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2B2, Canada

2Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montréal, QC H3A 1A2, Canada
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Abstract Arbuscular mycorrhizal fungi (AMF) are plant root symbionts that play key roles in plant

growth and soil fertility. They are obligate biotrophic fungi that form coenocytic multinucleated

hyphae and spores. Numerous studies have shown that diverse microorganisms live on the surface

of and inside their mycelia, resulting in a metagenome when whole-genome sequencing (WGS) data

are obtained from sequencing AMF cultivated in vivo. The metagenome contains not only the AMF

sequences, but also those from associated microorganisms. In this study, we introduce a novel

bioinformatics program, Spore-associated Symbiotic Microbes (SeSaMe), designed for taxonomic

classification of short sequences obtained by next-generation DNA sequencing. A genus-specific

usage bias database was created based on amino acid usage and codon usage of a three consecutive

codon DNA 9-mer encoding an amino acid trimer in a protein secondary structure. The program

distinguishes between coding sequence (CDS) and non-CDS, and classifies a query sequence into a

genus group out of 54 genera used as reference. The mean percentages of correct predictions of the

CDS and the non-CDS test sets at the genus level were 71% and 50% for bacteria, 68% and 73%

for fungi (excluding AMF), and 49% and 72% for AMF (Rhizophagus irregularis), respectively.

SeSaMe provides not only a means for estimating taxonomic diversity and abundance but also

the gene reservoir of the reference taxonomic groups associated with AMF. Therefore, it enables

users to study the symbiotic roles of associated microorganisms. It can also be applicable to other

microorganisms as well as soil metagenomes. SeSaMe is freely available at www.fungalsesame.org.
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Introduction

Arbuscular mycorrhizal fungi (AMF) are plant root inhabiting
fungi, of the subphylum Glomeromycotina, which form sym-

bioses with more than 80% of vascular plants worldwide [1].
They supply plants with essential nutrients particularly phos-
phorus and nitrogen, protect them against soil-borne patho-

gens, and alleviate their abiotic stresses [1–3]. Therefore,
AMF-based inoculants have been applied in agriculture as a
biofertilizer and in phytoremediation for cleaning up
contaminated soil [2,4–7]. Despite the ecological, agricultural,

and environmental importance of AMF, their genetics is
poorly understood due to their complex genome organization.
They form coenocytic hyphae, reproduce through multinucle-

ated asexual spores, and are strict symbionts [8]. Furthermore,
it is suggested that AMF are heterokaryons, although this is
under debate [9]. In addition, numerous studies reported that

bacteria and fungi inhabit the surface and the interior of myce-
lia and spores [10–14]. In 2012 and 2013, Tisserant et al. [15,16]
separately published the transcriptome and genome of the

AMF Rhizophagus irregularis cultivated in vitro. However,
only a few AMF taxa are able to grow in axenic in vitro sys-
tems with transformed roots as a host. Thus, whole-genome
sequencing (WGS) data from AMF spore DNA originating

from in vivo cultures (a conventional cultivation method in a
pot culture with a host plant), contain a substantial number
of non-AMF DNA sequences, but do provide important infor-

mation on the microbial communities associated with AMF.
In contrast, WGS data from in vitro petri-dishes contain fewer
non-AMF sequences, because antibiotics are used to initiate

axenic cultures [17].
Taxonomic classification of WGS data obtained from

AMF cultivated in vivo using current bioinformatics
approaches is challenging because these data represent a com-

plex metagenome containing sequences of prokaryotic and
eukaryotic microorganisms. Two major approaches for taxo-
nomic classification of random whole metagenome sequencing

data (e.g., whole metagenome shotgun sequencing data)
include composition-based methods and similarity-based
search methods [18,19]. The latter ones include BLAST and

its sister programs that are adequate for inferring functions
of a query sequence [19,20]. Nevertheless, they have limitations
in taxonomic classification, because they calculate scores based

on a 20 by 20 matrix containing the overall rates of the 20
amino acid substitutions created from the most conserved
regions of proteins. The same matrix is applied to all types
of query sequences, irrespective of functions, structures, and

