candidate causal regulators responsible for the observed

expression changes. We have created a website through which

users can perform a candidate regulator screen for any expression

profiling experiment of interest (http://celegansrwas.stanford.edu).

Discussion
In C. elegans, the modENCODE Consortium has provided a com-

pendium of 98 ChIP-seq data sets for 57 transcription factors. In

this work, we provide further evidence that integrating information

across these ChIP-seq data sets can be highly informative for driving

biological insights. By analyzing these data sets, we found that the

number of transcription factors bound to a single DNA region

(termed its complexity score) can vary widely, from one to 54. Low-

complexity binding sites are enriched for characterize factor-re-

sponsive expression, can be used to uncover mechanisms leading

to regulation of distinct genes by a transcription factor between

developmental stages and in different tissues, and can be screened

to find novel transcriptional regulators of genes identified in ex-

pression profiling experiments. Each of these three analyses is

enabled by the availability of a large number of ChIP-seq data sets.

In addition, we redefined 296 highly occupied target (HOT)

regions that are bound by 38 or more factors (>65%). These HOT

regions were associated with various types of housekeeping genes

(including ribosomal proteins, sl-2 splice leader transcripts, and

snoRNAs), in agreement with the previous observation of HOT re-

gions as associated with essential genes that are broadly and highly

expressed (Gerstein et al. 2010).

Low-complexity targets correlate better with factor-responsive
expression

The subset of transcription factor binding targets that are factor-re-

sponsive (i.e., activated or repressed by the factor in gain-of-function

or loss-of-function experiments) can be used to infer functions and

tissue-specificities of the transcription factor itself, as they represent

targets for which expression will respond to altered regulator activity.

However, the fraction of genes that are bound by a transcription

factor and that are also responsive to changes in expression of the

factor can range from 4% to >50% (Spitz and Furlong 2012).

Previous work has shown that prediction of factor-responsive

targets from an individual ChIP-seq experiment can be improved

by incorporating additional information, such as co-correlated

expression across hundreds of different microarray studies (Lai

et al. 2010; Cheng et al. 2011; Marbach et al. 2012). Here, we show

that by integrating 98 ChIP-seq data sets for 57 transcription fac-

tors, we can identify low-complexity binding sites that signifi-

cantly improve the fraction of factor-responsive targets. In one

instance (SKN-1 targets in L1 larvae), enrichment for activation by

SKN-1 was only observed for the low-complexity sites. These re-

sults illustrate insights using the aggregated results from the entire

ChIP-seq compendium that are not possible using ChIP-seq data

for just one transcription factor. Further, if the properties of tran-

scription factor binding in humans are similar to C. elegans, our

results suggest that incorporating binding site complexity for each

bound region will improve analysis of transcription factor func-

tion in humans.

In this work we used a cutoff of eight or less transcription

factors bound, based on analysis of HLH-1, to define low-com-

plexity targets. Importantly, this criterion effectively segregated

SKN-1 targets, indicating that the definition of low complexity

targets works for other transcription factors as well. However,

depending on the desired application, alternative complexity cutoffs

could be chosen that shift the balance toward either greater sen-

sitivity or specificity in identifying factor-responsive targets.

Mechanisms for tissue-specific regulation of downstream
targets by UNC-62

Analyses of ChIP-seq experiments across multiple cell-types can

reveal binding sites unique to individual cell-types, which can be

further studied to reveal insight into causal mechanisms. For ex-

ample, analysis of MYC binding in two human cell-types revealed

that GATA1 and TAL1 motifs correlated with MYC binding in

K562 cells, whereas motifs for TEAD1 and the AP-1 complex

correlated with binding specific to HeLaS3 cells (Shao et al. 2012).

We observed that in C. elegans, UNC-62 showed dramatically dif-

ferent tissue specificities among targets when assayed in different

developmental stages. unc-62 is alternatively spliced to produce

two transcripts that include either exon 7a or 7b. By using ChIP-

seq data, we observe that UNC-62 generally binds to one set of

targets in the L2 or L3 larval stages and to a distinct set in adults.

