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Abstract: More than 1 billion people live in areas endemic for leishmaniasis, which is a relevant threat
for public health worldwide. Due to the inadequate treatments, there is an urgent need to develop
novel alternative drugs and to validate new targets to fight this disease. One appealing approach
is the selective inhibition of protein kinases (PKs), enzymes involved in a wide range of processes
along the life cycle of Leishmania. Several PKs, including glycogen synthase kinase 3 (GSK-3), have
been validated as essential for this parasite by genetic or pharmacological methods. Recently, novel
chemical scaffolds have been uncovered as Leishmania GSK-3 inhibitors with antiparasitic activity. In
order to find new inhibitors of this enzyme, a virtual screening of our in-house chemical library was
carried out on the structure of the Leishmania GSK-3. The virtual hits identified were experimentally
assayed both for leishmanicidal activity and for in vitro inhibition of the enzyme. The best hits
have a quinone scaffold. Their optimization through a medicinal chemistry approach led to a set
of new compounds, provided a frame to establish biochemical and antiparasitic structure–activity
relationships, and delivered molecules with an improved selectivity index. Altogether, this study
paves the way for a systemic search of this class of inhibitors for further development as potential
leishmanicidal drugs.

Keywords: leishmanicidal drugs; ligand-based drug discovery; hit optimization; leishmaniasis;
GSK-3

1. Introduction

More than 20 protozoan species of the genus Leishmania are responsible for the variety
of clinical syndromes associated with human leishmaniasis. This heterogeneous pathology
is grouped into three major clinical forms: cutaneous (in many cases self-healing), mucocu-
taneous, and visceral, that evolves fatally unless treated [1]. The incidence of leishmaniasis
is estimated between 700,000 and 1 million new cases with 7000–15,000 annual deaths, and
more than 1 billion people living in endemic areas. Its distribution encompasses a wide
variety of ecological systems, mostly in tropical and subtropical areas, with an expanding
distribution towards higher latitudes, driven by climate change and human displacement
or migrations from or into endemic areas [2].

Chemotherapy is the current standard method to fight the disease, and is in turn
limited to five drugs with important drawbacks, such as rising resistance, high cost, or
undesirable side effects [3,4]. To soothe the health impact of this problem, combination
therapy [5] and drug repurposing [6] are the most suitable alternatives for short- and
medium-term treatment, respectively. Therefore, there is an urgent need to develop novel
alternatives in terms of more effective treatments to fight the disease and to validate
new targets.
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Protein kinases (PKs) are one of the largest gene families in the genome of eukaryotes
where they play a critical role in signal transduction and other cellular processes. They
have been involved in cancer, diabetes, neurodegenerative, cardiovascular, developmental,
immune, and behavioural disorders [7–9]. The human kinome is made of 518 protein
kinases, and it is currently the largest druggable group in pharmacology [10]. The PKs
family has become one of the most important drug targets over the past two decades. In
fact, the U.S. Food and Drug Administration (FDA) has approved 66 small-molecule protein
kinase inhibitors (PKIs) and more than 200 additional PKIs are under clinical trials [11].

Within trypanosomatids, the kinomes of Leishmania major, L. infantum, L. braziliensis,
and L. mexicana are composed of 196, 224, 221, and 204 putative PKs, respectively, all of
them belonging to the Ser/Thr PKs, except some dual-specificity PKs, with a complete
absence of Tyr PKs, as described for all the trypanosomatids [12,13]. In most cases, the
phosphorylation of a given protein is highly dependent on the stage of the parasite [14].
In Leishmania, PKs participate in the control of essential processes, such as the inter-stage
differentiation, macrophage invasion, response to the stress, intracellular survival within
the host, or drug resistance, among others [15–17].

The divergence among the human and Leishmania kinomes supports PKs as a relevant
target for new anti-infective drugs with lower undesirable effects [18]. For this goal, a tar-
geted PK must play an essential role in Leishmania, validated by genetic or pharmacological
tools. A variety of different genetic techniques have been used for this purpose in Leish-
mania [19,20]. Using the CRISPR-Cas9 (clustered regularly interspaced short palindromic
repeats-associated protein 9) technology, a comprehensive study of the whole L. mexicana
kinome was recently reported [13]. In this relevant work, 43 PKs (21% of the kinome of this
Leishmania species) were dubbed as essential for Leishmania, according to the impossibility
of obtaining their viable knockout parasites.

The pharmacological validation of specific inhibitors of a given PK must be assayed
for leishmanicidal activity [21]. The quest for novel PKIs encompasses drug repurposing
for PKIs against human PKs, as well as the screening of compound libraries [6,21]. Cross-
inhibition with unexpected PKs in Leishmania, unforeseen off-targets, or effect on host PKs
are some of the caveats inherent to the last approach.

Among the validated essential PKs in Leishmania are Akt-like [22], CK1.2 (Casein
Kinase 1.2) [19], Aurora kinase [23], or GSK-3 (Glycogen synthase kinase 3) [24,25]. GSK-3
is a multitask Ser/Thr PK, ubiquitous in eukaryotes, that works as a hub for multiple
signal transduction pathways through the integration of a wide variety of intracellular
stimuli, with ensuing effects on cell metabolism, division, and differentiation [26]. Its
dysfunction underlies highly relevant human pathologies, such as cancer, diabetes type II,
or neurodegenerative diseases [27–30].

The essential role of GSK-3 in trypanosomatids, was initially described for Trypanosoma
brucei [24] and further extended to Leishmania after its genetic and pharmacological vali-
dation [13,25]. As in T. brucei, Leishmania GSK-3 is expressed as short and long forms, that
differs in 150 amino acids at its C-terminus. Only the short form (GSK-3s) was subjected
to pharmacological studies, due to its higher relevance over the long one in trypanoso-
matid survival [24]. Sequence identity between human GSK-3β (hGSK-3β) and L. major
GSK-3 (LmjGSK-3s) was 41% [31]; only few residues lining the active site differed among
these two enzymes. The induction of the apoptotic death of the parasite by 6-bromo-5-
methylindirubin-3′-oxime, a specific inhibitor of LmjGSK-3s, was partially impeded by
overexpression of the episomal gene supporting its validation as an essential target [25].
This was further confirmed after the failure to obtain viable knockout parasites for this
enzyme [13]. The sequence of GSK-3 is highly preserved among Leishmania species; L. major
shows 98% similarity of the amino acid sequence with L. donovani; and it is 100% identical to
L. infantum [32]. Therefore, inhibitors of this enzyme may potentially work on the different
forms of the disease, increasing the prospects for their pharmacological development.

A number of different inhibitory scaffolds were described as PKIs for this enzyme
including indirubin analogues, the paullone alsteroaullone [33], and in a recent publica-
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tion [34], benzoimidazole, oxadiazole, thiadiazolidinone, halomethylketone, and maleimide
derivatives, the last two presumably acting as irreversible inhibitors, were added to this
growing list. All of them act on the ATP-binding site of the Leishmania donovani GSK-3s
(LdGSK-3s) and showed partial cross-inhibition with the human enzyme.

Altogether, we were prompted to search specific LdGSK-3 inhibitors as a new avenue
for Leishmania chemotherapy, first by an unbiased study of the druggability of the binding
sites of this enzyme that, in a second step, were further interrogated by our in-house
chemical library using a two-pronged computational and experimental approach. From
this, new quinones with selective inhibitory activity and active on Leishmania enzyme
were found.