taxonomic groups. However, due to a lack of bioinformatics
tools for analyzing random whole metagenome sequencing
data, similarity-based search methods have been commonly

used for taxonomic classification. In addition to similarity-
based search methods, taxonomic classification pipelines for
analyzing targeted metagenome sequencing data (e.g., 16S

rRNA gene-based metagenome sequencing data) have been
widely used for analyzing random whole metagenome sequenc-
ing data in combination with homology search program.
Numerous repository databases and pipelines have been devel-

oped based on the 16S rRNA gene. However, a previous study
has reported the horizontal gene transfer of 16S rRNA genes
in prokaryotic organisms and the multiple heterogeneous
rRNA genes within a single prokaryotic cell [21]. Therefore,
they may cause misrepresentation of data if they are not prop-

erly dealt with, which may result in erroneous taxonomic
classification.

Composition-based methods utilize unique sequence prop-

erties such as codon usage bias, compositional patterns in
nucleotide sequences (k-mers), and GC content that have been
widely used for studying microbial genome evolution in areas

of bioinformatics [18,22–26]. K-mers are subsequences of
length k in a DNA sequence (e.g., tetramer or 4-mer: ATGT).
Composition-based methods using k-mers have been employed
in bioinformatics programs for taxonomic classification of ran-

dom whole metagenome sequencing data [27]. They have a
number of advantages over similarity-based search methods.
It is estimated that more than 99% of existing microorganisms

cannot be cultured in laboratory conditions [28], and microbial
sequences available in bioinformatics databases represent only
a tiny fraction of the diversity of existing microorganisms.

Therefore, composition-based methods, which do not require
sequence alignments but make predictions based on microor-
ganism’s unique sequence signatures, supposedly excel in taxo-

nomical classification of novel sequences. However, existing
bioinformatics programs based on composition-based meth-
ods are designed for prokaryotic organisms and their utiliza-
tion in fungi is inefficient.

In this study, we introduce a novel bioinformatics program
for random whole metagenome sequence classification,
SeSaMe (Spore-associated Symbiotic Microbes). It provides

a means for estimating taxonomic diversity and abundance,
as well as, the reservoir of genes of reference taxonomic groups
in AMF metagenome. It therefore enables users to study sym-

biotic roles of taxonomic groups associated with AMF. In
order to filter complex evolutionary signals and obtain compa-
rable evolutionary footprints, we calculated codon usage bias

based on the amino acid usage and the codon usage of a 3-
codon DNA 9-mer that encodes three consecutive amino acids
located in a protein secondary structure. We joined three con-
secutive codons into one unit, and calculated the unit’s relative

frequency among synonymous 3-codon DNA 9-mers, which
will be hereafter referred to as 3-codon usage. 3-codon usage
has higher resolution than mono codon usage in assessing

the differences among taxonomic groups because evolutionary
forces acting on a codon and its encoded amino acid vary
widely across protein secondary structures as well as across

taxonomic groups. For example, the evolutionary forces acting
on the codon AAA, encoding the amino acid Lysine (K) in
TGGAAAGTG (WKV), have been different from the evolu-
tionary forces acting on the codon AAA in GACAAAGAA

(DKE). We found that 3-codon usage of a 3-codon DNA 9-
mer belonging to a protein secondary structure is a taxonom-
ically unique sequence property. SeSaMe calculates a score

based on six sets of 3-codon DNA 9-mers from all reading
frames (Figure 1), and distinguishes between coding sequence
(CDS) and non-CDS. It has an advantage over existing

composition-based methods that do not identify nucleotide
subsequences with structural roles, or do not consider the bio-
logical importance of codons and reading frames. SeSaMe is

freely available at www.fungalsesame.org.



