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Abstract
Objectives To develop and validate a machine learningmodel for the prediction of adverse outcomes in hospitalized patients with
COVID-19.
Methods We included 424 patients with non-severe COVID-19 on admission from January 17, 2020, to February 17, 2020, in
the primary cohort of this retrospective multicenter study. The extent of lung involvement was quantified on chest CT images by
a deep learning–based framework. The composite endpoint was the occurrence of severe or critical COVID-19 or death during
hospitalization. The optimal machine learning classifier and feature subset were selected for model construction. The perfor-
mance was further tested in an external validation cohort consisting of 98 patients.
Results There was no significant difference in the prevalence of adverse outcomes (8.7% vs. 8.2%, p = 0.858) between the
primary and validation cohorts. The machine learning method extreme gradient boosting (XGBoost) and optimal feature subset
including lactic dehydrogenase (LDH), presence of comorbidity, CT lesion ratio (lesion%), and hypersensitive cardiac troponin I
(hs-cTnI) were selected for model construction. The XGBoost classifier based on the optimal feature subset performed well for
the prediction of developing adverse outcomes in the primary and validation cohorts, with AUCs of 0.959 (95% confidence
interval [CI]: 0.936–0.976) and 0.953 (95% CI: 0.891–0.986), respectively. Furthermore, the XGBoost classifier also showed
clinical usefulness.
Conclusions We presented a machine learning model that could be effectively used as a predictor of adverse outcomes in
hospitalized patients with COVID-19, opening up the possibility for patient stratification and treatment allocation.
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Key Points
•Developing an individually prognostic model for COVID-19 has the potential to allow efficient allocation of medical resources.
• We proposed a deep learning–based framework for accurate lung involvement quantification on chest CT images.
• Machine learning based on clinical and CT variables can facilitate the prediction of adverse outcomes of COVID-19.
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Abbreviations
COVID-19 Coronavirus disease 2019
CT Computed tomography
DL Deep learning
GGO Ground-glass opacification
hs-cTnI Hypersensitive cardiac troponin I
LDH Lactic dehydrogenase
lr Logistic regression
RF Random forest
SVM-Linear Support vector machine with a linear kernel
SVM-RBF Support vector machine with a radial basis

function
XGBoost Extreme gradient boosting

Introduction

The coronavirus disease 2019 (COVID-19), with its outbreak
and rapid escalation, which range from the common cold to
severe or even fatal respiratory infections caused by severe
acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has
become a worldwide pandemic involving 188 countries or re-
gions and more than 50 million individuals. About 10–20% of
COVID-19 patients deteriorate to severe or critical illnesses
within 7–14 days after symptom onset, characterized by acute
respiratory distress syndrome (ARDS) and/or even multiorgan
dysfunction syndrome (MODS), who require more intensive
medical resource utilization, tend to develop nosocomial com-
plications, and have worse prognosis with a case fatality rate
about 20 times higher than that of non-severe patients [1–3].
There is no specific anti-coronavirus treatment for severe pa-
tients at present, and whether remdesivir is associated with sig-
nificant clinical benefits for severe COVID-19 still requires
further confirmation [4, 5]. Nevertheless, early antiviral therapy
has been reported to be helpful in alleviating symptoms and
shortening the duration of viral shedding in patients with mild
to moderate COVID-19 [6, 7]. Thus, the key step in reducing
the mortality from COVID-19 should be the prevention of pro-
gression from non-severe to severe disease stage and the sub-
sequent development of critical illness. Early identification of
patients at risk of adverse outcomes has the potential to enable
more individualized treatment plans, but it is difficult for phy-
sicians solely based on their clinical experience [8, 9].