2. Materials and Methods
2.1. Chemical Procedures

Substrates were purchased from commercial sources. Melting points (Mp) were deter-
mined with a MP70 (Mettler Toledo España, Cornellá de Llobregat, Spain) apparatus. Flash
column chromatography was carried out at medium pressure using silica gel (Grade 60,
particle size 0.040–0.063 mm, 230–240 mesh ASTM; E. Merck, Darmstadt, Germany) with
the indicated solvents as eluent (Hex = hexane; AcOEt = ethyl acetate; MeOH = methanol).
Compounds were detected by UV absorption at 254 nm. The Bruker AVANCE-300 spec-
trometer (Bruker España, Madrid, Spain) was used to obtain both 1H NMR and 13C NMR
spectra. For 1H NMR experiments, the spectrometer operated at 300 MHz, with typical
spectral parameters: spectral width 15 ppm, pulse width 9 µs (57◦), data size 32 K. For 13C
NMR experiments, the same spectrometer operated at 75 MHz, and with the following ac-
quisition parameters: spectral width 16 kHz, acquisition time 0.99 s, pulse width 9 µs (57◦),
data size 32 K. Chemical shifts (δ) are reported in values (ppm) relative to internal Me4Si
and coupling constant (J) values in Hz (multiplicity of signals: s = singlet; d = doublet;
t = triplet; q = quadruplet; m = multiplet; dd = doublet of doublets; td = triplet of doublets;
sex = sextuplet). The high-resolution mass spectrometry (HRMS) analysis was obtained on
an Agilent 1200 Series LC system (Agilent Technologies Spain, Las Rozas Spain), equipped
with a binary pump, an autosampler, and a column oven, coupled to a 6520 quadrupole
time-of-flight (Q-TOF) mass spectrometer. The mobile phase was acetonitrile:water (75:25,
v:v) at a flow of 0.2 mL min−1. The ionization source was an electrospray ionization (ESI)
interface working in the positive-ion mode. The electrospray voltage was set at 4.5 kV, the
fragmentor voltage at 150 V and the drying gas temperature at 300 ◦C. Nitrogen (99.5%
purity) was used both for nebulization (207 kPa) as well as drying gas (6 L min−1). Elemen-
tal analysis results were carried out on an Heraeus CHN-O-rapid analyser (Heraeus SA,
Boadilla del Monte, Spain) at the analysis platform of Research Assistance Centre of the
Complutense University of Madrid. For all the compounds, divergence from the theoretical
values were within ±0.4% of the respective theoretical values.

2.1.1. Synthesis of Carbamate Derivatives 1–5

The synthesis of carbamate derivatives 1–5 by the general procedure previously de-
scribed [35] was followed.

KNCO (1.5 equiv.) was suspended in a mixture of anhydrous DMSO (4 mL) plus
1 mL of the corresponding alcohol, then 2,3-dichloro-1,4-naphthoquinone (1.0 equiv) was
added. The mixture was stirred for 24 h at r. t. Excess of H2O (about 10 mL) was added and
the mixture cooled (0–5 ◦C) for 30 min. The dark yellow-orange precipitate was filtered
off and washed with H2O. The corresponding product was purified by flash column
chromatography using as eluent solvent mixtures as indicated.

Ethyl-(3-chloro-1,4-naphthoquinone-2-yl)carbamate (1). Reagents: KNCO (0.161 g,
1.98 mmol), 2,3-dichloro-1,4-naphthoquinone (0.300 g, 1.32 mmol), ethanol (1 mL, 17.04 mmol).
Purification: Hex/AcOEt (90:10) Yield: 0.268 g, 73%. Yellow solid. Mp: 147–149 ◦C (lit. [35]
146–148 ◦C). 1H NMR (300 MHz, CDCl3) δ 8.19–7.99 (m, 2H), 7.79–7.63 (m, 2H), 7.14 (s, 1H,
NH), 4.22 (q, J = 7.1 Hz, 2H), 1.28 (t, J = 7.1 Hz, 3H). 13C NMR (75 MHz, CDCl3) δ 178.3,
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176.6, 150.0, 138.5, 133.7, 133.1, 130.4, 130.3, 129.3, 126.5, 126.1, 61.9, 13.3. Elemental analysis
(C13H10ClNO4)—Calculated: C 55.83%, H 3.60%, N 5.01%. Found: C 56.04%, H 3.73%,
N 5.13%.

Isopropyl-(3-chloro-1,4-naphthoquinone-2-yl)carbamate (2). Reagents: KNCO (0.161 g,
1.98 mmol), 2,3-dichloro-1,4-naphthoquinone (0.300 g, 1.32 mmol), isopropanol (1 mL,
13.08 mmol). Purification: Hex/AcOEt (95:5). Yield: 0.081 g, 21%. Yellow solid. Mp:
149–151 ◦C (lit. [35] 148–149 ◦C). 1H NMR (300 MHz, CDCl3) δ 8.15–7.96 (m, 2H), 7.77–7.61
(m, 2H), 7.15 (s, 1H, NH), 4.95 (hept, J = 6.3 Hz, 1H), 1.25 (d, J = 6.3 Hz, 6H). 13C NMR
(75 MHz, CDCl3) δ 178.3, 176.6, 149.6, 138.7, 133.7, 133.0, 130.4, 130.1, 129.3, 126.4, 126.1, 69.9,
20.9 (2C). Elemental analysis (C14H12ClNO4)—Calculated: C 57.25%, H 4.12%, N 4.77%.
Found: C 56.97%, H 4.13%, N 4.96%.

Benzyl-(3-chloro-1,4-naphthoquinone-2-yl)carbamate (3). Reagents: KNCO (0.120 g,
1.5 mmol), 2,3-dichloro-1,4-naphthoquinone (0.227 g, 1 mmol), Benzyl alcohol (1 mL,
9.7 mmol). Purification: Hex/AcOEt (80:20). Yield: 0.24 g, 70%. Yellow solid. Mp:
163–164 ◦C. 1H NMR (300 MHz, CDCl3) δ 8.20–8.14 (m, 1H), 8.12–8.06 (m, 1H), 7.80–7.72
(m, 2H), 7.44–7.35 (m, 5H), 7.33 (s, 1H, NH), 5.24 (s, 2H). 13C NMR (75 MHz, CDCl3) δ 179.3,
177.7, 151.0, 139.5, 135.1, 134.9, 134.3, 131.7, 131.5, 130.4, 128.8 (3C), 128.7 (2C), 127.6, 127.2,
68.7. HRMS (ESI/Q-TOF) m/z: [M + H]+—Calculated for C18H13ClNO4 342.0533. Found:
342.0539.

4-Methoxybenzyl-(3-chloro-1,4-naphthoquinone-2-yl)carbamate (4). Reagents: KNCO
(0.120 g, 1.5 mmol), 2,3-dichloro-1,4-naphthoquinone (0.227 g, 1 mmol), 4-methoxybenzyl
alcohol (1 mL, 8 mmol). Purification: CH2Cl2/MeOH (99:1). Yield: 0.12 g, 34%. Yellow
solid. Mp: 137–147 ◦C. 1H NMR (300 MHz, CDCl3) δ 8.21–8.14 (m, 1H), 8.13–8.07 (m, 1H),
7.81–7.71 (m, 2H), 7.36 (d, J = 8.7 Hz, 2H), 7.27 (s, 1H, NH), 6.91 (d, J = 8.7 Hz, 2H), 5.18 (s,
2H), 3.81 (s, 3H). 13C NMR (75 MHz, CDCl3) δ 179.4, 177.8, 160.1, 151.1, 139.6, 134.9, 134.3,
131.9, 131.6, 130.7 (2C), 130.4, 127.6, 127.3, 124.0, 114.2 (2C), 68.6, 55.5. HRMS (ESI/Q-TOF)
m/z: [M + Na]+—Calculated for C19H14ClNO5Na 394.0458. Found: 394.0488.

3,4,5-Trimethoxybenzyl-(3-chloro-1,4-naphthoquinone-2-yl)carbamate (5). Reagents:
KNCO (0.12 g, 1.5 mmol), 2,3-dichloro-1,4-naphthoquinone (0.227 g, 1 mmol), 3,4,5-
trimethoxybenzyl alcohol (1 mL, 6.2 mmol). Purification: Hex/AcOEt (80:20). Yield:
0.09 g, 21%. Yellow solid. Mp: 167–168 ◦C. 1H NMR (300 MHz, CDCl3) δ 8.20–8.13 (m,
1H), 8.12–8.06 (m, 1H), 7.81–7.72 (m, 2H), 7.34 (s, 1H, NH), 6.63 (s, 2H), 5.16 (s, 2H), 3.87 (s,
6H), 3.84 (s, 3H). 13C NMR (75 MHz, CDCl3) δ 179.3, 177.7, 153.5 (2C), 151.0, 139.5, 138.3,
134.9, 134.3, 131.8, 131.5, 130.7, 130.3, 127.6, 127.2, 105.8 (2C), 69.0, 61.0, 56.3 (2C). HRMS
(ESI/Q-TOF) m/z: [M + Na]+—Calculated for C21H18ClNO7Na 454.0669. Found: 454.0639.

