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Simple Summary: Cancer is the second leading cause of death worldwide, right after cardiovascular
diseases, and the invasion and metastatization correspond to the foremost cause of cancer-related
deaths. Here, we reviewed the state of the art regarding the importance of HOX transcription factors
in these last steps of cancer progression and described five of their complex mechanisms of regulation,
including the miRs and lncRNAs interference. This information highlights the importance of HOX in
the suppression and induction of disease advancement and point out the potential of HOX products
as therapeutic targets for diverse cancer types.

Abstract: Invasion and metastasis correspond to the foremost cause of cancer-related death, and
the molecular networks behind these two processes are extremely complex and dependent on the
intra- and extracellular conditions along with the prime of the premetastatic niche. Currently, several
studies suggest an association between the levels of HOX genes expression and cancer cell invasion
and metastasis, which favour the formation of novel tumour masses. The deregulation of HOX genes
by HMGA2/TET1 signalling and the regulatory effect of noncoding RNAs generated by the HOX
loci can also promote invasion and metastasis, interfering with the expression of HOX genes or other
genes relevant to these processes. In this review, we present five molecular mechanisms of HOX
deregulation by which the HOX clusters products may affect invasion and metastatic processes in
solid tumours.

Keywords: HOX; invasion and metastasis; HMGA2/TET1/HOXA signalling pathway; TGFβ sig-
nalling; epithelial-to-mesenchymal transition; microRNAs; lncRNAs

1. Introduction

The vast majority of cancer-related mortality in solid tumours is associated with the
capacity of the cancer cells to invade and colonize nearby or distant vital organs forming
metastasis [1], hallmarks that characterize the last steps of cancer progression [2]. A line
of investigation suggests that tumour recurrence and metastization is led by a population
of residual cells that survive treatment and are capable to leave their primary location.
These cells disperse into the bloodstream, endure pressure in blood vessels, escape immune
response, and acclimate to new cellular surroundings in a secondary site [3]. However, the
development of new therapies that can eliminate residual tumour cells or prevent their
action is conditioned by the incomplete understanding of the mechanisms underlying the
long-term survival of these cells following treatment [4].

The metastatic process is complex and involves a multistep journey. The activation of
invasion and metastasis is triggered by environmental stimuli, such as aging and circadian
disruptions; adhesive signals from extracellular matrix (ECM) components, such as colla-
gen and fibrin; ECM mechanical pressures, including tension and compression; cell–cell
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interactions; soluble signals, such as growth factors and cytokines; and intratumoural
microbiota [5,6]. The invading tumour cells, on the way to the target site, interact with
other proteins and cells to overcome the stromal challenges and complete the metastasis
key steps of invasion, intravasation, circulation, extravasation and colonization as will be
described throughout the text. To add more complexity to this process, secondary sites
do not receive invading cancer cells passively. In fact, the host microenvironment, also
designated as a premetastatic niche (PMN) or organotropic metastasis, is selectively primed
by the primary tumour even before the initiation of the metastatic process. This signalling
involves secretory factors and extracellular vesicles that induce vascular leakage, ECM
remodelling, and immunosuppression, making the secondary microenvironment selective
for the circulating tumour cells (CTCs) [7–9]. As common examples of organotropism,
we can cite the preferred metastization of breast and prostate tumour cells to lungs, bone
and liver; colon and stomach cancer to liver, lung and peritoneum; and lung carcinoma
to adrenal glands and liver [10]. Hundreds of genes have been reported to lead this inva-
sive potential, suggesting that primary tumour cells should develop a metastatic genetic
signature [11]. Thus, genetic and also epigenetic modifications, accumulated during the
primary tumour development and by the adaptations to the microenvironment compo-
nents contribute to the metastatic process [6]. The genetic modifications involve changes in
the primary DNA sequence, such as mutations, while the epigenetic mechanisms relate
to chemical modifications of DNA bases and changes in the chromosomal superstructure
in which DNA is packaged, such as gene promoter methylations associated with gene
silencing [12,13]. In this context, alterations in HOX gene expression have been identified
in primary tumours, metastasis and CTCs [14,15].