Figure 1 Unique advantage of SeSaMe over existing programs

Existing programs calculate a score based on the frequencies of k-mers identified in a query sequence irrespective of properties of the k-

mers, or their reading frames. In contrast, SeSaMe identifies k-mers that encode the amino acids of protein secondary structures in each

reading frame. In the figure, matching 3-codon DNA 9-mers of the Trimer Ref. DB are marked with rectangles, where a color of the

rectangle indicates a reading frame. SeSaMe calculates scores based on the 3-codon usages and the A.A. Trimer usages of the matching 3-

codon DNA 9-mers in each reading frame. It classifies a query sequence into a taxonomic group based on the six scores computed from all

reading frames. All sequences in this figure are randomly generated for illustration purposes only. SeSaMe, Spore-associated Symbiotic

Microbes; A.A., amino acid; Trimer Ref. DB, trimer reference sequence database.
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Method

Bacterial and fungal sequence databases

We selected bacterial genera that were dominant in soil based
on a literature review [10,28,29–32]. While NCBI offered a

broad selection of more than 2300 completely sequenced bac-
terial genomes, we did not have many choices for the majority
of fungal phyla. Most of the completely sequenced fungal gen-

omes in NCBI or JGI were Dikarya, while we needed diverse
fungal genomes covering Mucoromycotina, AMF, Blastocla-
diomycota, Neocallimastigomycota, Microsporidia, and

Chytridiomycota. We assigned the completely sequenced gen-
omes of 444 bacteria and 11 fungi, including R. irregularis,
to 45 bacterial and 9 fungal genera, respectively, and created

CDS and non-CDS databases per genus based on CDS lists
provided by NCBI, JGI, and Tisserant et al. [16]. The number
of genomes per genus varied from 1 to 81, depending on their
availability in public databases. The total number of the bacte-
rial genes per genus and the total number of the fungal genes
and introns per genus are shown in Tables S1 and S2, respec-

tively. Sequences with an ambiguous nucleotide or with a
length shorter than nine — the minimum length of nucleotides
required for a 3-codon DNA 9-mer — were excluded. Crypto-

coccus and Agaricomycetes (Phanerochaete, Scleroderma, and
Sebacina) belong to the same subdivision, Agaricomycotina,
and were grouped together in order to simplify the analysis.

Database design

For selecting a parameter k of k-mer, we chose 3-codon DNA
9-mer as the length of amino acids and of nucleotides, consid-

ering the approximate number of amino acids required to form
a helical turn in helix and a beta-strand. The program consists
of two main components: databases and scoring methods. The

major distinguishing feature is the trimer reference sequence
database (Trimer Ref. DB). 126,093 Protein Data Bank
(PDB) entry files were processed with in-house developed pars-
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ing programs to extract 7674 amino acid trimers (A.A. Tri-
mers), subunits of protein secondary structures, which were
assigned to the sequence variable — A.A. Trimer [33].

224,383 3-codon DNA 9-mers, encoding 7674 A.A. Trimers,
were assigned to the sequence variable — 3-codon DNA 9-
mer. In Trimer Ref. DB, the sequence variables, A.A. Char

Trimer (amino acid characteristic trimer), A.A. Trimer, and
3-codon DNA 9-mer, form a three-level hierarchy where A.
A. Char Trimer is the highest level (Figure 2). To create A.

A. Char, first, we assigned amino acids with similar properties
into one group according to polarity and charge of their side
chain, and secondly subdivided each group according to their
volume (Table 1). Cysteine, glycine, histidine, methionine, and

proline have special properties. Therefore, each of them was
assigned as a sole member of an A.A. Char group. Generally,
multiple A.A. Trimers with similar properties belong to one A.

A. Char Trimer. An A.A. Char Trimer and an A.A. Trimer
have an A.A. Trimer table and a 3-codon DNA 9-mer table
containing multiple members, respectively (Figure 2).

Genus-specific usage bias database (Genus-specific DB)
contains the main numerical variable — trimer usage bias. Tri-
mer usage bias is calculated by multiplying the A.A. Trimer

usage of A.A. Trimer by the 3-codon usage of 3-codon DNA
9-mer in Trimer Ref. DB (Figure 2). There are 54 CDS
Genus-specific DBs and the same number of non-CDS
Genus-specific DBs in the program. Each CDS Genus-

specific DB contains 1296 A.A. Trimer Usage Tables and
7674 3-codon Usage Tables created based on the CDS data-
base. Non-CDS Genus-specific DB contains the same number

of tables derived from the same sequence variables of the Tri-
mer Ref. DB for cost-effective CDS and non-CDS classifica-
tion. Because SeSaMe compares frequency information of 54

genera calculated based on the same standard genetic code
table for the same 3-codon DNA 9-mers, inaccuracy in calcu-
lating trimer usage bias of non-CDS is assumed to be

insignificant.