There have been several prognostic models in predicting
adverse outcomes for COVID-19; however, most were

established based on clinical biochemical parameters and
few incorporated chest CT imaging features [10–12]. Chest
CT is an exclusive tool to assess lung injury, which is the
major hallmark of COVID-19 [13]. To accurately quantify
the extent of lung injury using CT images, deep learning
(DL)–based artificial intelligence (AI) technique may be an
optimal solution, which has the advantages of good reproduc-
ibility, less time-consuming, and relieving the health systems
overloads. Zhang et al have developed a clinically applicable
AI system that can distinguish COVID-19 pneumonia from
other common pneumonia and provide clinical prognosis for
predicting the progression to critical illness and survival prob-
ability [14]. However, the clinical feasibility and benefit of
machine learning–based model in the early prediction of the
progression from non-severe to severe or critical illnesses in
COVID-19 patients remain unclear.

In this study, we retrospectively included patients with
non-severe COVID-19 at the time of admission from multiple
institutes, quantified the extent of lung injury on chest CT
images using DL-based framework, constructed a machine
learning model incorporating clinical characteristics and CT-
derived quantitative measurement to identify the cases who
developed adverse outcomes during hospitalization, deter-
mined the prediction performance and clinical use benefit,
and validated these findings in an independent external cohort
(Fig. 1).

Materials and methods

Study population

The Institutional Review Board of the Third Xiangya Hospital
approved our study and waived the informed consent of pa-
tients for the retrospective nature of this study. The study was
conducted according to the TRIPOD recommendations for
prediction model development and validation [15].
Consecutive hospitalized patients with confirmed COVID-
19 infection who underwent chest CT scan on admission at
the Third Xiangya Hospital, First Hospital of Changsha, First
Hospital of Yueyang, Second Hospital of Changde, Central
Hospital of Xiangtan, Central Hospital of Shaoyang, and
Central Hospital of Loudi between January 17, 2020, and
February 17, 2020, were screened (n = 604). Patients who
had severe or critical illnesses on admission (n = 45) and were
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younger than 18 years old (n = 37) were excluded. A total of
522 patients were ultimately included in this multicentre study
and divided into the primary and validation cohorts according
to their origin of hospital (Supplementary Figure 1). The
criteria for the diagnosis and severity classification of
COVID-19 infection are provided in the Supplementary
Material.

Data collection

The clinical and laboratory data were obtained with data col-
lection forms from electronic medical records. To accurately
quantify the extent of lung involvement on the non-contrast
chest CT images, we adopted a U-Net++ DL network devel-
oped by our team for the three-dimensional segmentation of
lung and lesions (Supplementary Figure 2) [16]. Furthermore,
we proposed an unsupervised multi-scale texture feature clus-
tering method to distinguish between ground-glass
opacification (GGO) and consolidation (CON) [17]. The CT
lesion ratio (lesion%), GGO ratio (GGO%), and CON ratio
(CON%) were then calculated, respectively. The details of
data collection and CT image analysis are provided in the
Supplementary Material.

Machine learning classifier and feature selection

The composite endpoint was the occurrence of severe or crit-
ical illnesses or death. The candidate feature set included 43
clinical characteristics or CT quantitative measurements, and
Pearson’s correlations between features were calculated. To
establish an optimal prognostic model to predict the occur-
rence of the composite endpoint, five supervised machine
learning classifiers, namely logistic regression (LR), support
vector machine with a linear kernel (SVM-Linear), SVMwith
a radial basis function (SVM-RBF), random forest (RF), and
extreme gradient boosting (XGBoost), were employed to de-
termine a classifier with the best performance [18]. Fivefold
cross-validation was performed in the primary cohort and grid
search was used for parameter tuning or hyperparameter opti-
mization. Class weight was set at 10 to reduce the influence of
inter-group unbalanced distribution. Furthermore, the average
feature importance rank that indicated how valuable each fea-
ture was in the optimal classifier overall folds of cross-
validation in the primary cohort was provided. With the
ranked features, different feature subsets could be obtained
by selecting top-n features from the ordered sequence (n =
1~43). The optimal feature subset with the highest prediction

Fig. 1 Study workflow. (I) Non-severe COVID-19 patients who
underwent chest CT scan on admission were included. (II) Lung and
lesion segmentation were performed using DL-based framework and tex-
ture clustering was used to distinguish between GGO and CON. CT
quantitative measurements including lesion%, GGO%, and CON% were
calculated. (III) The optimal machine learning classifier and feature

subset were selected and used for prediction model construction. (IV)
The performance of the machine learning model was determined and
validated in an external cohort. CON, consolidation; COVID-19, corona-
virus disease 2019; CT, computed tomography; DL, deep learning; GGO,
ground-glass opacification; LR, logistic regression; RF, random forest;
SVM, support vector machine; XGBoost, extreme gradient boosting
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performance and minimum feature numbers was finally
selected.