1.1. HOX Genes Genomic Organization and Transcription

HOX genes are a family of genes that codes for transcription factors characterized
by the presence of a conserved DNA sequence designated homeobox [16]. The human
genome contains 39 of those genes arranged into four clusters (HOXA, HOXB, HOXC
and HOXD) located in distinct chromosomes (7p15, 17q21.2, 12q13, 2q31, respectively).
Each cluster presents 9–11 genes that align in 13 paralogous groups, based on sequence
homology of their homeoboxes and their position within the cluster [17]. These genes are
co-ordinately transcribed following temporal and spatial collinearity with an unidirectional
chromatin opening, where the chromosomic order of genes is the same as the order of
its expression, forming nested and overlapping expression domains [18], that define the
organogenesis along the anterior–posterior axis [19,20]. HOX proteins activity occurs with
the formation of multiprotein complexes, the “hoxasomes”, composed by HOX proteins,
HOX cofactors and other transcription factors [15]. These cofactors are members of the
three amino acids loop extension (TALE) family, which includes PBC members (PBX1–4),
HMP members (MEIS1–3 and PREP1–2), and POU family (POU1–6) [21]. The transcription
of these genes happens during embryonic development but also in adult cells at lower
levels [22] partaking in cellular physiology and tissue homeostasis [19,23].

1.2. HOX Genes and Cancer

Alterations in HOX gene expression have been shown in different cancer types and
associated with cancer initiation and progression [15,24,25]. They can interfere with cell
differentiation, survival, proliferation, angiogenesis, autophagy, inflammation and apopto-
sis. They also influence cell movement, migration, invasion, metalloproteinase function
and regulate important stemness-related genes [26,27]. More complexly, different HOX
genes can activate or inhibit these processes and even exhibit antagonistic behaviours in
different tissues.

Thus, HOX genes interfere with the majority of the hallmarks of cancer, whose events
must occur in parallel and/or sequentially to promote cancer progression [2]. The uncon-
trolled cell division that represents cancer initiation, involves not only deregulated control
of cell proliferation and resistance to apoptosis, but also changes in energy metabolism in
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order to fuel cell growth and division. For instance, normal cells under aerobic conditions
process glucose, first to pyruvate via glycolysis in the cytosol and thereafter to carbon
dioxide in the mitochondria; under anaerobic conditions, glycolysis is favoured. Tumour
cells, even in the presence of oxygen limit their energy metabolism largely to a state of
aerobic glycolysis, also known as the Warburg effect [2]. At the same time, to ensure
nutrient and oxygen delivery, as well as to remove metabolic wastes and carbon dioxide
from the constantly growing mass, it is fundamental to form new blood vessels through
the angiogenesis process [2].

Another hallmark of cancer influenced by HOX genes, with a dual function in tu-
morigenesis, is inflammation [2,26]. While in normal cells, the inflammation process is
carried out by innate immune cells to fight infections and heal wounds, in cancer cells it can
instead inadvertently work to support tumour growth [2]. Cell movement, which drives
the migration and invasion processes, is dependent on the supply of matrix-degrading
enzymes such as metalloproteinases (group of enzymes that can break down proteins, such
as collagen, that are normally found in the spaces between cells). Finally, the presence
of cancer stem cells, with extensive growth and differentiation abilities, give phenotypic
heterogeneity for tumour cells in order to enable the survival of specific cell subpopulations
that are resistant to therapy and capable of regenerating the tumour once therapy has been
halted [2].

An example of HOX gene alteration in cancer, relates with the increased expression
of HOXA9 in the most aggressive acute leukaemia and its potential as predictive of poor
prognosis [28]. Moreover, it was demonstrated that HOXA13 protein physically links to
the translation initiation factor eIF4E, frequently overexpressed in cancer and described as
a strong promoter of tumour growth and angiogenesis [29]. EIF4E acts on the exportation
of specific oncogenes mRNAs from the nucleus to cytoplasm, such as c-Myc, FGF-2,
ODC and CCND1. Thus, the deregulation of this HOX gene could facilitate the mRNA
nuclear export of eIF4E-dependent oncogene transcripts, as observed in hepatocellular
carcinomas (HCCs) [30]. HOX genes are also actively expressed in adipose tissue, which
has emerged as an important supportive tissue for cancer proliferation and progression [26].
Half of the KRAS-mutant NSCLC (non-small-cell lung cancers) express the homeobox
protein HOXC10, which triggered tumour regression in xenografts and PDX (patient-
derived xenografts) models in vivo [31]. Upregulation of HOXA10 expression plays a key
role in colorectal cancer development and could be considered as a new biomarker that
indicates poor prognosis [32]. HOXC8 upregulation is inversely related to pancreatic ductal
adenocarcinoma progression and metastasis formation and therefore could be explored as
a marker for pancreatic cancer progression [33]. Moreover, some of the pathways involved
in metastasis, from invasion to colonization, are affected by the HOX proteins through
mechanisms that modulate their expression, such as HMGA2/TET1/HOXA and TGFβ, or
by the interference of microRNAs and lncRNAs regulators [26]. However, further studies
are required to consolidate their real potential as therapeutic targets [34].