Scoring methods

We developed two scoring methods, and each equipped with a

P value scoring method. The trimer usage probability scoring
method classifies a query sequence into one out of 54 genus ref-
erences, while the rank probability scoring method classifies a

query sequence into one out of 13 taxonomic groups: Clostri-
dia, Bacilli, Oscillatoriophycideae, Nostocales, Acidobacteri-
ales, Betaproteobacteria, Deltaproteobacteria,

Gammaproteobacteria, Alphaproteobacteria, Actinobacteria,
AMF (R. irregularis), Agaricomycotina, and Pezizomycotina.
To avoid word repetition, these taxonomic groups will be here-
after referred to as 13 taxon groups, and in the same order as

shown in the list above.

Trimer usage probability scoring method

This method converts 3-codon DNA 9-mers in a query
sequence into A.A. Char Trimers and identifies those with
structural roles by searching them against Trimer Ref. DB.
For each matching A.A. Char Trimer, the method first

searches a matching A.A. Trimer, and second, a matching 3-
codon DNA 9-mer in Trimer Ref. DB (Figure 3). It retrieves
trimer usage biases of the matching 3-codon DNA 9-mers

from CDS Genus-specific DB per reading frame of a query
sequence. It repeats the same process with non-CDS Genus-
specific DB. It then compares scores from CDS and non-
CDS Genus-specific DBs, and selects a genus with the highest

score (Figure 3). Users are provided with an option to include
genera whose scores have little difference from the highest
score.

Rank probability scoring method

This method measures a standardized 3-codon usage relative
to an expected 3-codon usage computed from three individual

mono codon usages. The Average A.A. Usage Table (20 amino
acids and stop codons for 12 A.A. Char monomers) and the
Average Codon Usage Table (64 codons for 20 amino acid

monomers and stop codons) were created based on CDS data-
base per genus. 1296 Expected A.A. Trimer Usage Tables and
7674 Expected 3-codon Usage Tables were created based on

the Average A.A. Usage Table and the Average Codon Usage
Table, respectively (Figure 4).

A standardized 3-codon usage was calculated by dividing a
3-codon usage in a 3-codon Usage Table by an expected 3-

codon usage in an Expected 3-codon Usage Table. Based on
trimer usage biases and standardized 3-codon usages, we calcu-
lated a group mean for each taxon group and Kruskal Wallis

(KW) test’s h-score on ranks of 13 taxon groups, from which
we developed a rank probability score per 3-codon DNA 9-
mer. In addition to the trimer usage biases, the rank probabil-

ity scoring method adds another set of 224,383 scores per
genus into Genus-specific DB. This method is applicable only
to CDS.

P value scoring method

We applied the concept of the sum of rolled numbers from a
pair of dice to develop the P value scoring method (http://

www.lucamoroni.it/the-dice-roll-sum-problem/). We drew
analogies between the number of faces of a dice and 54 genera
and between the number of dices we roll and the number of
matching 3-codon DNA 9-mers identified in a reading frame

of a query sequence. There were 54 possible ranks computed
based on trimer usage biases per matching 3-codon DNA 9-
mer. P value scores were calculated based on a sum of ranks

of matching 3-codon DNA 9-mers. Computational costs of
P values for all possible outcomes, sums of ranks, were too
high. To reduce the computational costs, we approximated P

values. We obtained sample data per number of matching 3-
codon DNA 9-mers based on Equation (1).