Model establishment and performance evaluation

The optimal machine learning classifier and feature subset
were used to establish the final model. The performance to
identify the patients who developed the composite endpoint in
the primary and validation cohorts was assessed by the receiv-
er operating characteristic (ROC) curve analysis. Fivefold
cross-validation was performed for the machine learning clas-
sifier. The model establishment and performance evaluation
of machine learning models was performed using the Python
3.7 software. Decision curve analysis was conducted to deter-
mine the clinical usefulness by quantifying the net benefits.
Other statistical analyses are provided in the Supplementary
Material.

Results

Patient characteristics

The main clinical characteristics of patients in the primary and
validation cohorts are given in Table 1. The primary cohort
that was used to train the DL-based segmentation network and
construct the machine learning model consisted of 424 pa-
tients recruited from 5 hospitals, and the validation cohort that
was used to externally validate the performance of the ma-
chine learning model in predicting the development of severe
or critical illnesses included 98 patients recruited from 2 hos-
pitals. There was no significant difference between the two
cohorts in the prevalence of composite endpoint (8.7% vs.

8.2%, p = 0.858). The median duration from symptom onset
to CT scan in all patients was 5 (range, 0–23) days.

Lung lesion segmentation and quantification

The original CT images, lung manual and DL-based segmen-
tation, and lesion manual and DL-based segmentation of 3
example cases are illustrated in Fig. 2a, which suggested that
the DL-based segmentation framework produced comparable
identification of lung and lesion to manual segmentation.
ROC curve analysis showed that the DL-based segmentation
achieved high accuracy in identifying lesions at the pixel-lev-
el, with an AUC of 0.992, which exceeded one of three radi-
ologists and was almost equivalent to another radiologist (Fig.
2b, c). The Dice similarity coefficient of DL-based lesion
segmentation was 84.27%, while the Dice similarity coeffi-
cients of the three radiologists were 88.51%, 83.73%, and
80.92%, respectively. Furthermore, the lesion region was fur-
ther subdivided into two different types (GGO and CON)
using an unsupervised texture feature clustering approach
based on the differences of attenuation and texture (Fig. 2d).
The three lesion indicators, namely lesion%, GGO%, and
CON%, of each patient in the primary and validation cohorts
were yielded (Supplementary Figure 3).

Machine learning classifier and feature selection

Clinical characteristics and CT quantitative measurements
among patients according to whether to develop composite
endpoint in the primary cohort are shown in Table 2. The
correlation matrix heatmap of all 43 features is shown in
Fig. 3a. The lesion% and GGO% were significantly and pos-
itively correlated with age, alanine aminotransferase (ALT),

Table 1 Clinical characteristics
of patients in the primary and
validation cohorts

Variables Primary (n = 424) Validation (n= 98) p value

Age (years) 46 (36–58) 46 (31–53) 0.201

Male gender 210 (49.5%) 51 (52.0%) 0.654

Comorbidities

Any 107 (25.2%) 21 (21.4%) 0.430

Hypertension 59 (13.9%) 13 (13.3%) 0.866

Diabetes 35 (8.3%) 9 (9.2%) 0.765

Cardiovascular or cerebrovascular disease 19 (4.5%) 6 (6.1%) 0.493

COPD 13 (3.1%) 3 (3.1%) 0.998

Clinical outcomes

Severe or critical illnesses 37 (8.7%) 8 (8.2%) 0.858

Requiring mechanical ventilation 8 (1.9%) 3 (3.1%) 0.466

ICU admission 14 (3.3%) 4 (4.1%) 0.703

Death 1 (0.2%) 1 (1.0%) 0.341

COPD, chronic obstructive pulmonary disease; ICU, intensive care unit; IQR, interquartile range