In this context, several studies are now being performed to evaluate HOX proteins
strength as therapeutic targets in cancer therapy. The synthetic peptide HXR9 (recently
replaced by HTL001), that blocks the binding of HOX proteins to PBX cofactors and, conse-
quently prevents the binding of these dimers to the DNA, is one of the approaches that are
under evaluation [34,35]. Cancer cells’ sensitivity to this peptide is highly correlated to their
HOX expression profile, albeit the subset of HOX genes which act as oncosuppressors is
not affected [34]. This peptide has shown to be effective in oesophageal and oral squamous
cell carcinomas [36,37], melanoma [35,38], ovarian cancer (OC) [39], breast cancer [40],
meningioma [41], prostate cancer [42], and leukaemia [43]. The use of RNA interference
mechanisms [44,45] and the control of HOX methylation status [46] are additional tools
that can control HOX expression with therapeutic function. Therefore, the manipulation of
HOX genes expression emerges as a promising strategy to prevent invasion and metastasis.
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2. Invasion and Metastasis

Tumour formation and progression are multistep processes that depend on the accu-
mulation of genetic and epigenetic alterations generating cells with great genetic instability
and culminating with its uncontrolled proliferation escaping from apoptosis and immune
system response [2,47]. Subsequently, the progressive increment of the tumour mass size
associated with the activation of metalloproteinases (MMPs), which generates gaps in the
barriers between tissues, allow cancer cells to invade and disseminate throughout adjacent
normal tissues (invasion process), forming secondary tumours [2,48,49]. The development
of metastasis is far more complex because, besides invading adjacent tissues, cancer cells
travel through blood and lymphatic vessels, detect the premetastatic niche (PMN), and
initiate the formation of new tumour masses in distant sites [6,47,50,51].

Therefore, the metastization process depends on the coordinated support of specific
cellular programs such as angiogenesis, alterations of cell adhesion, tumour cell motility
and secretion of proteolytic enzymes [52]. The dislocation of cancer cells throughout the
blood vessels is achieved through the loss of their cell-to-cell adhesion molecules in a
process known as epithelial-mesenchymal transition (EMT) [52]. Cancer cells change from
epithelial to mesenchymal phenotype enabling cell motility due cytoskeleton modifications
that allow cell movement from primary tumour mass to the blood and lymph vessels
(intravasation) [53]. When in circulation, metastatic tumour cells adhere to the basement
membrane of a new tissue site (extravasation) by mechanisms not completely understood.
This process involves the action of glycoproteins such as fibronectin, type IV collagen and
laminin. Subsequently, metastatic tumour cells secrete degradative enzymes, or induce
host tissues to produce them, to degrade the ECM of the new tissue site [54]. Finally,
cancer cells are driven across the basement membrane and stroma within the region where
proteolysis occur, starting its division and establishing tumour masses in this new location
with or without the reversion of the mesenchymal phenotype through mesenchymal to
epithelial transition (MET) process [1] (Figure 1).
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the formation of new blood vessels surrounding the primary tumour (angiogenesis), growth is
stimulated by the flux of nutrients and oxygen. Then, cells from the primary tumour may acquire
motility going through the basement membrane into the blood vessels (intravasation). Once in
circulation, metastatic tumour cells stop its progress adhering to the basement membrane of a new
tissue site (extravasation). Finally, cancer cells start to proliferate in the new location, forming a
new tumour mass. In breast cancer, overexpression of HOXB7, along with the upregulation of the
indicated molecules, and downregulation of HOXD10 and HOXB3 have been linked to the metastatic
process.

3. Five Mechanisms of HOX Deregulation Affecting Invasion and Metastasis of
Cancer Cells
3.1. HMGA2/TET1/HOXA Signalling Pathway

The ten–eleven translocation family (TET) of methylcytosine dioxygenases can induce
DNA demethylation and is associated with tumorigenesis in many cancer types, given
that its action alters the regulation of transcription and affects the expression of many
genes [55–57]. These enzymes catalyse the hydroxylation of 5-methylcytosine (5mC) found
in methylated DNA sequence, which results in a 5-hydroxymethylcytosine (5hmC). Then,
TET can further catalyse oxidation of 5hmC to 5-formylcytosine (5fC) that is also oxidized
forming 5-carboxycytosine (5caC). Finally, by the action of a terminal deoxynucleotidyl
transferase (TdT), the 5caC is converted to an unmodified cytosine [58] (Figure 2).
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Figure 2. HMGA2/TET1/HOXA signalling in breast cancer cells. Depletion of the architectural
transcription factor high mobility group AT-hook 2 (HMGA2) induces TET1 (ten–eleven translo-
cation methylcytosine dioxygenases). This molecule initiates demethylation of DNA and is as-
sociated with tumorigenesis in many cancers. TET1 binds and demethylates its own promoter
and the promoters of HOXA7 and HOXA9, increasing their expression, which may result in the
inhibition of breast cancer growth and metastasis, already demonstrated for HOXA9 using mouse
xenografts [35]. The demethylation promoted by TET1 allows the conversion of 5-methylcytosine
(5mC) to 5-hydroxymethylcytosine (5hmC) and this to 5-formylcytosine (5fC), which in turn is
converted in to 5-carboxycytosine (5caC) and at the end in an unmodified cytosine (C).