2.1.2. General Procedure for the Synthesis of Amines 6–13

2,3-Dichloro-1,4-naphthoquinone (1 equiv.) was dissolved in 4 mL of DMSO, and the
corresponding amine (1.5 equiv.) was added dropwise at r. t. The mixture was stirred for
10 min at r. t., excess of H2O (about 10 mL) was added, and the mixture cooled (0–5 ◦C)
for 30 min. The precipitate, with a bright-red colour in most of the cases, was filtered off
and washed with H2O. The residue was purified by flash column chromatography using
as eluent solvent mixtures as indicated.

2-Chloro-3-(propylamino)-1,4-naphthoquinone (6). Reagents: N-propylamine (0.12 mL,
1.5 mmol), 2,3-dichloro-1,4-naphthoquinone (0.227 g, 1 mmol). Purification: Hex/AcOEt
(80:20). Yield: 0.23 g, 96%. Bright-red solid. Mp: 118–119 ◦C. 1H NMR (300 MHz, CDCl3) δ
8.15 (dd, J = 7.7, 0.9 Hz, 1H), 8.03 (dd, J = 7.6, 0.9 Hz, 1H), 7.72 (td, J = 7.5, 1.4 Hz, 1H), 7.62
(td, J = 7.5, 1.4 Hz, 1H), 6.09 (s, 1H, NH), 3.82 (q, J = 6.3 Hz, 2H), 1.72 (sex, J = 7.3 Hz, 2H),
1.01 (t, J = 7.4 Hz, 3H). 13C NMR (75 MHz, CDCl3) δ 180.7, 177.0, 144.4, 135.1, 133.0, 132.5,
129.9, 126.9 (2C), 110.4, 46.8, 24.4, 11.3. HRMS (ESI/Q-TOF) m/z: [M + H]+—Calculated for
C13H13ClNO2 250.0635. Found: 250.0633.

2-Chloro-3-(pentylamino)-1,4-naphthoquinone (7). Reagents: N-pentylamine (0.17 mL,
1.5 mmol), 2,3-dichloro-1,4-naphthoquinone (0.227 g, 1 mmol). Purification: Hex/AcOEt
(70:30). Yield: 0.25 g, 82%. Bright-red solid. Mp: 99–100 ◦C. 1H NMR (300 MHz, CDCl3)



Biomedicines 2022, 10, 1136 5 of 27

δ 8.15 (dd, J = 7.6, 1.0 Hz, 1H), 8.03 (dd, J = 7.6, 1.0 Hz, 1H), 7.72 (td, J = 7.6 Hz, 1.4 Hz,
1H), 7.62 (td, J = 7.6, 1.4 Hz, 1H), 6.08 (s, 1H, NH), 3.85 (q, J = 6.3 Hz, 2H), 1.69 (m, 2H),
1.30–1.40 (m, 4H), 0.93 (t, J = 7.3, 3H). 13C NMR (75 MHz, CDCl3) δ 180.7, 176.9, 144.3, 135.1,
132.9, 132.5, 129.8, 127.0, 126.9, 110.3, 45.1, 30.8, 28.9, 22.5, 14.1. HRMS (ESI/Q-TOF) m/z:
[M + H]+—Calculated for C15H17ClNO2 278.0948. Found: 278.0951.

2-(tert-Butylamino)-3-chloro-1,4-naphthoquinone (8). Reagents: tert-butylamine
(0.16 mL, 1.5 mmol), 2,3-dichloro-1,4-naphthoquinone (0.227 g, 1 mmol). Purification:
Hex/AcOEt (70:30). Yield: 0.21 g, 81%. Dark-red solid. Mp: 101–102 ◦C. 1H NMR
(300 MHz, CDCl3) δ 8.12 (dd, J = 7.4, 1.4 Hz, 1H), 8.03 (dd, J = 7.6, 1.9 Hz, 1H), 7.71 (td,
J = 7.5, 1.4 Hz, 1H), 7.62 (td, J = 7.4, 1.3 Hz, 1H), 6.10 (s, 1H, NH), 1.57 (s, 9H). 13C NMR
(75 MHz, CDCl3) δ 181.0, 177.9, 145.9, 134.8, 132.6, 132.4, 130.4, 127.0, 126.8, 112.5, 55.2, 31.8
(3C). HRMS (ESI/Q-TOF) m/z: [M + H]+—Calculated for C14H15ClNO2 264.0791. Found:
264.0793.

2-Chloro-3-(cyclohexylamino)-1,4-naphthoquinone (9). Reagents: cyclohexylamine
(0.17 mL, 1.5 mmol), 2,3-dichloro-1,4-naphthoquinone (0.227 g, 1 mmol). Purification:
Hex/AcOEt (90:10). Yield: 0.27 g, 93%. Bright-red solid. Mp: 122–123 ◦C. 1H NMR
(300 MHz, CDCl3) δ 8.14 (dd, J = 7.6, 1.0 Hz, 1H), 8.02 (dd, J = 7.6, 1.0 Hz, 1H), 7.71 (td,
J = 7.6, 1.4 Hz, 1H), 7.61 (td, J = 7.5, 1.4 Hz, 1H), 6.04 (s, 1H, NH), 4.50–4.34 (m, 1H), 2.16–2.00
(m, 2H), 1.86–1.73 (m, 2H), 1.73–1.62 (m, 1H), 1.49–1.18 (m, 5H). 13C NMR (75 MHz, CDCl3)
δ 180.8, 176.9, 143.5, 135.0, 133.0, 132.5, 130.0, 127.0 (2C), 110.1, 52.6, 34.8 (2C), 25.5, 24.6
(2C). HRMS (ESI/Q-TOF) m/z: [M + H]+—Calculated for C16H17ClNO2 290.0948. Found:
290.0939.

2-Chloro-3-((3,4,5-trimethoxybenzyl)amino)-1,4-naphthoquinone (10). Reagents: 3,4,5-
trimethoxybenzyl amine (0.26 mL, 1.5 mmol), 2,3-dichloro-1,4-naphthoquinone (0.227 g,
1 mmol). Purification: Hex/AcOEt (80:20). Yield: 0.35 g, 93%, Bright-red solid. Mp:
161–163 ◦C. 1H NMR (300 MHz, CDCl3) δ 8.16 (dd, J = 7.6, 1.0 Hz, 1H), 8.04 (dd, J = 7.6,
1.0 Hz, 1H), 7.74 (td, J = 7.6, 1.4 Hz, 1H), 7.64 (td, J = 7.6, 1.4 Hz, 1H), 6.56 (s, 2H), 6.16 (s, 1H,
NH), 4.98 (d, J = 5.8 Hz, 2H), 3.86 (s, 6H), 3.85 (s, 3H). 13C NMR (75 MHz, CDCl3) δ 180.6,
177.1, 153.9 (2C), 144.2, 138.1, 135.2, 133.5, 132.8, 132.7, 130.0, 127.1, 127.0, 111.2, 105.1 (2C),
61.0, 56.4 (2C), 49.6. HRMS (ESI/Q-TOF) m/z: [M + H]+—Calculated for C20H19ClNO5
388.0952. Found: 388.0943.

2-Chloro-3-((4-chlorobenzyl)amino)-1,4-naphthoquinone (11). Reagents: 4-chloro-
benzylamine (0.13 mL, 1.5 mmol), 2,3-dichloro-1,4-naphthoquinone (0.227 g, 1 mmol).
Purification: Hex/AcOEt (80:20). Yield: 0.28 g, 85%. Bright-red solid. Mp: 162–163 ◦C.
1H NMR (300 MHz, CDCl3) δ 8.15 (dd, J = 7.7, 1.0 Hz, 1H, H8), 8.04 (dd, J = 7.7, 1.0 Hz,
1H), 7.74 (td, J = 7.6, 1.4 Hz, 1H), 7.64 (td, J = 7.6, 1.4 Hz, 1H), 7.35 (d, J = 8.5 Hz, 2H), 7.27
(d, J = 8.5 Hz, 2H), 6.20 (s, 1H, NH), 5.02 (d, J = 5.0 Hz, 2H). 13C NMR (75 MHz, CDCl3) δ
180.5, 177.1, 144.1, 136.7, 135.2, 132.8, 132.7, 130.0, 129.4 (2C), 129.1 (2C), 128.0, 127.1 (2C),
111.9, 48.3. HRMS (ESI/Q-TOF) m/z: [M + H]+—Calculated for C17H12Cl2NO2 332.0245.
Found: 332.0243.