Data are presented as median (IQR) or n (percentage)
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aspartate aminotransferase (AST), blood urea nitrogen
(BUN), creatine kinase, lactic dehydrogenase (LDH), and C-
reactive protein (CRP) and negatively correlated with lym-
phocyte count (all p < 0.01), while CON% was significantly
and positively correlated with AST and LDH (both p < 0.01).
Considering the unobvious multicollinearity between features

and specific clinical significance of each feature, we included
all the features as a candidate feature set.

We compared the performance of five machine learning
classifiers based on the candidate feature set in identifying the
patients who developed adverse outcomes in the primary cohort
and then tested in the validation cohort. Figure 3b depicts the

Fig. 2 DL-based lung and lesion segmentation and CT quantitative
measurements. a The original CT images, lung segmentation, and
lesion segmentation of 3 example cases. b The contours of 3
radiologists and lesion DL-based segmentation (left) and the uncertain
region (right). c ROC curve of the pixel-level performance of DL-based
segmentation to identify the lesion. d Unsupervised multi-scale texture

feature clustering to distinguish between GGO and CON based on grey-
level attenuation and LBP features. e t-SNE plot showing the pixel-level
GGO or CON distribution. CON, consolidation; CT, computed tomogra-
phy; DL, deep learning; GGO, ground-glass opacification; LBP, local
binary pattern; ROC, receiver operating characteristic; t-SNE, t-
distributed stochastic neighbour embedding
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ROC curves of all the classifiers and the mean AUC of fivefold
cross-validation, sensitivity, specificity, and accuracy are given
in Table 3. The XGBoost achieved the highest performance
(AUC = 0.964) in the primary cohort, followed by RF (AUC
= 0.924), LR (AUC = 0.916), SVM-RBF (AUC = 0.821), and
SVM-Linear (AUC = 0.803). Then, the XGBoost classifier was
selected as the optimal machine learning classifier.
Furthermore, the XGBoost classifier achieved comparable per-
formance (AUC = 0.974) in the validation cohort.

The feature importance rank of each feature in the XGBoost
classifier is presented in Fig. 3c and Supplementary Table 2.
Then, feature selection was performed in the candidate feature
set, as depicted in Fig. 3d. The optimal feature subset containing
the top four features, i.e. LDH, presence of comorbidity, le-
sion%, and hypersensitive cardiac troponin I (hs-cTnI), achieved
the highest average AUC, with the minimal number of features.

Table 2 Clinical characteristics
and CT quantitative
measurements among patients
according to whether to develop
composite endpoint in the
primary cohort

Variables Yes (n = 37) No (n = 387) p value

Age (years) 58 (51–67) 45 (35–56) < 0.001
Male gender 20 (54.1%) 190 (49.1%) 0.564
Smoking history 7 (18.9%) 33 (8.5%) 0.068
Comorbidities
Any 25 (67.6%) 82 (21.2%) < 0.001
Hypertension 11 (29.7%) 48 (12.4%) 0.004
Diabetes 8 (21.6%) 27 (7.0%) 0.006
Cardiovascular or cerebrovascular diseases 7 (18.9%) 12 (3.1%) 0.001
COPD 7 (18.9%) 6 (1.6%) < 0.001

Symptoms and signs
Fever 28 (75.7%) 220 (56.8%) 0.026
Cough 24 (64.9%) 199 (51.4%) 0.118
Fatigue or myalgia 8 (21.6%) 84 (21.7%) 0.991
Dyspnea 4 (10.8%) 17 (4.4%) 0.100
Temperature (°C) 37.3 (36.8–38.0) 36.9 (36.5–37.3) 0.001
Heart rate (/min) 90 (80–105) 86 (78–96) 0.092
Respiratory rate (/min) 21 (20–22) 20 (19–20) 0.053