An association was also found between TET enzymes and HOX gene expression.
For example, in breast cancer, TET1 can demethylate its own promoter and the promoter
of HOXA genes, enhancing its own expression and stimulating HOXA7 and HOXA9 ex-
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pression (Figure 2) [56]. HOXA9 overexpression has been correlated to a less invasive
behaviour of breast cancer cells [56,59]. The TETs are also associated with the nonhis-
tone architectural transcription factor “high mobility group AT-hook 2” (HMGA2) and
its inhibition can induce TET1 expression [56]. HMGA2 can modulate the transcription
of several genes binding to AT-rich sequences and altering the chromatin structure and
consequently affecting a variety of processes, including the cellular cycle, DNA damage
repair, apoptosis, senescence, EMT and telomere restoration [58]. Therefore, the effect of
HMGA2 in TET1 expression and the subsequent effect of TET1 in HOXA9 expression is
known as the HMGA2/TET1/HOXA9 signalling pathway, which has a role in the invasion
and metastasis of cancer cells (Figure 2). In breast cancer, when HMGA2 is depleted, an
induction of the TET1 and HOXA9 genes occurs inhibiting invasion and metastization [56].
The opposite effect could also occur, given that HMGA2 overexpression reduces TET1
and HOXA9 expression, supporting invasion and metastization [60]. These data highlight
tissue-specificity of HOX gene functions, not only in embryonic development but also in
cancer [15,17].

3.2. TGFβ Signalling Pathway

HOX proteins interfere with invasion and metastasis of cancer cells due to their ability
to affect the expression of TGFβ genes, which are multifunctional cytokines secreted by
different cells, with important roles in embryonic development controlling cell behaviour,
namely cell proliferation, differentiation, morphogenesis, tissue homeostasis and regen-
eration [61]. The direct binding of HOX proteins to TGFβ genes promoters, activating
their expression, was identified for HOXB7 and HOXC8 [62,63]. This results in the coding
of TGFβ ligands, proteins that will be secreted to the ECM [64] (Figure 3). Thus, the
dysfunction of TGFβ seems to be also associated with cancer progression, as a consequence
of HOX genes expression deregulation [65]. HOXB7 overexpression, for example, induces
invasive and metastatic breast cancer by activating the TGFβ signalling pathway [62].
In HCCs, downregulation of HOXB5 inhibits TGFβ, which induces migration and inva-
sion [66]. In NSCLC, HOXC8 promotes proliferation and migration through transcriptional
upregulation of TGFβ1 [63]. When in the ECM, TGFβ ligands bind to TGFβ receptor type
II in the cell surface and a cascade of processes is initiated (Figure 3), causing modifica-
tions in the expression of genes related with cell proliferation, apoptosis, metastasis and
angiogenesis [67].

3.3. HOX Proteins Effect in the Epithelial to Mesenchymal Transition (EMT)

EMT is a fundamental cellular process for non-disease conditions, such as embryogen-
esis and wound healing; however, it can also favour malignant processes, such as cancer
progression [68]. Intercellular structures and cell–cell adhesion molecules are key factors
in maintaining a well cohesive normal tissue or even a coherent primary tumour mass.
Abnormalities in these structures can lead to cell detachment from the primary tumour and
enhance the potential for dissemination and metastatic spread of cancer cells to secondary
locations [69].