2-Chloro-3-((4-chlorophenyl)amino)-1,4-naphthoquinone (12). Reagents: 4-chloro
aniline (0.19 g, 1.5 mmol), 2,3-dichloro-1,4-naphthoquinone (0.227 g, 1 mmol). Purification:
Hex/AcOEt (85:15). Yield: 0.29 g, 92%. Dark-red solid. Mp: 265–266 ◦C. 1H NMR (300 MHz,
CDCl3) δ 8.20 (dd, J = 7.5, 1.0 Hz, 1H), 8.13 (dd, J = 7.5, 1.1 Hz, 1H), 7.79 (td, J = 7.5, 1.4 Hz,
1H), 7.71 (td, J = 7.5, 1.4 Hz, 1H), 7.61 (s, 1H, NH), 7.32 (d, J = 8.7 Hz, 2H), 7.01 (d, J = 8.4 Hz,
2H). 13C NMR (75 MHz, CDCl3) δ 180.6, 176.8, 142.0, 141.4, 136.2, 135.3, 133.3, 132.6, 131.2,
128.7 (2C), 127.4, 127.2, 125.5 (2C), 110.7. HRMS (ESI/Q-TOF) m/z: [M + H]+—Calculated
for C16H10Cl2NO2 318.0089. Found: 318.0088.

2-(Benzylamino)-3-chloro-1,4-naphthoquinone (13). Reagents: benzylamine (0.16 mL,
1.5 mmol), 2,3-dichloro-1,4-naphthoquinone (0.227 g, 1 mmol). Purification: Hex/AcOEt
(85:15). Yield: 0.26 g, 87%. Bright-red solid. Mp: 109–110 ◦C. 1H NMR (300 MHz, CDCl3)
δ 8.15 (dd, J = 7.6, 1.0 Hz, 1H), 8.03 (dd, J = 7.6, 1.0 Hz, 1H), 7.72 (td, J = 7.6, 1.4 Hz, 1H),
7.62 (td, J = 7.6, 1.4 Hz, 1H), 7.42–7.29 (m, 5H), 6.23 (s, 1H, NH), 5.05 (d, J = 6.0 Hz, 2H).
13C NMR (75 MHz, CDCl3) δ 180.6, 177.0, 144.2, 138.0, 135.1, 132.8, 132.7, 130.0, 129.2 (3C),
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128.2 (2C), 127.8, 127.0, 111.5, 49.1. HRMS (ESI/Q-TOF) m/z: [M + H]+—Calculated for
C17H13ClNO2 298.0635. Found: 298.0624.

2.1.3. Procedure for the Synthesis of 1-(tert-Butyl)-3-(3-chloro-1,4-naphthoquinone
-2-yl)urea (14)

KNCO (0.12 g, 1.5 mmol) was resuspended in a mixture of anhydrous DMSO (4 mL),
and tert-butylamine (0.16 mL, 1.5 mmol). Then, 2,3-dichoro-1,4-naphthoquinone (0.227 g,
1 mmol) was added. The mixture was stirred for 24 h at r. t., excess of H2O (about 10 mL)
was added, and the mixture cooled (0–5 ◦C) for 1 h. The dark precipitate was filtered off and
washed with cold H2O. The aqueous phase was extracted with EtOAc (3 × 10 mL), and the
solvent evaporated. The product was purified using a silica gel column chromatography
with a mixture Hex/AcOEt 80:20 as eluent to afford 0.16 g (51.6% yield) of the urea
derivative compound as a yellow solid. Mp: 195–196 ◦C. 1H NMR (300 MHz, CDCl3) δ 8.09
(dd, J = 7.4, 1.4 Hz, 1H), 8.01 (dd, J = 7.6, 1.9 Hz, 1H), 7.72–7.60 (m, 2H), 7.09 (s, 1H), 5.09 (s,
1H), 1.35 (s, 9H). 13C NMR (75 MHz, CDCl3) 180.2, 177.8, 150.3, 141.1, 134.7, 133.8, 131.9,
130.4, 127.4, 127.4, 127.1, 51.7, 29.0 (3C). HRMS (ESI/Q-TOF) m/z: [M + H]+—Calculated
for C15H16ClN2O3 307.0849. Found: 307.0829.

2.1.4. Procedure for the Synthesis of 2-Amino-1,4-naphthoquinone (15)

To a solution of 2-bromo-1,4-naphthoquinone (1 g, 4.2 mmol) in THF, 32% aqueous
NH3 (2.5 mL, 42 mmol) was added, then the mixture was stirred for 24 h at r. t. The solvent
was evaporated under vacuum. The residue was purified by flash column chromatography
with a mixture Hex/AcOEt 80:20 as eluent to afford 0.33 g (45% yield) as an orange solid.
Mp: 206–207 ◦C (lit. [36] 202–204 ◦C). HRMS (ESI/Q-TOF) m/z: [M + H]+—Calculated for
C10H8NO2: 174.0555. Found: 174.0546.

2.1.5. General Procedure for the Synthesis of Carbamates 16–17

2-Amino-1,4-naphthoquinone (1 equiv.) and NaH (3 equiv. 60% dispersion in mineral
oil) were suspended in anhydrous DMF. Then, the corresponding chloroformate (1.5 equiv.)
was added dropwise continuously under inert Ar atmosphere. The reaction mixture was
stirred for 15 min at r. t., excess of H2O (about 10 mL) was added, and the mixture is
extracted with CH2Cl2 (3 × 10 mL). The organic phases are collected and then dried over
anhydrous MgSO4. The desiccant was filtered, and the organic solvent removed under
vacuum. The precipitate was purified by flash column chromatography using as eluent
solvent mixtures as indicated to obtain the desired products.

Methyl-(1,4-naphthoquinone-2-yl)carbamate (16). Reagents: 2-amino-1,4-naphthoq
uinone (0.1 g, 0.6 mmol), NaH (0.14 g, 3.6 mmol, 60% dispersion in mineral oil), methyl
chloroformate (71 µL, 0.9 mmol). Purification: Hex/AcOEt (70:30). Yield: 0.08 g, 57%. Light
yellow solid. Mp: 201–202 ◦C. 1H NMR (300 MHz, CDCl3) δ 8.10 (dd, J = 7.8, 1.3 Hz, 2H),
7.89 (s, 1H, NH), 7.78 (td, J = 7.5, 1.5 Hz, 1H), 7.71 (td, J = 7.4, 1.5 Hz, 1H), 7.51 (s, 1H), 3.85
(s, 3H). 13C NMR (75 MHz, CDCl3) δ 185.9, 180.7, 152.9, 140.9, 135.1, 133.3, 132.4, 130.2,
126.8, 126.6, 115.6, 53.4. HRMS (ESI/Q-TOF) m/z: [M + H]+—Calculated for C12H10NO4
232.0610. Found: 232.0613.

Ethyl-(1,4-naphthoquinone-2-yl)carbamate (17). Reagents: 2-amino-1,4-naphthoqui
none (0.1 g, 0.6 mmol), NaH (0.14 g, 3.6 mmol, 60% dispersion in mineral oil), ethyl
chloroformate (85 µL, 0.9 mmol). Purification: Hex/AcOEt (70:30). Yield: 0.07 g, 47%.
Light yellow solid. Mp: 162–163 ◦C. 1H NMR (300 MHz, CDCl3) δ 8.10 (dd, J = 7.8, 1.3 Hz,
2H, H5, H8), 7.85 (s, 1H, NH), 7.78 (td, J = 7.5, 1.5 Hz, 1H), 7.71 (td, J = 7.4, 1.5 Hz, 1H),
7.51 (s, 1H), 4.29 (q, J = 7.1 Hz, 2H), 1.35 (t, J = 7.1 Hz, 3H). 13C NMR (75 MHz, CDCl3)
δ 184.9, 180.7, 152.5, 141.0, 135.1, 133.3, 132.4, 130.3, 126.6, 126.6, 115.5, 62.6, 14.5. HRMS
(ESI/Q-TOF) m/z: [M + H]+—Calculated for C13H12NO4 246.0766. Found: 246.0749.
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2.1.6. General Procedure for the Synthesis of Amides 18–20

2-Amino-1,4-naphthoquinone (1 equiv.) and NaH (3 equiv. 60% dispersion in min-
eral oil) were dissolved in anhydrous DMF. Then, an excess of the corresponding acyl
chloride was added dropwise continuously (1.5 equiv.). The reaction mixture was stirred
for 30 min at r. t. Afterwards, excess of H2O (about 10 mL) was added, and the mixture
was extracted with CH2Cl2 (3 × 10 mL) and washed with 1M NaOH and 1M HCl. The
organic phases were collected and then dried over anhydrous MgSO4. The desiccant was
filtered, and the organic solvent removed under vacuum. The reaction crude was purified
by flash column chromatography using as eluent solvent mixtures as indicated to obtain
the desired products.