Laboratory findings
Hemoglobin (g/L) 126.5 (119.3–136.0) 131.0 (120.0–143.0) 0.300
Platelet count (×109/L) 148.0 (119.5–208.0) 174.0 (139.0–228.0) 0.067
White blood cell count (×109/L) 4.5 (3.6–6.0) 4.6 (3.6–5.7) 0.812
Neutrophil count (×109/L) 3.0 (2.4–4.5) 2.9 (2.1–3.7) 0.090
Lymphocyte count (×109/L) 0.9 (0.7–1.3) 1.2 (0.9–1.6) < 0.001
Monocyte count (×109/L) 0.4 (0.2–0.5) 0.4 (0.3–0.5) 0.618
Total bilirubin (μmol/L) 10.5 (7.1–14.6) 11.9 (8.8–17.3) 0.031
ALT (U/L) 23.0 (16.6–31.2) 19.7 (14.5–28.4) 0.124
AST (U/L) 33.2 (25.8–44.6) 23.0 (18.3–28.3) < 0.001
Albumin (g/L) 36.8 (34.2–39.8) 39.3 (36.5–42.6) 0.001
BUN (mg/dL) 4.7 (3.8–5.8) 3.9 (3.1–4.8) 0.002
Creatinine (μmol/L) 66.1 (53.8–86.0) 56.4 (44.8–70.0) 0.002
Glucose (mmol/L) 7.2 (5.8–9.2) 5.7 (3.6–4.3) < 0.001
K+ (mmol/L) 3.7 (3.5–4.0) 4.0 (3.6–4.3) 0.051
Na+ (mmol/L) 135.3 (133.0–137.6) 137.5 (135.5–139.9) < 0.001
INR 1.22 (0.99–1.33) 1.10 (0.90–1.19) 0.043
D-dimer ≥ 0.5 mg/L 16 (43.2%) 47 (12.1%) < 0.001
Procalcitonin ≥ 0.05 ng/mL 21 (56.8%) 124 (32.0%) 0.002
Hs-cTnI ≥ 28 pg/mL 5 (13.5%) 11 (2.8%) 0.008
Creatine kinase (U/L) 94.0 (40.0–213.5) 72.0 (49.1–109.0) 0.139
LDH (U/L) 265.0 (184.6–342.8) 174.0 (141.3–214.1) < 0.001
CRP (mg/L) 40.9 (22.9–61.0) 10.4 (2.4–24.5) < 0.001
PaO2 (mmHg) 71.1 (54.6–106.7) 90.9 (76.0–115.8) 0.009

Radiological findings
Number of segments involved 16 (12–18) 9 (5–13) < 0.001
CT severity score 12 (7–17) 6 (3–9) < 0.001

CT quantitative measurements
Lesion% 9.5 (3.5–26.6) 3.1 (0.6–7.5) < 0.001
GGO% 8.2 (3.3–18.9) 2.8 (0.6–6.7) < 0.001
CON% 1.3 (0.2–2.9) 0.3 (0.0–0.7) < 0.001

ALT, alanine aminotransferase; AST, aspartate aminotransferase; BUN, blood urea nitrogen; CON, consolidation;
COPD, chronic obstructive pulmonary disease; CRP, C-reactive protein; CT, computed tomography; GGO,
ground-glass opacification; Hs-cTnI, hypersensitive cardiac troponin I; INR, international normalized ratio; K+ ,
potassium; LDH, lactic dehydrogenase; Na+ , sodium; PaO2, partial pressure of oxygen
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Performance evaluation of machine learning model