During EMT, epithelial cells are transcriptionally reprogrammed, which results in a
decrease of cell–cell, cell–basement membrane adhesion and an increase of cell migration or
invasion [70]. The epithelial cells usually present apical–basal polarity and are maintained
together laterally by tight and adherens junctions, formed by epithelial cadherin, CDH1,
and desmosomes. Cell junctions with basement membranes are maintained by hemidesmo-
somes [53] (Figure 4). To maintain these junctions and cell polarity, cells express epithelial
adhesion molecules, such as occludin, claudins, α6β4 integrin and cytokeratins. Therefore,
for EMT to occur, two parallel processes must take place: (a) repression in the expression
of epithelial molecules by EMT-inducing transcription factors expression, namely ZEB,
SNAIL and TWIST, and (b) activation of mesenchymal molecules expression, as N-cadherin,
vimentin, fibronectin, β1 and β3 integrins and MMPs [53,71]. As a consequence of the
EMT process, cells acquire motility and invasive capacities [72] (Figure 4). Thus, EMT has
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significant importance in epithelial cancers, since it confers a higher tumour-progression
potential, as invasion and metastatic capabilities, to cancer cells [53]. This new mesenchy-
mal cell status can be reversible, and cells can recover their epithelial characteristics in a
process called mesenchymal-to-epithelial transition (MET) [72].

Currently, there are some reports proposing an involvement of HOX proteins in the
EMT process, with an impact on the capacity of invasion and metastasis of cancer cells [73–76].
It has been demonstrated that CDH1 expression is transcriptionally upregulated by the
direct binding of HOXA5 to their promoter sequence and that the knockdown of HOXA5 in
mammary cells leads to a loss of epithelial traits, increased stemness and cell plasticity, and
acquisition of more aggressive phenotypes [77]. HOXC6 was shown to promote invasion
of HCCs by driving EMT through the negative regulation of CDH1 expression and being
positively associated with vimentin and MMP-9 expression [78,79]. Still in HCC, HOXD9
was shown to interact with the promoter region of ZEB1/ZEB2 increasing its expression.
ZEB1 knockdown, in turn, inhibited HOXD9-induced migration and invasion, as well as
EMT [78].
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HOXA10, which is reported as an EMT inhibitor, when downregulated in endometrial
carcinomas favoured their invasive behaviour by reducing the expression of CDH1 [80].
In gastric carcinomas (GC), the downregulation of HOXB9 has been associated with ma-
lignancy and metastasis while its re-expression was suggested to cause inhibition of cell
proliferation, migration, invasion and induction of MET [73]. In cervical cancers, HOXA10
and HOXB13 were shown to influence the EMT. HOXA10 expression was positively asso-
ciated with CDH1 and negatively associated with vimentin expression, inhibiting EMT.
For HOXB13 the opposite trend was observed with a negative effect on CDH1 and a
positive effect on vimentin expression [75]. Additionally, it has been demonstrated that
HOXB13 promotes lung adenocarcinoma cell growth, local invasion, and metastasis to the
liver in nude mice regulating ABCG1, EZH2 and Slug [78,81]. In breast cancer, HOXB7
overexpression can promote tumour migration and invasion through the induction of
EMT in epithelial cells, by reducing the expression of epithelial proteins, as Claudin-1 and
Claudin-7, together with mislocalisation of Claudin-4 and CDH1 and increased expression
of mesenchymal proteins: vimentin and alpha-smooth muscle actin (α-SMA) [82] (Figure 4).
A detailed list of the proposed roles of the HOX proteins in EMT is presented in Table 1.

Table 1. Proposed role of the HOX proteins in the EMT and MET in distinct cancer types.

HOX Protein Type of Cancer Effect Reference

HOXA1 Prostate cancer Induction of EMT via downregulation of CDH1 and
upregulation of MMP-3 and Snail. [83]

HOXA5 Breast cancer Inhibition of EMT via upregulation of CDH1. [77]
HOXA9 Breast Cancer Less invasive phenotype inclusive in claudin-low cells. [56,59]

HOXA10

Endometrial carcinoma Inhibition of EMT via upregulation of CDH1. [80]

Cervical cancer Inhibition of EMT via upregulation of CDH1 and
downregulation of vimentin. [75]

Oral squamous cell carcinoma Inhibition of EMT via upregulation of CDH1 and
downregulation of N-cadherin. [84]

Ovarian cancer Inhibition of EMT via downregulation of vimentin, and
MMP-9. [85]

Glioma Induction of EMT via activation of
Wnt/beta-catenin/TGF-β pathways. [86]
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Table 1. Cont.