Our results suggest a model for tissue specificity of UNC-62 bind-

ing in which UNC-62(7b) binds along with known cofactor HOX

gene LIN-39 at one set of genes during early larval development,

and UNC-62(7a) binds to a different set of genes in the intestine

at an altered consensus motif without LIN-39 co-occupancy in

adults.

Although we focused on UNC-62 as a proof-of-concept, the

transcription factors SKN-1, PHA-4, and FOS-1 also showed en-

richment for different tissues among their targets in different

developmental stages. In addition, as many of the 57 transcrip-

tion factors were only profiled in one stage, it is likely that more

transcription factors will be found to bind to different targets at

different points during development. Alternative isoforms that

affect DNA binding domains and combinatorial binding with

cofactors are common mechanisms by which transcription fac-

tors regulate distinct sets of targets in different contexts (Taneri

et al. 2004; Spitz and Furlong 2012). Thus, the type of analysis

described here could provide insights into how other regulators

achieve regulation of distinct sets of genes at different times and

in different cell-types.

Screening ChIP-seq data sets for candidate transcription factors
responsible for expression differences observed in expression
profiling experiments

DNA microarray and high-throughput RNA sequencing technol-

ogies are commonly used to generate a list of genes that change

expression in a mutant or altered growth condition. For such ex-
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periments, one often would like to identify the critical upstream

regulators driving these changes in expression. One can gain in-

sight into potential upstream regulators by searching for high

levels of overlap between genes with altered expression and DNA

regions bound by each transcription factor from a compendium of

ChIP-seq experiments (Lachmann et al. 2010; Zambelli et al. 2012).

These candidate upstream regulators can be further studied to con-

firm their role in regulating the genes that comprise the expression

profile of interest. We validated this approach for HLH-1 and SKN-1

gene regulatory circuits, observing that this approach was successful

for SKN-1 targets in L1 larvae only when low-complexity binding

sites were used.

However, we note that several factors can limit the success of

this approach. First, many transcription factors have not yet been

profiled in ChIP-seq experiments by modENCODE. Second, some

have different sets of targets in different tissues or at different times

of development. For these factors, the conditions used for the

ChIP-seq experiment need to be matched to the conditions used

for the expression profiling experiment. Finally, in some cases

changes in the activity of an initial factor will initiate a cascade of

changes in downstream regulators. In this case, expression pro-

filing of worms mutant for the first factor will reveal the entire set

of genes involved in the transcriptional cascade, including not

only the primary targets of the first factor but also genes that are

indirectly regulated. This cascade will hinder one’s ability to identify

the initial manipulation.

We observed a significant overlap between SKN-1 targets in

the L1 stage and SKN-1–responsive genes in adults under oxidative

stress, which could be larger if data sets matched for the same stage

were used. However, it is infeasible to obtain ChIP-seq data for all

factors in a large number of stages or conditions. Thus, our results

with SKN-1 shows that upstream regulators can be identified even

when the ChIP-seq and expression profiling experiments are per-

formed using different conditions.

Genomics screen for aging regulators

Next, we applied this method to the identification of new candi-

date regulators of aging in C. elegans. A variety of techniques have

been utilized to identify specific regulators that are responsible for

causing changes in expression in old age. For instance, a motif-

driven approach was used to identify modules whose presence

correlated with genes that changed expression with age (Adler et al.

2007). This led to the identification of the binding site for the

transcription factor complex NF-KB as enriched in nine of 10 tis-

sues queried, suggesting that NF-KB is a candidate master regulator

of aging in multiple tissues. NF-KB binding activity increases with

age in various tissues, and chemical inhibition of NF-KB activity

led to a rejuvenation of aging phenotypes in the epidermis, sug-

gesting that NF-KB is an important regulator of gene expression as

well as detrimental phenotypes in old age (Adler et al. 2007).

In C. elegans, Budovskaya et al. (2008) found that GATA se-

quence motifs were enriched upstream of age-regulated genes, and

identified GATA transcription factor ELT-3 as one of the factors

responsible for expression changes between young and old worms.