The XGBoost classifiers based on the optimal feature subset
or only three clinical features in the optimal feature subset (i.e.
LDH, presence of comorbidity, and hs-cTnI) were then con-
structed, respectively. The XGBoost classifier based on the
top 4 features achieved satisfactory performance in the prima-
ry cohort, which was significantly superior to that based on
only three clinical features (AUCs = 0.959 and 0.913, respec-
tively; p = 0.007). However, no significant difference was
found between the two classifiers in the validation cohort
(AUCs = 0.953 and 0.881, respectively; p = 0.216). The illus-
tration of the ROC curves in the primary and validation co-
horts is shown in Fig. 4a, and the detailed model performance
is listed in Table 4. The decision curve analysis for the two
XGBoost classifiers in the whole cohort is presented in Fig.
4c. Our XGBoost classifier based on the top 4 features had the
optimal overall net benefit, the treat-all-patients scheme, and

the treat-none scheme across the majority of the range of rea-
sonable threshold probabilities.

Discussion

Our results suggested that DL-based chest CT quantitative
measurement could be combined with significant clinical var-
iables to early identify the patients who developed adverse
outcomes during hospitalization for patients with COVID-19
using machine learning algorithm. We established an
XGBoost classifier incorporating LDH, presence of comor-
bidity, lesion%, and hs-cTnI which achieved perfectly predic-
tion performance both in the primary and validation cohorts.
These findings were derived from DL-based CT quantitative
lung injury measurements with sufficient accuracy, stepwise
optimal machine learning classifier and feature selection, im-
plemented internal cross-validation and independent external

Fig. 3 Optimal machine learning classifier and feature subset selection. a
The heatmap illustrating the correlations between features in the
candidate feature set. b The performance of five machine learning
classifiers, including LR, SVM-Linear, SVM-RBF, RF, and XGBoost,
based on the candidate feature set in the primary cohort (left) and valida-
tion cohort (right). c The feature importance rank in the XGBoost classi-
fier using fivefold cross-validation in the primary cohort. d The relation-
ship between the feature subset size and model performance. The optimal
size (red dot) was determined with the highest average AUC and a min-
imal number of features. The optimal feature subset contained the top 4

features, i.e. LDH, presence of comorbidity, lesion%, and hs-cTnI. AST,
aspartate aminotransferase; AUC, area under the receiver operating char-
acteristic curve; BUN, blood urea nitrogen; CRP, C-reactive protein;
GGO, ground-glass opacification; hs-cTnI, hypersensitive cardiac tropo-
nin I; LDH, lactic dehydrogenase; LR, logistic regression; PaO2, partial
pressure of oxygen; RF, random forest; SVM-Linear, support vector ma-
chine with a linear kernel; SVM-RBF, support vector machine with a
radial basis function; XGBoost, extreme gradient boosting
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validation, and heterogeneous image data from multiple hos-
pitals; thus, we expect our results to be well generalizable.
Hence, when utilized as a supportive decision tool in clinical
practice, the proposed prediction of adverse outcomes for
COVID-19 could accelerate the early identification of the pa-
tients with a high risk of progression enabling faster interven-
tion and likelihood of better outcomes.

Some patients with COVID-19 develop dyspnea and hyp-
oxemia shortly after illness onset and may further progress to
ARDS orMODS even death [9]. To early identify the patients
who were likely to develop adverse outcomes, our study pre-
sented a machine learning model incorporating four clinical or
imaging variables, with perfect performance in the primary
and validation cohorts, respectively. Zhang et al developed a
clinically applicable AI-assisted model to predict the progres-
sion to critical illness with AUC, sensitivity, and specificity of
0.909, 86.71%, and 80.00%, respectively, which identified the
quantitative lesion features as the most significant contributor
in the clinical prognosis estimation as well as some clinical
parameters relating to multiple tissues/organs function and
systemic homeostasis [14]. Compared with their work, we
built a model incorporating fewer significant features for clin-
ical use, slightly improved the prediction performance, and
validated these findings in an independent external cohort.
As for the difference in the most important features of the
machine learning model between our study and theirs, this

may be explained by the differences in the machine learning
algorithm adopted and study endpoint.