N-(1,4-Naphthoquinone-2-yl)acetamide (18). Reagents: acetyl chloride (32µL, 0.45 mmol),
2-amino-1,4-naphthoquinone (0.05 g, 0.3 mmol), NaH (0.04 g, 0.9 mmol, 60% dispersion in
mineral oil). Purification: CH2Cl2/MeOH (90:10). Yield: 0.046 g, 71%. Yellow solid. Mp:
201–203 ◦C. 1H NMR (300 MHz, CDCl3) δ 8.36 (s, 1H, NH), 8.13–8.11 (m, 1H), 8.10–8.08
(m, 1H), 7.85 (s, 1H), 7.79 (td, J = 7.5, 1.5 Hz, 1H), 7.72 (td, J = 7.5, 1.5 Hz, 1H), 2.29 (s,
3H). 13C NMR (75 MHz, CDCl3) δ 185.4, 181.2, 169.5, 140.0, 135.2, 133.4, 132.3, 130.1, 126.8,
126.6, 117.4, 25.2. HRMS (ESI/Q-TOF) m/z: [M + H]+—Calculated for C12H10NO3 216.0661.
Found: 216.0663.

N-(1,4-Naphthoquinone-2-yl)propionamide (19). Reagents: propionyl chloride (40 µL,
0.45 mmol), 2-amino-1,4-naphthoquinone (0.05 g, 0.3 mmol), NaH (0.04 g, 0.9 mmol, 60%
dispersion in mineral oil). Purification: CH2Cl2/MeOH (90:10). Yield: 0.016 g, 24%. Yellow
solid. Mp: 173–175 ◦C. 1H NMR (300 MHz, CDCl3) δ 8.35 (s, 1H, NH), 8.09 (dd, J = 7.4,
1.7 Hz, 2H), 7.85 (s, 1H), 7.78 (td, J = 7.5, 1.5 Hz, 1H), 7.71 (td, J = 7.5, 1.5 Hz, 1H), 2.52 (q,
J = 7.5 Hz, 2H), 1.02 (t, J = 7.5 Hz, 3H). 13C NMR (75 MHz, CDCl3) δ 185.4, 181.3, 173.2,
140.1, 135.1, 133.4, 132.4, 130.1, 126.8, 126.5, 117.2, 31.3, 9.2. HRMS (ESI/Q-TOF) m/z: [M +
H]+—Calculated for C13H12NO3 230.0817. Found: 230.0823.

N-(1,4-Naphthoquinone-2-yl) phenylacetamide (20). Reagents: phenylacetyl chlo-
ride (119 µL, 0.9 mmol), 2-amino-1,4-naphthoquinone (0.1 g, 0.6 mmol), NaH (0.08 g,
1.8 mmol, 60% dispersion in mineral oil). Purification: CH2Cl2/MeOH (90:10). Yield: 0.07 g,
27%. Dark yellow solid. Mp: 130–132 ◦C. 1H NMR (300 MHz, CDCl3) δ 8.43 (s, 1H, NH),
8.09 (dd, J = 7.4, 1.7 Hz, 2H), 7.88 (s, 1H), 7.78 (td, J = 7.5, 1.3 Hz, 1H), 7.71 (td, J = 7.5,
1.3 Hz, 1H), 7.52–7.34 (m, 5H), 3.85 (s, 2H). 13C NMR (75 MHz, CDCl3) δ 185.2, 181.6, 171.8,
142.1, 138.2, 135.0, 133.2, 132.2, 130.3, 129.3 (3C), 128.2 (2C), 126.6, 126.5, 117.2, 45.0. HRMS
(ESI/Q-TOF) m/z: [M + H]+—Calculated for C18H14NO3 292.0974. Found: 292.0963.

2.2. Computational Studies

The only crystal structure available for LmjGSK-3s was retrieved [31] (Protein Data
Bank (PDB) code: 3E3P). Nevertheless, the crystallized protein did not display the de-
capeptide loop located at the upper part of the ATP binding pocket. Therefore, this loop
was modelled prior to the analysis using the Modeller 9.20 software (University of San
Francisco, San Francisco, CA, USA) [37].

2.2.1. Ligand Preparation

The preparation of the MBC chemical library and its 2D-to-3D conversion was carried
out using the LigPrep [38] tool (Schrödinger Release 2015-4. Schrödinger, LLC: New York,
NY, USA), with addition of hydrogen atoms and calculation of the ionization state of the
molecules at physiological pH. All the molecules were desalted and minimized as default
at the last step. The generation of possible tautomers and low-energy ring conformations,
as well as a final energy minimization step were carried out using the OPLS-2005 force
field [39,40].

2.2.2. Protein Preparation

The Protein Preparation Wizard tool [41] implemented on Maestro (Schrödinger Release
2015-4. Schrödinger, LLC: New York, NY, USA) [42] was used to pre-process and refine the
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structures of the proteins by H-bond assignment and calculation of the protonation state of
the residues at physiological pH with a final restraint minimization.

2.2.3. Cavity Detection Analysis

The potential cavities on the different enzymes were identified using the Fpocket 2.0
software (Barcelona, Spain) [43] a pocket detection package, based on Voronoi tessellation
and alpha spheres building. For that, the qhull package was used for Voronoi tessellation.
After the structural analysis, the pockets of the protein were compiled and ranked according
to the scores provided by the program. Further analyses were carried out based on the
visual inspection of best ranked pockets. MDpocket, tool included in Fpocket 2.0, [44] was
used to detect cavities for a set of PDB structures. A total number of 56 crystal structures of
GSK-3 available at the moment of the study, mostly from human origin, were retrieved for
the analysis (PDB codes: 1R0E, 1Q5K, 1J1B, 1J1C, 1PYX, 1Q3D, 1Q3W, 1Q41, 1Q4L, 1O9U,
1H8F, 1I09, 1GNG, 2O5K, 2OW3, 2JLD, 3L1S, 3E3P, 3DU8, 3F88, 3F7Z, 3I4B, 3GB2, 3PUP,
3M1S, 3Q3B, 3ZRM, 3ZRL, 3ZRK, 3SD0, 3SAY, 3ZDI, 4DIT, 4ACH, 4ACG, 4ACD, 4ACC,
4B7T, 4J71, 4J1R, 4IQ6, 4NU1, 4NM7, 4NM5, 4NM3, 4NM0, 4PTG, 4PTE, 4PTC, 4AFJ, 4E7W,
5F95, 5F94, 5HLN, 5K5N, 5AIR).

2.2.4. Hotspots Maps

The Fragment Hotspot maps 0.11.0 software (CDCC Cambridge, UK) [45] was utilised
to define the location and environment of the binding sites on the protein. After an initial
calculation of atomic hotspots, the Fragment Hotspot maps were further produced using
simple molecular probes. These maps uncover specifically fragment-binding sites and their
respective pharmacophores. The interactions identified with the highest relevance were
further employed to set up filters for virtual screening studies and the quest for molecules
that fulfil these essential interactions.

2.2.5. Virtual Screening

Virtual screening was performed employing the Glide module [46] within the Schrödinger
software package (Schrödinger Release 2017-1. Schrödinger, LLC: New York, NY, USA, with
the corresponding 3D target structure and the MBC library [47]. In all cases, the centroid
of the grid was taken as the centre of the catalytic or the specified pocket. For the grid
generation a scaling factor of 1.0 in van der Waals radius scaling, and a partial charge cutoff
of 0.25 were used. The virtual screening used either a standard precision (SP) or an extra
precision (XP) mode [48]. The ligand sampling was flexible, epik state penalties were added,
and a 2.5 kcal/mol energy window was used for ring sampling. The distance-dependent
dielectric constant was 4.0 with a maximum number of minimization steps of 100,000 in
the energy minimization step. In the clustering, poses were considered as duplicates and
discarded if RMSD values were lower than 0.5 Å and the maximum atomic displacement
lower than 1.3 Å.