Expression of elt-3 decreases with age, but worms that retain high

levels of expression of elt-3 in old age (due to knockdown of up-

stream repressors elt-5 or elt-6) have increased lifespan, suggesting

that ELT-3 may also be an important regulator of aging.

In this study, we compared genes altered during aging with

genes bound by transcription factors in ChIP-seq data sets gener-

ated by the modENCODE Consortium, identifying nine tran-

scription factors with enriched binding to age-regulated genes.

Two (ELT-3 and UNC-62) have previously been shown both to be

directly responsible for changes in expression of downstream tar-

gets in old age as well as to modulate lifespan (Curran and Ruvkun

2007; Budovskaya et al. 2008; Van Nostrand et al. 2013). A third

(SKN-1) is linked to aging through its role as an oxidative stress

protective factor with decreased activity with age, and overexpression

of constitutively active SKN-1 increases lifespan (Tullet et al. 2008;

Przybysz et al. 2009). In addition to these three, we found that

strains containing fosmids for two transcription factors (nuclear

hormone receptors NHR-28 and NHR-76) had significantly ex-

tended lifespan. Although they did not affect lifespan in simple

knockdown or overexpression experiments, two of the remaining

transcription factors (PQM-1 and FOS-1) may play a role in aging

through their involvement in pathogen response, as pathogenicity

significantly limits lifespan in C. elegans (Garigan et al. 2002; Shapira

et al. 2006; Kao et al. 2011; Sanchez-Blanco and Kim 2011). Recent

work has also implicated FOS-1 in modulation of lifespan by dietary

restriction (Uno et al. 2013).

In summary, experimental evidence for as many as seven of

the nine candidate regulators supports a role in the worm aging

process. Further work will be required to determine whether the

candidate transcription factors identified in this ChIP-seq screen

are directly responsible for changes in expression of their down-

stream targets seen in the normal aging process. Although in this

work we explore the model system of aging, the ChIP-seq screen-

ing approach described here could be used to help untangle com-

plex regulatory networks responsible for expression changes in

other expression profiles by identifying a small number of tran-

scription factor candidates for further experimental study.

Methods

ChIP-seq data sets and analysis
Ninety-eight ChIP-seq data sets for 57 transcription factors were
obtained from the modENCODE Consortium as of 4/30/12
(http://submit.modencode.org/submit/public/list or http://data.
modencode.org/). Binding data were mapped to WS220 coordi-
nates using scripts available from WormBase (ftp://ftp.sanger.ac.
uk/pub2/wormbase/software/Remap-between-versions/) (Harris
et al. 2010). Binding sites were then associated with annotated
WS220 transcripts if the position of maximum read density
within the binding site was (1) located within the minimum of 5 kb
upstream of the annotated transcription start site or the distance to
the nearest annotated protein coding gene or (2) contained within
the gene body (up to the annotated transcription stop site).

By using all 98 ChIP-seq data sets, the transcription factor
complexity of every nucleotide in the genome was defined as the
number of transcription factors that were found to have a signifi-
cant binding site (Q-value # 10�5) that overlaps that region. The
complexity of a binding site was defined as the maximum com-
plexity of any position within the binding site. Overlapping binding
sites for the same transcription factor observed in multiple de-
velopmental stages were only counted once. For downstream
analyses, genes with multiple binding sites of low complexity and
intermediate/high complexity were counted for both groups.

Highly occupied target (HOT) regions were defined as con-
tiguous genomic regions bound by at least 65% of the transcription
factors considered (38 out of 57). Low-complexity binding sites
were defined as those that had no position within the binding site
that was enriched in nine or more transcription factors (out of the
57 total). To associate HOT regions with nearby genes, a shorter
1 kb upstream to 500 nt downstream from transcription start site
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window was used, and the HOT region center was defined as the
midpoint of the subregion bound by the maximum number of
factors within the HOT region. For enrichment analysis, 19 snRNA
SL2 splice leader transcripts (sls-2.#), 76 small and large ribosomal
subunit genes (rps-# and rpl-#), and 139 snoRNA transcripts were
obtained from WormBase release WS220 (Harris et al. 2010). Gene
ontology annotations were obtained from Gene Ontology (The
Gene Ontology Consortium 2000). Collagen genes were defined
as genes annotated with NCBI KOG3544 (type IV and type XIII
collagens).