HOXA13 Oesophageal squamous cell
carcinoma

Induction of EMT via downregulation of CDH1 and
upregulation of Snail. [87]

Gastric cancer Induction of EMT via downregulation of CDH1 and
upregulation of N-cadherin and vimentin. [88]

HOXB5 Breast cancer Induction of EMT via downregulation of CDH1 and
upregulation of vimentin and Snail2. [89]

Non-small-cell lung cancer Induction of EMT via activation of Wnt/beta-catenin
pathway. [90]

HOXB7 Breast cancer
Induction of EMT via downregulation of Claudin-1 and
Claudin-7, mislocalisation of Claudin-4 and CDH1, and

upregulation of vimentin and α-SMA.
[82]

HOXB8 Colorectal carcinoma Induction of EMT via downregulation of CDH1 and
upregulation of vimentin, N-cadherin, Twist, Zeb1 and Zeb2. [91]

Ovarian cancer Inhibition of EMT via downregulation of vimentin, and
MMP-9. [85]

Gastric carcinoma Induction of MET. [73]

HOXB9 Lung adenocarcinoma Induction of EMT via downregulation of CDH1 and
upregulation of N-cadherin and vimentin. [92]

Breast cancer Induction of EMT via activation of the TGF-β pathway. [93]

HOXB13
Cervical cancer Induction of EMT via down regulation of CDH1 and

upregulation of vimentin. [75]

Lung adenocarcinoma Induction of EMT via ABCG1, EZH2 and Slug regulation. [78,81]

HOXC6 Hepatocellular carcinoma Induction of EMT via positive regulation of CDH1 and
negative regulation of vimentin and MMP-9. [78,79]

HOXC10 Ovarian cancer Induction of EMT via Slug regulation. [94]
Gastric cancer Induction of EMT via activation of the MAPK pathway. [95]

HOXD3 Hepatocellular carcinoma HOXD3 can directly target the promoter region of VEGFR
and increase its expression. [96]

HOXD9
Hepatocellular carcinoma Induction of EMT via upregulation of ZEB1 and ZEB2

interaction [74,78]

Colorectal carcinoma Induction of EMT via upregulation of TWIST and SNAIL. [76]

HOXD10 Oesophageal squamous cell
carcinoma

Inhibition of EMT via upregulation of CDH1 and
downregulation of N-cadherin and vimentin. [97]

3.4. MicroRNA’s Interference

MicroRNAs (miRs) are an abundant class of noncoding RNAs (with 21 to 25 nu-
cleotides), which have a crucial role in post-transcriptional gene regulation, including HOX
genes expression (Table 2) [98]. This regulation of the HOX genes by miRs is favoured
by the location of miRs coding regions in the HOX gene clusters [99]. Thus, the role of
the HOX genes in invasion and metastasis of cancer cells might be also dependent on
their regulatory miRs. In pancreatic cancer, for example, it has been described that the
downregulation of HOXA1, HOXB1 and HOXB3 by miR-10a is associated with the for-
mation of metastasis [100,101]. Furthermore, miR-100 can directly target the 3′-UTR of
HOXA1, which reduces the chemotherapy response of small-cell lung cancer [102]. Another
example of miR interference is the downregulation of HOXD10 by miR-10b, which favours
the invasive and metastatic behaviour of breast cancer cells [103]. Besides, downregulation
of HOXD10 by miR-10b also causes an increase in prometastatic gene products, such as
MMP-14 and RHOC, contributing to the acquisition of metastatic phenotypes in epithelial
OC cells [104]. Moreover, miR-7 and miR-218 epigenetically control tumour suppressor
genes RASSF1A and Claudin-6 by downregulating HOXB3 in breast cancer [105]. In HCC,
miR-203a negatively targets HOXD3 resulting in an inhibition of cell invasion, metastasis
and angiogenesis [96]. On the other hand, miR-224 directly targets and downregulates
HOXD10, boosting tumour progression and invasion in HCC [106]. In addition, HOXB7
downregulation promoted by mR-196b-5p leads to metastization in colorectal cancer [107].
Some studies have also connected miR interference with HOXA5 downregulation, consid-
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ered as a tumour suppressor gene in several cancer contexts [15]. For instance, miR-181d-5p
targets CDX2, a transcription factor binding to HOXA5 promoter, consequently leading to
EMT in MCF-7 breast cancer cells [108]. Moreover, in NSCLC, miR-196a antagonizes the
inhibitory tumour growth effect of HOXA5, partially contributing to an increasingly inva-
sive phenotype [109]. Another noteworthy miR target is HOXC10, shown to be involved in
the EMT in both GC and ovarian OC [94,95]. Recent studies have shown that miR-136 and
miR-222-3p act as an inhibitor of HOXC10, which impairs the EMT and consequently leads
to less perineum and hepatic metastasis in GC and OC, respectively [94,110].