P p; n; sð Þ ¼ 1

sð Þn
X� p � nð Þ=s½

k¼0

�1ð Þk n

K

� �
p� sk� 1

n� 1

� �
ð1Þ

where p is the sum of ranks, n is the number of dices per roll, s
is the number of faces of the dice, 54, and maximum of k is
](p-n)/s[ where ]x[ is the floor function (e.g., ]7.9[ = 7). We cre-

ated a table of P value scores per number of matching 3-codon
DNA 9-mers. If a rank sum was less than one with the highest
P value score, the approximate mean of all of the rank sums in
each table, we multiplied the P value score with �1, indicating

statistically non-significant outcome. In the test sets, the num-
ber of matching 3-codon DNA 9-mers varied widely, with a
minimum of 30 and a maximum of 97. We have 624 tables

in the P value score database covering 2–625 matching 3-
codon DNA 9-mers.

http://www.lucamoroni.it/the-dice-roll-sum-problem/
http://www.lucamoroni.it/the-dice-roll-sum-problem/


Figure 2 Database design

In this figure, A.A. Trimer Usage Table consists of the A.A. Trimer usages of the multiple members, with RKK, RKR, and RRK

belonging to the same A.A. Char Trimer, AAA. 3-codon Usage Table consists of the 3-codon usages of the synonymous 3-codon DNA 9-

mers encoding the A.A. Trimer, RKK (e.g., AGA AAA AAA). The trimer usage bias of AGA AAA AAA is the multiplication of the A.A.

Trimer usage of RKK and the 3-codon usage of AGA AAA AAA. All sequences and usage information in this figure are not real, but

randomly chosen for illustration purposes only. Char, characteristic.
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Implementation and program availability

SeSaMe was implemented using the Java programming lan-

guage (Java 8). We provided two sets of the programs. One
requires Apache commons math3 (3.3) and IO (2.4) libraries
(www.apache.org), while the other does not. The programs

consist of executable Java JAR files and Java class files for
Linux/Unix operating systems. SeSaMe has been tested and



Table 1 Conversion table from A.A. to A.A. Char

A.A. Char A.A. Property A.A. Char A.A. Property

A K, R Positively charged G G Special

B H Special H P Special

C D, E Negatively charged I M Special

D S, T Polar uncharged; smaller volume J A, I, L, V Hydrophobic; smaller volume

E N, Q Polar uncharged; larger volume K F, W, Y Hydrophobic; larger volume

F C Special L * Stop codon

Note: A.A. residues were grouped according to pKa values of their side chains, charges at physiological pH (7.4), and volumes. A.A., amino acid;

Char, characteristic.

Figure 3 Flow chart of the program

606 Genomics Proteomics Bioinformatics 18 (2020) 601–612
confirmed to work on Linux system — CentOS Linux 7 (www.
centos.org) and is currently being used at the Biodiversity Cen-
ter, Institut de Rechercheen Biologie Végétale, Département de
Sciences Biologiques, Université de Montréal. The trimer
usage probability scoring method offered to the public pro-
duces output of smaller size, but is sufficient for the purpose



Figure 4 Creation of expected usage tables for the rank probability scoring method

Average A.A. Usage Table and Average Codon Usage Table were calculated from the CDS database per genus. Expected A.A. Trimer

Usage Tables and Expected 3-codon Usage Tables were created based on the Average A.A. Usage Table and the Average Codon Usage

Table, respectively. All sequences and expected usage information in this figure are not real, but randomly chosen for illustration purposes

only.

Kang EJ et al / SeSaMe: Spore-associated Symbiotic Microbes 607
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of taxonomic classification and is freely available at www.fun-
galsesame.org. There are no restrictions to use the programs
by academic or non-academic organizations as long as they

comply with the terms and conditions of the license
agreements.

Input, output, and options

SeSaMe utilizes a command-line interface. Input files should
contain DNA sequence(s) in fasta format. The Java JAR files

produce output files with sequence information (seq_id,
matching A.A. Char Trimers, A.A. Trimers, and 3-codon
DNA 9-mers) and genus information (rank, scores, and P

value score). The output provides the information per reading
frame per sequence. After processing the output file with Java
class files, users are able to obtain a summary file containing
one predicted outcome per query sequence. Java JAR files

require users to give a mandatory command line argument
— input file path. Java JAR files with the trimer probability
scoring method may produce multiple genera as an answer if

their scores have little difference. A user is given the option
with 6 choices to select a cut-off value for the difference:
0.01, 0.05, 0.1, 0.15, 0.2, or 0.3. Users can give the option to

the Java class file called compare_result_coding_non_coding.
class. The default cut-off value is 0.05. The lower the cut-off
value is, the fewer genera will be included in an answer.