Statistics and computational tools used

The degree of overlap between a ChIP-seq data set and the various
gene lists was calculated using the Matthews correlation co-
efficient, which provides a summary statistic that includes all
four outcomes (true positives, true negatives, false positives, and
false negatives) (Baldi et al. 2000). Significance of overlap was de-
termined by Fisher’s exact test on the 2 3 2 contingency table
(using the R statistics program), approximated with the Yates’ x2

test for data sets with expected and observed overlaps greater than
five. P-values for x2 tests were obtained using the Perl StatisticsT

Distributions module. For all analyses, enrichment was determined
relative to the set of genes that were both present in the microarray
or RNA-seq study and those in the WormBase WS220 release con-
sidered for ChIP-seq targets.

To calculate the percentage of overlapping binding sites be-
tween ChIP-seq data sets, low-complexity binding sites for a first
ChIP-seq data set ‘‘A’’ were compared against all binding sites in
a second ChIP-seq data set (‘‘B’’). A binding site in the first data set
was considered to overlap with a binding site in the second if at
least half of the smaller of the two binding sites was contained
within the larger binding site. To avoid penalizing for the different
number of binding sites identified across experiments, this pro-
cedure was repeated to compare low-complexity binding sites in
ChIP-seq data set B against all binding sites in ChIP-seq data set A,
and the higher of the two percentages was used as the overlap
between the two ChIP-seq data sets. To identify sequence motifs in
UNC-62 binding sites, the 100-bp window surrounding the posi-
tion of maximum ChIP-seq read density in each UNC-62 binding
site was identified as the core binding region. A total of 200-bp
windows on either side of this core region served as the negative
control. A de novo motif search was performed using the Peak-
Motifs program (Thomas-Chollier et al. 2012), with the setting for
7-mer oligonucleotide length. Motif logos were generated using
WebLogo (Crooks et al. 2004).

Gene expression data sets used

For HLH-1, 2128 genes that were significantly induced upon over-
expression of HLH-1 in early embryos were obtained (Fukushige
et al. 2006; Fox et al. 2007). For SKN-1, four microarrays of oxida-
tive stress (GSM237006-GSM237009), as well as three microarrays of
oxidative stress and skn-1 RNAi (GSM237010-GSM237012), were
used to identify SKN-1–responsive genes (Park et al. 2009). DNA
microarray intensity values were scaled up or down to a target
mean intensity value of 500, using only the central 96% of probes
(second to 98th percentile). Probes that were not detected in all
four control or all three skn-1 RNAi microarrays were discarded,
and an unpaired two-sample t-test was then used to identify genes
with significantly altered expression upon skn-1 RNAi. Using a
cutoff of P-value # 0.01 and requiring a twofold decrease in ex-
pression led to the identification of 91 SKN-1–responsive (acti-
vated) genes (Park et al. 2009). For analysis of UNC-62–responsive
targets, 115 genes with significantly decreased expression and 67

genes with significantly increased expression upon knockdown of
unc-62 were obtained from GEO (GSE39574) (Van Nostrand et al.
2013). To perform the screen for candidate regulators of aging, a
data set describing genes with significantly altered (both increased
and decreased) expression with age was obtained (Budovskaya
et al. 2008).

Tissue-enriched gene lists

Data sets of tissue-enriched and tissue-specific genes were obtained
from previous publications as follows: tissue-enriched data sets for
25 tissues and tissue sub-types in various developmental stages
(Spencer et al. 2011), intestine in L4 larvae (Pauli et al. 2006),
muscle in L1 larvae (Roy et al. 2002), neurons and A-class neurons
in embryos and L2 larvae (Von Stetina et al. 2007), embryonic
touch neurons (Zhang et al. 2002), embryonic motor neurons (Fox
et al. 2005), and embryonic AFD and AWD neurons (Colosimo
et al. 2004). Annotations of known transcription factor expression
profiles were obtained from WormBase (Harris et al. 2010).