2.3. Experimental Biology Procedures
2.3.1. Reagents

Commercial reagents were of the highest quality available and purchased from SIGMA-
Aldrich Spain unless otherwise stated. Growth media (RPMI 1640 medium, RPMI 1640
without red phenol, and M199 medium) were obtained from Gibco (Life Technologies
Europe, Bleiswij, The Netherlands).

2.3.2. Assessment of Inhibition of GSK-3 with Kinase Glo®

Extraction, purification, and evaluation of compounds against recombinant LdGSK-3s
was carried out as described. For that, a recombinant LdGSK-3s with a His-tag was obtained
as inclusion bodies, that were further solubilized, and purified by chromatography first
on a Ni2+ column an in a second step on a DEAE (diethylaminoethyl) ionic exchange
column [34]. Samples were made in duplicate, and assays were repeated at least three times.
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IC50 (inhibitory concentration that decreases enzymatic activity by 50%) was calculated
using the statistical module of SigmaPlot v11.0 software. Evaluation of compounds against
hGSK-3β was performed using human recombinant GSK-3β purchased from Millipore as
described previously [49]. Compounds were prepared as a 10 mM stock solution in DMSO.

The mechanism of inhibition of LdGSK-3s by 1 and 2 was studied as described for
hGSK-3β [49]. Briefly, kinetic experiments were carried out at four different concentrations
of ATP (10, 5, 2.5, and 1 µM), in the absence or presence of the inhibitors, at either 2.5 or
5 µM, while the phospho-glycogen synthase peptide-2 (GS2) substrate was kept constant at
25 µM. The data were processed using Microsoft Excel software and results presented as
Eadie–Scatchard plots (v vs. v/[ATP]).

2.3.3. Cell

The axenic parasite strains used were Leishmania donovani promastigotes (MHOM/SD/
00/1S-2D) and L. pifanoi (MHOM/VE/60/Ltrod) axenic amastigotes, as well as its derived-
strain transfected with a pLEXSY expression vector containing the mCherry gene (mCherry-
L. pifanoi). The growth medium for promastigotes was RPMI 1640 medium supplemented
with 5 mM HEPES, 1.7 mM HCO3Na, 10% HIFCS (heat-inactivated fetal calf serum;
Biowest, Nuaillé—France), 2 mM L-glutamine, 20 U/mL unicillin (ERN Laboratories,
S.A., Barcelona, Spain), 24 µg/mL gentamicin (NORMON Laboratories, S.A., Tres Cantos,
Spain); pH 6.8–6.9 (RPMI 1640-HIFCS). Axenic amastigotes were grown in M199-HIFCS
(M199 medium supplemented with 20% HIFCS, 0.5% trypticase peptone (BD Biosciences,
San Agustín de Guadalix, Spain), 14 mM D-glucose, 76.7 µM hemin, 5.1 mM glutamine,
40 µg/mL gentamicin; pH 7–7.2). Promastigotes and axenic amastigores were grown at
26 ◦C or 32 ◦C, respectively.

2.3.4. Cell Harvesting

Leishmania parasites were collected at late exponential growth phase by centrifugation
at 1610× g at 4 ◦C. Elicited mouse peritoneal macrophages (MPM) were obtained from
8-week-old Balb/c mice through i.p. injection with 1 mL of 10% thioglycolate medium 72 h
before extraction. Macrophages were obtained by peritoneal washing (10 mL PBS, 4 ◦C).
After extraction, macrophages were cultured in RPMI 1640-HIFCS at 37 ◦C and 5% CO2.

2.3.5. Leishmanicidal and Cytotoxicity Assays of the Different Compounds

Both activities were assessed by inhibition of MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-
diphenyltetrazolium bromide) reduction, as described in [34]. Samples were made in
triplicate and assays were repeated at least twice. DMSO content in the medium was
adjusted to 0.25% v/v (final concentration), regardless of the final concentration of the drug,
and for the control, the untreated parasites. ICx (inhibitory concentration that inhibits
parasite growth or enzymatic activity by x%) was calculated using the statistical module of
SigmaPlot v11.0 software.

2.3.6. Cytotoxicity against Intracellular Amastigotes

Mouse peritoneal macrophages resuspended in RPMI 1640-HIFCS were seeded in a
24-well plate (2 × 105 cells/well) with sterile 14 mm-diameter coverslides placed at the
bottom of each well. Cells were allowed to adhere to the glass surface of the coverslides
(24 h, 37 ◦C, 5% CO2). Initial infection was carried out with mCherry–L. pifanoi (amastigote:
macrophage ratio 3:1) at 32 ◦C for 4 h in RPMI 1640-HIFCS. After removal of the non-
phagocytized amastigotes (3 times wash with 1 mL warm phosphate-buffered saline PBS)
the infection was allowed to progress at 32 ◦C for another 24 h. Next, cells were incubated
with each compound at 32 ◦C for 20 h. The infection index (number of amastigotes
per macrophage) was evaluated by fluorescence microscopy (Leica DIALUX 20, Leica
Microsystem, L’Hospitalet de Llobregat, Spain). At least 6 different fields gathering up to
100 macrophages were counted in each preparation. Statistical significance was calculated
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by p values using Student’s t-test. Each sample was made by duplicate and experiments
were repeated at least twice.

2.3.7. Mitochondrial Membrane Depolarization

Variation of the mitochondrial membrane polarization was evaluated by the intracellu-
lar accumulation of rhodamine 123 (Rh123) [50]. Leishmania parasites at 20 × 106 cells/mL
in Hanks buffered salt solution supplemented with 10 mM D-glucose (HBSS-Glc) were
incubated with the compounds for 4 h either at 26 ◦C or 32 ◦C for promastigotes or amastig-
otes, respectively. Then, cells were washed by centrifugation (4 min, 13,000× g, 4 ◦C) and
the cells resuspended in 100 µL HBSS-Glc plus 0.3 µg/mL Rh123, incubated for 10 min in
darkness. Extracellular Rh123 was removed by washing in cold HBSS-Glc. Lastly, the cells
were resuspended in 900 µL HBSS-Glc and measured in a Coulter XL EPICS flow cytometer
(λEXC = 488 nm, λEM = 520 nm).

Samples were prepared by duplicate and assays were repeated at least twice. The
control for depolarization consisted of parasites incubated with 20 mM KCN for 40 min
prior to Rh123 incubation.

2.3.8. Oxygen Consumption Rate

Variation in the O2 consumption rate of L. donovani promastigotes was measured
in a Clark electrode (Hansatech Instruments, King’s Lynn, UK) at 1 × 108 cells/mL in
600 µL of respiration buffer (10 mM Tris-HCl, 125 mM sucrose, 65 mM KCl, 1 mM MgCl2,
2.5 mM NaH2PO4, 0.3 mM EGTA, 5 mM succinic acid; pH 7.2). Compounds were added at
100 × final concentration to whole parasites, and oxygen consumption was monitored for
8–10 min.

2.3.9. Measurement of Sub G0/G1 Population

L. donovani promastigotes (2 × 106 cells/mL) in RPMI-HIFCS were incubated with
each compound in 24-well plates for 72 h at 26 ◦C by duplicate. Next, compounds were
removed by washing with HBSS-Glc (15,700× g, 4 min, 4 ◦C) and cells were resuspended
in 15 mL of HBSS-Glc, fixed and permeabilized by addition of 200 µL 70% cold EtOH and
incubated overnight at 4 ◦C. Ethanol was removed by centrifugation and cellular pellets
washed with HBSS-Glc. Finally, cells were resuspended in 500 µL HBSS-Glc with 20 µg/mL
propidium iodide (PI) and 3 mg/mL Ribonuclease A, and incubated in darkness at r. t. for
30 min. PI fluorescence was measured in a Coulter XL EPICS flow cytometer (Beckman
Coulter, Nyon, Switzerland) (λEXC = 488 nm, λEM = 620 nm) [50].