Results

We assessed the accuracy of the program by conducting classi-

fication experiments. We created metagenome test sets, ran the
programs with them, and calculated the mean percentages of
correct predictions. We showed the relationship between the

correct prediction proportion and the P value score in order
to provide users with useful examples in assessing the statistical
significance of predicted outcomes.

Metagenome test sets

We randomly chose 100 sequences from each of the CDS and
non-CDS databases per genus. We randomly selected a start-

ing base pair position in each of the randomly chosen
sequences. From the starting position, we randomly selected
an ending base pair position so that a sequence length is within

the range of 150–300 bp. Both of the CDS and non-CDS test
sets consisted of 4500 bacterial and 900 fungal sequences (in-
cluding AMF).

Mean percentages of correct predictions from the trimer usage

probability scoring method

The mean percentages of correct predictions of the CDS and

non-CDS test sets at the genus level were 71% and 50% for
the bacterial group, 68% and 73% for the fungal group (ex-
cluding AMF), and 49% and 72% for AMF, respectively.

AMF had the lowest prediction percentage in the CDS genus
test sets possibly due to a large number of heterogeneous
nuclei and horizontal gene transfers from a variety of endobac-

teria during their evolution [8,10–14]. The mean percentages of
correct predictions at the genus level and at higher taxonomic
ranks of the 13 taxon groups are shown in Table 2.

SeSaMe produced more than one genus as an answer per

query sequence when multiple genera had little difference in
their scores. We converted each predicted genus into one of
the 13 taxon groups and calculated a proportion of the correct

taxon group in answer per query sequence. We calculated the
mean and the standard deviation of the proportions in each
genus test set; 1 represented that answers contained correct

taxon groups only, while 0 represented that answers contained
incorrect taxon groups only (Tables S3 and S4). The means of
the bacterial and fungal CDS test sets were 0.87 and 0.57,
respectively (Tables S3 and S4).

60% and 46% of the correctly predicted sequences con-
tained only one genus as an answer in the bacterial CDS and
non-CDS test sets, respectively (Figure S1; Table S5). 90%

and 76% of the correctly predicted sequences had a correct
taxon group in the first rank in the bacterial CDS and non-
CDS test sets, respectively (Figure S2; Table S6). Only 1%–

5% of the sequences in the non-AMF test sets had AMF in
an answer (Table S7). Although the trimer usage probability
scoring method provides us not with the individual trimer

usage biases but with result of multiplying all of the trimer
usage biases, we can often derive general ideas about a query
sequence from its answer (Figures S3 and S4). Does it contain
only one genus in answer? Or what other genera does it contain

in answer? For example, an AMF test sequence that contains
Clostridium and AMF in answer may imply that the query
sequence might have been acquired by horizontal gene transfer

from a bacterium ancestor or that Clostridium’s ancestor might
have become a heritable endosymbiont.
Mean percentages of correct predictions from the rank

probability scoring method

The mean percentages of correct predictions of the CDS test

sets were 82% for the bacterial group, 72% for the fungal
group (excluding AMF), and 42% for AMF. The mean per-
centages and the standard deviations of correct predictions
of the CDS test sets were 64% ± 4.2%, 71% ± 6.4%, 84%

± 2.5%, 70% ± 2.8%, 73% ± 0%, 83% ± 8%, 74%
± 10%, 81% ± 7.8%, 88% ± 9.2%, 85% ± 5.9%, 42%
± 0%, 65% ± 6.4%, and 79% ± 6.7% for the 13 taxon

groups. Compared to the trimer usage probability scoring
method, the rank probability scoring method produced the
higher mean and the smaller standard deviation for the bacte-

rial group. In general, the rank probability scoring method
showed improvement in performance. Although the means
for Clostridia and Gammaproteobacteria were lower, their
standard deviations were much smaller in the rank probability

scoring method: 4.2% vs. 22% and 7.8% vs. 9.4%, respec-
tively. The trimer usage probability scoring method showed
better performance in Actinobacteria that had low within-

group variation of trimer usage bias. In contrast, the rank
probability scoring method showed better performance in gen-
era that had relatively flat peakness in a frequency distribution

curve of synonymous 3-codon DNA 9-mers, in addition to
genera that had relatively large within-group variation of tri-
mer usage bias.