Naı̈ve Bayes responsiveness score

The scoring metric that combines Q-value and complexity was
created using a simple two-feature naı̈ve Bayes classification
model. For each ChIP-seq binding site, the discrete Q-values were
segmented into bins (where a bin from x to y indicates binding
sites with x # Q-value < y): 10�2 to 5 3 10�3, 5 3 10�3 to 10�4, 10�4

to 10�5, 10�5 to 10�7.5, 10�7.5 to 10�10, 10�10 to 10�15, 10�15 to
10�25, and 10�25 to 0. Complexity was similarly binned, based
upon whether the binding site was bound (in total) by 1, 2, 3–4, 5–6,
7–9, 10–12, 13–15, 16–20, 21–25, 26–31, 32–37, or 38–57 tran-
scription factors.

To initially test the method, naı̈ve Bayes classifiers were in-
dependently trained upon each ChIP-seq data set to compare
training error for predicting HLH-1–responsive genes across ChIP-
seq data sets. After training, for a binding site with Q-value q̂ and
complexity r̂, the classifier yields a probability of that binding site
being associated with the HLH-1–responsive (y = 1) or non-
responsive (y = 0) class. The log of the ratio of these probabilities

p y = 1jq̂;̂rð Þ
p y = 0jq̂;̂rð Þ

� �
was used as a score for each binding site; the top-scoring

500 binding sites for each factor were used to determine the pre-

dictive ability of each ChIP-seq data set on HLH-1–responsive genes.
For further analyses, the classifier was trained using HLH-1

ChIP-seq targets and HLH-1 factor–responsive genes and then used
to score binding sites from the other 97 ChIP-seq data sets. In all
downstream analyses, the 500 binding sites with the highest log
ratio score were used.

Lifespan analysis

General C. elegans techniques as well as lifespan experiments
were performed according to the method previously described
(Budovskaya et al. 2008). Unless otherwise noted, lifespan exper-
iments were performed by placing day 1 adult worms (with visible
eggs) on NGM plates containing 30 mM 5-fluoro-29-deoxyuridine
(FUDR). Deaths before day 7 of adulthood were censured. Log-rank
tests were performed using OASIS (Yang et al. 2011). RNAi clones
used were obtained from the Ahringer RNAi library (Kamath et al.
2003) and sequenced to verify proper insertions. RNAi knockdown
experiments in adults were performed on NGM plates supple-
mented with 30 uM FUDR, 100 mg/mL ampicillin, and 2 mM IPTG
to induce dsRNA expression.

For overexpression, strains were obtained from modENCODE
in which a fosmid containing a transcription factor (with a C-ter-
minal GFP fusion) is overexpressed along with an unc-119 trans-
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gene as a selectable marker in an unc-119(ed3) background. As
controls, we used four strains (RW11108, RW11206, RW10780,
and RW10384) that also contain a biolistically bombarded and
integrated unc-119 transgene. These strains lack overexpression of
a transcription factor, but instead contain a promoter fusion to
a histone-tagged mCherry fluorescent reporter (and showed weak
or no expression of mCherry). For the initial screen of all nine
transcription factors, the modENCODE strain used for the ChIP-
seq experiments was used without backcrossing; strains containing
NHR-28 (OP317) or NHR-76 (OP203) fosmids that showed signif-
icant extension of lifespan in the initial screen were then back-
crossed twice to wild-type (N2) and repeated to confirm extension
of lifespan. Strain OP203 had a tendency to move onto the walls of
the plate, increasing the number of worms lost in the experiment;
for the backcrossed lifespan experiment, a ring of palmitic acid (10
mg/mL) was added around the plate in an attempt to alleviate this
concern.

To estimate fosmid insertion copy number, read density in the
ChIP-seq input control samples was used in a manner similar to
previously described (Sarov et al. 2012). The average read density
across sliding 10-kb windows was calculated for the entire genome,
and copy number was defined as the ratio between the average
read density in windows within the fosmid and the average of all
other windows in the genome.
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