The relationship between HOX gene expression and miRs regulation is far more
complex than initially described. In fact, increasing evidence suggest that HOX proteins can
themselves regulate the expression of miRs, which has an impact on invasion and metastasis
abilities of cancer cells. In breast cancer and gliomas, HOXD10 downregulation results in
the downregulation of miR-7 and upregulation of p21-activated kinase 1 expression (PAK1),
which culminates in higher aggressiveness of these cancer types facilitating invasion and
metastasis [111].

3.5. lncRNA’s Interference

Over the last decade, several long noncoding RNAs (lncRNAs) were proposed to play
essential roles in gene regulation, both at pre- and post-translational levels, and described
to contribute to tumour progression and metastasis [112]. A total of 231 lncRNAs have
been identified as products of the HOX clusters, amongst which HOXD-AS1, HOXA-AS2,
HOTAIRM1, HOTTIP, and HOTAIR, were reported to be involved in cancer regulation [113].

The HOX antisense intergenic RNA (HOTAIR) is an lncRNA that correlates with
metastasis and poor prognosis in breast, colon and lung cancer [114–116]. This lncRNA is
transcribed from the antisense strand of the HOXC cluster, repressing the transcription of
the HOXD cluster [45]. The induction of HOTAIR expression in breast and lung cancer cell
lines promotes growth in soft agar and invasion in Matrigel [45]. For example, in breast
cancer, HOTAIR downregulates HOXD10 favouring the invasive and metastatic behaviour
(Table 2) [103]. In gliomas, HOTAIR was described to promote invasion through upregu-
lation of MMP-7, MMP-9 and VEGF [117]. In addition, HOTAIR has been identified as a
key modulator in chromatin dynamics, partaking simultaneously in histone methylation
and deacetylation, but also on the antagonistic process [118,119]. In fact, the knockdown
of HOTAIR in GC significantly reverses EMT by increasing the expression of CDH1 and
inducing the loss of the PRC2 complex activity (consisting of H3K27 methyltransferase
EZH2, SUZ12 and EED) [120]. In cervical cancer, the downregulation of HOTAIR results
in an increased expression of CDH1 and a decreased expression of CTNNB1, vimentin,
Snail and Twist. In contrast, HOTAIR overexpression promotes VEGF and MMP-9 protein
expression [121]. In osteosarcoma, HOTAIR suppression significantly reduces the migration
and invasion, decreases the expression of MMP-2 and MMP-9 and increases the expression
of CDH1. This occurs through regulation of RAC-α serine/threonine protein kinase target
in rapamycin signalling pathway [122], whereas in gliomas, this lncRNA increases MMP-7
and MMP-9 expression by upregulating the Wnt/β-catenin pathway [123]. Moreover, in
renal cell carcinomas [124] and HCC [125], upregulation of HOTAIR leads to increased cell
invasiveness and metastatic capacity. Therefore, it would be fair to infer the involvement
of this lncRNA on the epithelial-mesenchymal transition.

A recent and increasingly number of studies have suggested that HOTAIR can interact
with miRNAs to regulate gene expression and cancer progression. In fact, HOTAIR may
sponge miRs, by competing for its target sites, thus inhibiting its effects. In breast cancer,
HOTAIR was shown to promote invasion and metastasis by sponging miR-601, which
consequently downregulated its target, ZEB1 [126]. In OC, HOTAIR actively competes with
miR-260 upregulating CCND1 and CCND2 dynamically sprouting OC progression [127].
Moreover, HOTAIR can act as a molecular sponge of miR-204, leading to an increase in
HOXC8, promoting proliferation, migration and invasion in oesophageal cancer cells [128],
whereas in cholangiocarcinoma, this process occurs through the modulation of miR-204-
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5p’s interaction with HMGB1 [129]. Notwithstanding, HOTAIR promotes GC cell growth
and metastasis by interfering in the miR-217/GPC5 [130], miR-1277-5p/COL5A1 [131],
and miR-618/KLF12 axis, being that the last one induces metastasis by promoting the
PI3K/ATK signalling pathway [132]. Recent findings have also related HOTAIR interfer-
ence to Trastuzumab resistance in GC, through the sponging of miR-3030 and consequent
upregulation of ERBB4 [133], which is responsible for activating the PI3K/ATK signalling
pathway [134]. Several HOTAIR-dependent interferences in miR pathways have also been
described in glioma [123], HCC [135–137] prostate cancer [138,139] and squamous cell
carcinomas [140–143].