Table 2 Mean percentages of correct predictions at the rank of genus and at the higher ranks of 13 taxon groups

Genus CDS Non-CDS Genus CDS Non-CDS

Correct

genus (%)

Correct taxon

group (%)

Correct

genus (%)

Correct taxon

group (%)

Correct

genus (%)

Correct taxon

group (%)

Correct

genus (%)

Correct taxon

group (%)

Bacteria Acidithiobacillus 57 78 51 72 Microbacterium 87 96 60 89

Acidobacterium 62 62 40 40 Micrococcus 93 97 48 89

Agrobacterium 65 84 50 65 Myxococcus 88 89 27 39

Anabaena 41 57 56 78 Nitrobacter 66 90 42 71

Azorhizobium 87 97 49 80 Nitrosococcus 51 66 42 69

Azotobacter 75 87 55 71 Nitrosomonas 45 45 33 33

Bacillus 53 53 64 64 Nitrosospira 60 60 70 72

Bdellovibrio 61 64 63 66 Nocardia 79 89 25 44

Beijerinckia 65 83 56 66 Nostoc 58 60 62 68

Bradyrhizobium 84 88 41 61 Oscillatoria 58 58 66 66

Caulobacter 79 91 43 59 Pseudanabaena 76 77 48 53

Clostridium 81 85 90 92 Pseudomonas 77 95 52 64

Cyanobacterium 72 73 61 61 Pseudonocardia 88 96 29 74

Desulfotomaculum 49 54 43 69 Rhizobium 70 81 48 60

Desulfovibrio 43 52 52 55 Rhodobacter 85 94 32 66

Erwinia 71 87 47 81 Rickettsia 68 68 67 67

Frankia 72 90 18 50 Shewanella 75 83 83 86

Geobacter 61 67 47 54 Sinorhizobium 67 83 51 69

Klebsiella 79 95 59 77 Sphingomonas 76 92 31 71

Kocuria 88 97 52 89 Streptomyces 89 96 55 56

Leuconostoc 62 72 41 73 Variovorax 85 85 41 41

Mesorhizobium 70 90 40 58 Xanthomonas 91 94 48 60

Methylococcus 76 87 60 82

Average accuracy 3185/4500 3587/4500 2238/4500 2970/4500 Mean percentage of correct predictions 71% 80% 50% 66%

Fungi AMF 49 49 72 72 Oidiodendron 68 68 71 71

Aspergillus 72 72 77 77 Phanerochaete 52 67 66 91

Cenococcum 54 66 88 90 Scleroderma 76 87 68 89

Cryptococcus 72 87 78 89 Sebacina 58 89 66 90

Mycosphaerella 88 93 69 81

Average accuracy 589/900 678/900 655/900 750/900 Mean percentage of correct predictions 65% 75% 73% 83%

Note: Average accuracy was calculated by dividing sum of correct predictions by total number of predictions made. For example, 3185 out of 4500 sequences were correctly classified to its taxonomic

group at the rank of genus in testing bacterial CDS. Mean percentage of correct predictions was calculated by multiplying average accuracy by 100. For example, for bacterial CDS, (3185/4500) �
100 = 71. After genus in an answer was converted to a corresponding taxonomic group in the 13 taxon groups, the mean percentage of correct predictions (Correct taxon group %) was calculated. 13

taxon groups are indicated in the section, Scoring methods.
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Relationship between correct prediction proportion and P value

score

The means of the correct prediction proportions per number of
matching 3-codon DNA 9-mers calculated based on the result

of the trimer usage probability scoring method are shown in
Figure S5A and Table S8. The means of correct prediction
proportions per base 10 logarithm of an approximated inverse
of P value score (log10 inverse of P value score) calculated

based on result of the trimer usage probability scoring method
and of the rank probability scoring method are shown in Fig-
ure S5B, Table S9, Figure S5C, and Table S10, respectively.