Each assay was repeated at least twice. Untreated cells were used as control for a
standard cell cycle histogram, and Miltefosine (hexadecylphosphocholine) (15 µM) was
used as control for an apoptosis-inducing respiratory inhibitor [51].

3. Results and Discussion
3.1. Computational Analysis of Leishmania GSK-3 Structure

In an initial step, identification of druggable cavities in the selected target was carried
out to identify small-molecule ligands. The initial sequence alignment analysis of the hu-
man and the parasite enzyme (Supplementary Materials, Figure S1) showed that, despite a
reasonable degree of dissimilarity between the Leishmania GSK-3 and its human orthologue,
the identity in the ATP binding pocket is highly preserved, including the conserved Cys199
(Cys169 in LmjGSK-3s), critical for the binding of covalent inhibitors [52,53]. Remarkably,
two residues differed in this region, Asp133 and Leu131; in the human enzyme, these were
replaced, respectively, by Glu101 and Met100 in LmjGSK-3s, leading to a slight increase in
the bulkiness of these residues located at the hinge region in the ATP-binding site. Based
on this, and with the goal of identifying potential binding cavities in the parasite protein,
we first proceeded to the surface analysis studies using the crystal structure available from
LmjGSK-3s [31]. For this purpose, protein-druggable sites and their potential fragment-
binding sites for the protein kinase inhibitors (PKI) of each pocket were uncovered using
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the free geometry-based algorithm Fpocket [43] and MDpocket [44], as well as by the
prediction of fragment hotspot maps [45].

Fpocket identified 16 potential cavities in the structure of the protein, that were ranked
by score and volume based on the clustering of alpha spheres and Voroni tessellation,
according to alpha sphere density, polarity, or hydrophobic density [43]. All of them un-
derwent further visual inspection. The results pinpointed significant facts. Most of the
cavities previously described for hGSK-3β [53] appeared also in the LmjGSK-3s protein.
The top-scoring pockets were the ATP-binding site, with its characteristic hinge region
connecting the C- and N-lobes, the substrate-binding pocket next to the ATP-binding site, as
well as several allosteric regions. Moreover, most of the residues that form the ATP-binding
site (Pocket 0, depicted in Figure 1A) and the substrate pocket were highly conserved, while
allosteric pockets showed higher differences respect to their homologues of the human
enzyme. In order to analyse the conserved pockets in the different GSK-3 structures, the
56 structures available in the PDB [54] at the time of the study, including that from Leish-
mania, were retrieved. These structures, mostly from the human enzyme, were analysed
by MDpocket [44]. The purpose is to identify potential differences between the conserved
pockets of the structures, to be later compared with those of the Leishmania enzyme.
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by MDpocket, front (left) and back view (right). (C) Relationship between the respective numbering
of MDpocket vs. Fpocket.
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From these analyses, those pockets with high score in Fpocket were interrelated with
those from MDpocket analysis in Figure 1A. According to Figure 1B, the ATP-binding
site was by far the pocket with the highest conservation, named Pocket 0, in agreement
with the aforementioned sequence comparison. In addition, four additional pockets were
partially preserved in the different structures, but with higher divergences in volume and
shape. Figure 1C shows the correlation between the top ranked cavities of LmjGSK-3s from
Fpocket analysis with those pockets found in MDpocket.

After the analysis of the surface and clustering of all cavities in the search for potential
allosteric pockets, Hotspots maps studies [45] identified the top pockets areas where key
interactions driving ligand–protein binding might be established. As expected, the ATP-
binding site accumulated most of the total hotspot maps. In addition, other areas within
the pockets found in the cavity search analysis were spotted as potential sites for ligand
binding by chemical probes (Figure 2).
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3.2. Searching for Novel Inhibitors Using Virtual Screening

The survey for new and highly selective active structures of Leishmania GSK-3 within
the MBC chemical library [47] was performed by virtual screening on the pockets found in
the LmjGSK-3s. A set of 24 compounds chemically diverse, were prioritised for biological
evaluation according to the Glide XP Score and the hotspots maps calculations.

The inhibition of the enzymatic activity of the purified LdGSK-3s by the 24 selected
compounds, that represented a variety of chemical scaffolds, was evaluated using Kinase
Glo® (Promega Biotech Ibérica, Alcobendas, Spain) (Supplementary Material, Table S1)
as previously described [34]. Out of the 24 compounds, only naphthoquinone MBC-10
showed a moderate inhibition of LdGSK-3s (45.7 ± 7.6% inhibition at 10 µM) (Table 1).
This result prompted us to evaluate additional molecules related to it within our in-house
chemical library [47]. A set of related structures bearing a benzo- or a naphthoquinone core
with different substituent patterns were prioritised and subsequently tested. The quinone
MBC-132, with a carbamate group in position 2 and a chlorine atom in position 3 has an IC50
of 2.5 ± 0.1 µM on LdGSK-3s inhibition, with 4-fold improvement over MBC-10 (Table 1).
Then, the leishmanicidal activity of these two molecules were subsequently assessed on
axenic promastigotes and amastigotes. Both molecules resulted as appealing candidates
under the phenotypic screening. MBC-10 showed IC50s of 10.5 ± 1.2 µM and 11.2 ± 2.5 µM
on promastigotes and axenic amastigotes, respectively, in the same trend as their inhibitory
enzymatic activity. MBC-132 showed IC50s in the low micromolar and sub-micromolar
range: 1.51 ± 0.02 µM and 0.51 ± 0.01 µM for promastigotes and axenic amastigotes,
respectively (Table 1), improving by 10-fold the MBC-10 values, with a selectivity index of
5.1 on mouse peritoneal macrophages.

Table 1. Enzymatic and biological characterization of MBC-10 and MBC-132 prioritised after the
virtual screening and subsequent experimental validation a.

Comp. Chemical Structure LdGSK-3s b

IC50 (µM)

L. donovani
Promastigotes

IC50 (µM)

L. pifanoi Axenic
Amastigotes

IC50 (µM)

MPM c

IC50 (µM)
Selectivity

Index (SI) d

MBC-10
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Noteworthy, quinone scaffolds such as p-benzoquinone or naphthoquinone [55,56]
were considered as privileged structure in drug discovery [57]. Moreover, several quinone
derivatives are drugs approved for different pathologies [58]. However, to the best of our
knowledge, inhibition of GSK-3 enzymes by quinones has not been reported yet, although
it was for other PKs through binding to the ATP binding pocket, such as anthraquinones
for human PIM1 kinase [59]. Other modes of PK inhibition by quinones include binding of
naphtho(hydro)quinone into the allosteric sites of the p21-activated kinase PAK [60], or the
covalent allosteric inhibition of Akt by 5,7-dimethoxy-1,4-phenanthrenequinone [61].
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The biological properties of quinones are mostly based either on their extensive redox
metabolism, frequently inducing ROS production, or as Michael acceptors to form adducts
with highly nucleophilic residues [62]. The chemical properties, and hence their potential
as therapeutics, are modulated by the substituents of the scaffold [63,64]. Therefore, fol-
lowing a ligand-based drug design strategy a new set of derivatives from MBC-132 were
synthesized to explore structure–activity relationships (SAR).

3.3. Design, Synthesis, Biological Evaluation, and SAR Analysis of a Second Generation of
Naphthoquinone Derivatives

MBC-132 improved substantially the LdGSK-3s inhibition and its associated leishmani-
cidal values with respect to the initial compound MBC-10. To further optimize this new
hit in terms of activity and selectivity, a medicinal chemistry approach was developed to
explore the chemical space of the naphthoquinone scaffold. For this, a dedicated synthesis
of a new generation of naphthoquinones was carried out with a double aim; to assess the
role of the chemical nature of the substituent at position 2, and to define the importance
of the chlorine at position 3. The first objective was tackled by the synthesis of a subset of
compounds that maintained the chlorine atom at position 3, but with different functional
groups at position 2, such as amines, urea, or amides, as well as the initial carbamate
itself. For the second objective, a new series of naphthoquinone derivatives compounds
without the chlorine in position 3 was synthesized to determine its influence on the activity
(Figure 3).
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scaffold (X accounts either for Cl or H).