Despite HOTAIR’s extensively described role in carcinogenesis, other lncRNAs tran-
scribed from the HOX clusters should not be overlooked in the cancer context. HOXA
cluster antisense RNA 2 (HOXA-AS2), transcribed between the HOXA3 and HOXA4 genes,
has been implicated in oncogenic promotion in pancreatic cancer, breast cancer [144,145],
colorectal cancer [146], GC [147,148], bladder cancer [149], HCC [150], thyroid cancer [151],
gallbladder carcinoma [152], lung cancer [153–155], osteosarcoma [156], glioma [157], and
leukaemia [158,159]. Another lncRNA transcribed between HOXA1 and HOXA2, the
HOXA transcript antisense RNA myeloid-specific 1 (HOTAIRM1), appears upregulated
in endometrial and pancreatic cancers, NSCLC, glioma and glioblastoma, but downregu-
lated in HCC, colorectal, OC, GC and papillary thyroid cancers, as well as head and neck
tumours [160].

Another lncRNA transcribed from the genomic region of HOXA locus is HOXA
distal transcript antisense RNA (HOTTIP) that directly binds the HOXA locus leading
to H3K4 methylation and activating the transcription of HOX genes. HOTTIP has been
described to exert oncogenic roles in different malignancies such as head and neck tumours,
oesophageal carcinomas, colorectal, lung and breast cancers (Table 2) [161]. Furthermore,
HOXD cluster antisense RNA 1 (HOXD-AS1) also named HAGRL, transcribed on the
antisense direction between HOXD1 and HOXD3, appears to be deregulated in many
cancers. In fact, this lncRNA is overexpressed in several malignancies, promoting processes
such as cell proliferation, metastasis, and drug resistance [162], acting as a molecular sponge
for different miRs [163] or by interfering in chromatin modulation [164]. Amongst these
malignancies are cervical cancer [165,166], GC [167], colorectal cancer [168], breast [169],
OC [170], and HCC [171,172]. HOXD-AS1 also promotes cell migration and invasion in
NSCLC by sponging miR-133b and promoting MMP-9 expression [173], albeit it plays an
opposite stand in lung adenocarcinoma by recruiting DNMT1 to the promoter of E2F1,
silencing it, and consequently suppressing cell proliferation [164].

Table 2. Noncoding RNAs that regulate HOX genes and/or are transcribed from HOX loci with impact on breast cancer
progression.

Non-Coding RNA HOX GENE AFFECTED Effect On Breast Cancer Cells Reference

miR-10b ↓ HOXD10 ↑ Aggressiveness [103]
miR-7/-218 ↓ HOXB3 ⊗ Cell cycle/clone formation [105]
miR-181d-5p ↓ HOXA5 ↑ Aggressiveness, promotes EMT [108]
HOTAIR ↓ HOXD10 ↑ Invasion/ metastasis [103]
HOXA-AS2 * NA ↑ Oncogenic behaviour [144]
HOTTIP ↑ HOXA ↑ oncogenic behaviour [161]
HOXD-AS1 (HAGRL) * NA ↑ Oncogenic behaviour [169]

⊗, Inhibition; ↑, Increase; ↓, Decrease; *, Noncoding RNAs transcribed from HOX genes loci; NA, Not Applicable.

4. Conclusions

Invasion and metastasis are the leading causes of cancer-related death, as they reflect
the last stages of cancer. Therefore, the development of targeted therapies to prevent
and/or lagging invasion and metastasis are crucial to improve the clinical outcomes of
cancer patients. HOX genes are in the spotlight of cancer research due to their effects on
key molecules related to angiogenesis (VEGFR), invasion (MMPs), cell adhesion (CDH1,
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vimentins, claudins), and transcription factors involved in the EMT (Twist, Snail, Zeb).
These genes were also implicated in the control of mRNAs nuclear export achieved by their
impact on eIF4E. In addition, HOX genes were shown to be active in the adipose tissue,
an important supportive tissue for tumour progression. However, the identification of
HOX targets and their function in different types of cancer is incomplete. Furthermore,
microRNAs and lncRNAs transcribed from the HOX loci can also be part of the complex
molecular processes by which HOX genes affect invasion and metastasis in cancer. Over
the last years, the use of the HXR9 peptide has yielded promising results in different types
of tumours and could be an innovative tool in different stages of cancer progression.

5. Future Perspectives

Different aspects of the HOX genes function in cancer have been studied and diverse
approaches have already been tested to allow the use of the HOX genes as therapeutic
targets for cancer treatment. Here, we propose three take-home messages: (1) HOX have
crucial roles in two of the most aggressive processes in cancer development, invasion and
metastization, responsible for the majority of cancer deaths; (2) HOX genes can affect inva-
sion and metastization by diverse mechanisms, and possibly more are yet to be discovered;
(3) the control of HOX genes expression and/or its targets may represent a promising
strategy to prevent invasion and metastasis and decrease the number of cancer-related
deaths.
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