We divided the results of each genus test set into quartiles
and calculated the range of log10 inverse of P value score
and the mean and the standard deviation of the correct predic-

tion proportions in each quartile (Tables S11 and S12). The
first ranked genus with the highest probability score always
had positive P value score. In general, as log10 inverse of P

value score became higher — i.e., as positive P value score
became lower — the correct prediction proportion increased
in all test sets. The frequencies of fungal sequences that had
a correct taxon group in the 1st, 2nd, 3rd, 4th, or 5th rank

in an answer were comparable due to similarity of Dikarya
(Figure S2; Table S6). Because the data for Figure S5B were
generated based only on the first rank, the fungi showed rela-

tively weak correlation between correct prediction proportion
and log10 inverse of P value score.

Classification of an example sequence

The example sequence (AAATCCCAATGTCAGAATAAAG
AAACTACCAGATGATCATCCTGTTTATCCTGGGTAT
GGATTATTTGCTAACAAAGATCTTAAAAAATTTAAT
Figure 5 Trimer usage biases of the 11th 3-codon DNA 9-mer, GATG

Genera belonging to the same taxonomic group are indicated by t

individual of 54 genera is labeled with a number from 0 to 53.
CTAGTCGTTTGTTATACTGGCAAAGTTACAAAAAGA
GAAATTGGGGGTGAAGAAGGAAGTGA) was selected
from the AMF CDS test set and is 156 bp in length. The

sequence had the highest trimer usage probability score in
the second reading frame in the forward direction, which
was then assumed as the open reading frame. SeSaMe identi-

fied 49 matching 3-codon DNA 9-mers that were matched to
Trimer Ref DB. The program correctly classified the example
sequence into CDS of AMF. Firmicutes, Cyanobacteria, Rick-

ettsia, and AMF had higher trimer usage biases than Pro-
teobacteria, Actinobacteria, and Dikarya in a majority of 3-
codon DNA 9-mers. Figure 5 shows trimer usage biases of
the 11th 3-codon DNA 9-mer, GATGATCAT, in 54 genera.

GATGATCAT belongs to A.A. Char Trimer, CCB and to
A.A. Trimer, DDH. The multidimensional scaling (MDS)
method was applied to a matrix containing trimer usage biases;

it had 54 genera in rows and matching 3-codon DNA 9-mers
identified in the open reading frame in columns (http://www.
inf.uni-konstanz.de/algo/software/mdsj/) [34]. It visualized

proximity relationships among 54 genera in XY axis graph
(www.jfree.org). It showed that Actinobacteria, Alphapro-
teobacteria, and Dikarya were compactly clustered, while

Betaproteobacteria were spread out in the left side of the graph
(Figure S6). Nostocales, Oscillatoriophycideae, Bacilli, and
Clostridia were scattered across in the right side. AMF,
Cyanobacterium, and Rickettsia were located in the far-right

side.

Future work

Microorganisms contain a number of heterogeneous alterna-
tive sigma factors that are selectively induced in response to

environmental stress [35]. They not only provide functionally
ATCAT, in 54 genera

he same background color. Because the program is zero-based,

http://www.inf.uni-konstanz.de/algo/software/mdsj/
http://www.inf.uni-konstanz.de/algo/software/mdsj/
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specialized RNA polymerase subpopulations, but are also
involved in regulating the expression of a set of target genes,
or regulons [36,37]. Ribosomal heterogeneity also has an

important role in governing cellular stress. Sequence compar-
ison of rRNA genes and ribosomal coding genes as well as
sigma factor genes will be required in order to study their influ-

ence on adaptation of microorganisms [38,39].
Codon usage and codon context have been documented to

play various important roles in microorganism’s adaptation to

environment. If we sort the target genes in the CDS and in the
non-CDS databases according to the alternative regulators,
and create Genus-specific DB per group of the target genes, it
may increase the accuracy of taxonomic classification. More-

over, comparative studies on alternative regulator subpopula-
tions may provide useful insights into the development of
genetic markers with which we can detect changes in microbial

community structures in response to environmental stress (Fig-
ure S7). It may lead to new perspectives and strategies for
improving the analysis of metagenome data, especially AMF

inoculant field data sampled fromhighly stressful environments.
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