Previous studies reported some feasible prognostic model
for the prediction of developing severe COVID-19, particular-
ly the CALL score [11, 19]. Similar to our results, the CALL
score also included four high-risk factors associated with
COVID-19 progression, i.e. underlying comorbidity, age,
LDH, and lymphocyte count. In our XGBoost classifier, CT-
derived lesion% and hs-cTnI were also included apart from
LDH and presence of comorbidity. In general, the top four
features in our model were associated with multiple tissues/
organs dysfunction, lung injury, and declined organ reserve
function, respectively. LDH is an intracellular cytoplasmic
enzyme that is widely expressed in multiple tissues and has
been reported as a predictor of disease severity in several
clinical conditions [20, 21]. COVID-19 involves multiple or-
gans or systems, including the gastrointestinal tract, liver, kid-
ney, cardiovascular system, and nervous system [22–24].
Damage to the liver, kidney, or lung in severe attacks may
contribute to the cellular death and LDH leakage with conse-
quently raised serum LDH levels in COVID-19. Meanwhile,
hs-cTnI is the best laboratory parameter inflecting cardiac in-
volvement with COVID-19, which could prompt early initia-
tion of measures to improve tissue oxygenation. Elevated hs-
cTnI concentration may be due to non-ischemic causes of
myocardial injury or type 2 myocardial infarction, of which

Table 3 Performance of each
classifier based on the candidate
feature set in the primary and
validation cohorts

Classifier AUC Sensitivity Specificity Accuracy

Primary cohort

LR 0.916 (0.885–0.938) 67.6% (25/37) 90.4% (350/387) 0.884 (0.851–0.911)

SVM-Linear 0.803 (0.760–0.838) 51.4% (19/37) 86.0% (333/387) 0.830 (0.790–0.864)

SVM-RBF 0.821 (0.780–0.856) 75.7% (28/37) 84.0% (325/387) 0.833 (0.793–0.866)

RF 0.924 (0.894–0.947) 59.5% (22/37) 93.0% (360/387) 0.901 (0.867–0.927)

XGBoost 0.964 (0.941–0.979) 75.7% (28/37) 96.4% (373/387) 0.946 (0.919–0.965)

Validation cohort

XGBoost 0.974 (0.910–0.996) 100% (8/8) 85.6% (77/90) 0.867 (0.780–0.925)

AUC, area under the receiver operating characteristic curve; LR, logistic regression; RF, random forest; SVM-
Linear, support vector machine with a linear kernel; SVM-RBF, support vector machine with a radial basis
function; XGBoost, extreme gradient boosting

Table 4 Performance of the
XGBoost classifiers in the
primary and validation cohorts

Cohort AUC Sensitivity Specificity Accuracy

Primary cohort

Top four features 0.959 (0.936–0.976) 89.2% (33/37) 91.5% (354/387) 0.913 (0.882–0.936)

Three clinical features 0.913 (0.882–0.938) 75.7% (28/37) 90.7% (351/387) 0.894 (0.861–0.920)

Validation cohort

Top four features 0.953 (0.891–0.986) 100% (8/8) 87.8% (79/90) 0.888 (0.810–0.936)

Three clinical features 0.881 (0.800–0.938) 75.0% (6/8) 87.8% (79/90) 0.867 (0.786–0.921)

AUC, area under the receiver operating characteristic curve; XGBoost, extreme gradient boosting
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the prevalence is likely to increase in patients affected by
COVID-19 [25]. Besides, it is the sensitivity of hs-cTnI test-
ing that ensures it is one of the earliest and most precise indi-
cators of organ dysfunction [26]. The significance of LDH and
hs-cTnI as risk factors in predicting the development of ARDS
ormortality has also been proposed in previous reports [9, 27].
CT-derived lesion% is a quantitative indicator directly obtain-
ed on DL-based lesion segmentation, which is associated with
the extent of pulmonary infection by SARS-CoV-2. Lung
involvement in COVID-19 reflects the most serious degree
of damage caused by the coronavirus on various organs or
systems. Furthermore, chronic comorbidity has been shown
to be an independent prognostic factor associated with
unfavourable outcomes in many reports [27, 28]. As expected,
our analysis revealed that underlying comorbidity played an
important role in the clinical progression in COVID-19 pa-
tients, which may be explained by the overactivation of the
renin-angiotensin system (RAS) and enhanced susceptibility
to pulmonary edema by the exhaustion of angiotensin-
converting enzyme 2 (ACE2), which is the functional receptor
for the SARS- CoV-2 spike protein [29, 30]. Recently, Liang
et al proposed a clinical risk score incorporating 10 clinical
variables to predict the occurrence of critical illness in hospi-
talized patients with COVID-19 [19]. By contrast, we adopted
DL-derived CT quantitative measurements to accurately as-
sess the degree of lung injury and aimed to early predict the
adverse outcomes in patients with non-severe COVID-19
pneumonia on admission, and our findings further suggested
that CT-derived lesion% played an important role in our
XGBoost machine learning model.

To analyze the composition proportions of lung lesions, we
innovatively proposed an unsupervised multi-scale texture
feature clustering to distinguish GGO and CON without the
need of prior annotated data for training for further quantifi-
cation. Shi et al found that COVID-19 pneumonia manifested
with dynamic CT abnormalities during disease evolution, with

focal unilateral to diffuse bilateral GGOs that progressed to or
co-exist with CONs [13]. Thus, we speculated that the extent
or proportion of GGO and CON may contribute to early
predicting the disease evolution. According to our results,
GGO% ranked the fifth important features in identifying pa-
tients who were likely to develop severe or critical illnesses.
However, to simplify the machine learning classifier with suf-
ficient accuracy, we only included the top 4 features in our
final model. Another study showed that the average infection
attenuation of lung abnormalities computed automatically by
a deep learning–based AI system could distinguish between
the severe and non-severe COVID-19 stages [31]. However,
we did not use the average attenuation of lesion to discrimi-
nate between GGO and CON in our study since there is no
recognised reference threshold value. Besides, CT severity
score, a semi-quantitative index associated with the lung in-
volvement, also has been subjectively estimated and included
in the candidate feature set. However, the feature importance
rank indicated that the radiologist-derived CT severity score
was inferior to these DL-derived CT quantitative measure-
ments, which provides more accurate, objective, and repro-
ducible quantification of lung involvement.

There were some limitations in our study. First, the study
was retrospectively conducted and the laboratory tests were
clinically driven and not systematic, which resulted in incom-
plete laboratory tests results in some cases. Second, the cyto-
kine storm is the hallmark of severe ill COVID-19, which is
characterized by increased amounts of serum proinflammatory
cytokines [32]. The detection of cytokines may have added a
further dimension to this study. Third, the utility of our model is
limited by unavailable open-source segmentation software and
lack of easy-to-use online tool. Also, the selection of the opti-
mal machine learning classifier was subjective. Finally, the pro-
portions of patients who reached the composite endpoint in the
primary or validation cohorts were about 8%. Although we
employed class weight adjustment to reduce the impact of

Fig. 4 Performance of the XGBoost classifiers based on the top four
features or only three clinical features. a ROC curves of the XGBoost
classifiers in the primary cohort (left) and validation cohort (right). b
Comparison of decision curves of the XGBoost classifiers in the whole

cohort. AUC, area under the receiver operating characteristic curve;
ROC, receiver operating characteristic; XGBoost, extreme gradient
boosting
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imbalanced samples on the prediction performance of the ma-
chine learning classifier, our established model may be limited
by the potential overfitting risk and specific cohort characteris-
tics. The possibility to extrapolate our model to other patient
populations needs to be confirmed by a larger sample.

In summary, our study presented a machine learning model
incorporating four clinical or imaging variables at the time of
admission with high accuracy to identify the patients who
developed adverse outcomes during hospitalization, which
could be used to facilitate the prediction of adverse outcomes
in patients with COVID-19. Our findings may allow efficient
utilization of medical resources and individualized treatment
plans for COVID-19 patients.
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