A previously described procedure [35] was followed to synthesize a series of carbamate
derivatives 1–5 generated with a moderate yield, by the use of the corresponding aliphatic
and aromatic alcohols. The fast kinetics of this reaction minimized the hydrolysis of the
intermediate isocyanate, but the formation of the 2-amino-3-chloro-1,4-naphthoquinone
was occasionally observed, as previously reported [35]. Secondly, the influence of the
carbamate moiety in the biological activity was explored with a new set of naphthoquinone
derivatives in which the carbamate was replaced either by an amine group, or by a urea
moiety at the same position. In the first case, derivatives (6–13) were obtained by reaction
of the 2,3-dichloro-1,4-naphthoquinone with different aliphatic and aromatic amines in
anhydrous DMSO at r. t. with good yields (Scheme 1). The replacement of carbamate by
urea followed a similar chemical strategy employed for the carbamate synthesis, but with
the use of primary amines differently substituted, either aliphatic or aromatic. Nevertheless,
a final urea derivative was obtained only for tert-butylamine (14). For the other cases,
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instead of the expected urea formation, the direct addition of the amine occurred due to the
low nucleophilic properties of the potassium cyanate compared with the respective amine.
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Scheme 1. Synthesis of naphthoquinone derivatives with a carbamate moiety (1–5), with an amine
group (6–13) and of the urea derivative 14. (r.t., room temperature).

Finally, the role of the chlorine atom at position 3 in the biological activity of this
chemical class of compounds was assessed by synthesis of 1,4-naphthoquinone derivatives
devoid of this substituent.

For this, amide and carbamate naphthoquinone derivatives were synthesized from
2-amino-1,4-naphthoquinone as the starting material under a two-step protocol. In the
first step, 2-amino-1,4-naphthoquinone (15) was obtained by treatment of 2-bromo-1,4-
naphthoquinone with aqueous ammonia, 32% [65]. The moderate yields and the formation
of secondary products were substantially improved by the replacement of the aqueous
ammonia as solvent by THF (r. t., 24 h) (Scheme 2). In the second step, the reaction of
the quinone 15 with the respective chloroformate or acid halide led to the formation of
the corresponding carbamates 16–17 or amide derivatives 18–20 [66]. The nucleophilic
substitution was performed in the presence of sodium hydride, obtaining the final com-
pounds with moderate yields. The identification and characterization of the compounds
were included within the Materials and Methods Section.
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ture; THF, tetrahydrofuran).

In the next step, inhibition of the LdGSK-3s was evaluated for the 19 newly synthesized
quinones (compounds 1–14 and 16–20, Table 2). As with the parent compound MBC-132,
its carbamate derivatives (1–5) maintained their respective IC50s at the low micromolar
range. However, a 4-fold increase in IC50s (>10 µM) occurred when either the carbamate
moiety was replaced by urea, amide, or amine, or the chlorine in position 3 was absent.
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Table 2. Enzymatic and biological characterization of MBC-132 derivatives a.
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13 
 

Cl >10 >25 >25 - - 

14 

 

Cl >10 1.4 ± 0.4 2.1 ± 0.6 1.3 ± 0.3 0.6 

16 
 

H >10 4.1 ± 0.8 1.7 ± 0.2 3.8 ± 0.3 2.2 

17 
 

H >10 4.5 ± 0.7 1.7 ± 0.1 4.2 ± 0.2 2.5 

18 

 

H >10 4.5 ± 0.5 1.2 ± 0.1 4.0 ± 0.2 3.3 

19 

 

H >10 5.9 ± 1.8 1.8 ± 0.3 4.3 ± 0.3 2.4 

20 

 

H >10 7.1 ± 2.1 3.2 ± 0.1 7.5 ± 0.6 2.3 

a IC50—50% inhibitory concentration. b Indirubin-3′-monoxime-5-sulphonic acid was used as refer-
ence of the assay: IC50 (LdGSK-3) = 2.4 ± 0.2 μM. c MPM—mouse peritoneal macrophages. d SI—
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In a step ahead, the leishmanicidal activity of the compounds on L. pifanoi axenic
amastigotes and L. infantum promastigotes was evaluated. Axenic Leishmania amastigotes
afford the appraisal of the leishmanicidal activity without the constrains imposed on the
access of the compounds to intracellular amastigotes within the parasitophorous vacuole,
as well as to preclude the interference of the compounds via host–parasite interface in the
final activity. For that, the axenic line of L. pifanoi amastigotes belonging to the mexicana
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complex was chosen, as in this species the infectivity, antigenicity, and metabolic identity
between axenic and intracellular amastigotes have been consistently validated [67].

The IC50s for compounds 1–5 on both axenic forms of the parasite fell within the low
micromolar and sub-micromolar ranges. Compounds with an aliphatic substitution of the
carbamate (1 and 2), improved slightly the activity of the MBC-132 on the amastigote, while
on promastigote, values were rather similar. The replacement of an aliphatic carbamate
(1–2) by an aromatic one (3–5) produced a dissimilar effect on the leishmanicidal activity;
whereas on promastigotes IC50s were maintained at low micromolar values, regardless of
the aromatic or aliphatic nature of the substituents, on amastigotes, the IC50s were higher
for aromatic than for aliphatic derivatives. The selectivity index of 1 and 2 increased 2- and
4-fold with respect to MBC-132 (Table 2), also driven by their lower toxicity on peritoneal
macrophages. Compound 1, the carbamate with an ethyl substituent, resulted with the
highest selectivity index (SI = 20.6). In contrast, the slightly higher toxicity on macrophages,
and the lower activity on amastigotes, decreased the SI for 3–5 below MBC-132.

Replacement of the carbamate by an amine at position 2 (compounds 6–13), plum-
meted IC50 values for both forms of the parasite, even for aliphatic substituents (6–8). These
compounds showed, in vitro, a nil inhibition of LdGSK-3s in agreement with their poor
leishmanicidal activity. The substitution of the carbamate by urea (compound 14) led to an
activity on promastigotes comparable to the initial hit MBC-132; although, their higher cy-
totoxicity on macrophages and lower activity on amastigotes ruined their selectivity index.

The elimination of the chlorine at position 3 (compounds 16–20) maintained the
leishmanicidal activity of the reference MBC-132. However, they showed a lower selectivity
index because of their higher toxicity on macrophages.

Altogether, the presence of the carbonyl moiety (carbamate and urea derivatives) is
essential; its replacement by amine led to derivatives inactive or poorly active (6–13). The
leishmanicidal activity was not severely modified by the absence of the chlorine atom at
position 3 (16–20), but impaired their selectivity index below 3.

The structural modifications on the quinone scaffold led to active derivatives whose
substitution pattern widely differed from the initial hit MBC-10. In order to decipher the
mechanism of inhibition, experimental enzymatic kinetic studies were performed. Two
of the most active LdGSK-3s inhibitors, quinones 1 and 2, were chosen to study their
competition with ATP. Kinetic experiments with variation of the concentration of either
ATP (from 1 to 10 µM) or the inhibitors 1 and 2 (from 2.5 to 5 µM) were performed. An
Eadie–Scatchard plot (v vs. v/[ATP]) of the data is depicted in Figure 4. The intercept
of the lines just below the x-axis endorsed that both compounds act as ATP competitive
inhibitors. This mode of inhibition could be presumably extrapolated to similar compounds
as MBC-132 or 3–5.
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Noteworthy, the best LdGSK-3s inhibitors (MBC-132, 1–3) showed a poor inhibition
of hGSK-3β inhibition (at 10 µM the percentages of inhibition were 19, 30, 25, and 19%,
respectively). To the best of our knowledge, these are the first LdGSK-3s inhibitors with
modest affinity for hGSK-3β reported to date, with compounds 1 (SI = 20.6) and 2 (SI = 11.2)
being the lead molecules of these series of naphthoquinone in the phenotypic assay, as they
showed the highest SI values.

In this regard, the specific inhibition of LdGSK-3s over hGSK-3β has a special relevance
in leishmaniasis. The resolution of the disease relies on the induction of a proinflammatory
process, where activation of the macrophages and elimination of intracellular parasites
ensued. The pleiotropic function of GSK-3β in macrophages was recently reported [68], as
well as the ambiguous and complex modulation of inflammation by GSK-3β [69,70]. Works
addressing the role of hGSK-3β on leishmaniasis support the beneficial activity of this
enzyme for parasite elimination [71,72]. Consequently, these LdGSK-3s inhibitors, them-
selves lethal to the parasites, partially spare the inhibition of hGSK-3β, with a presumed
synergic leishmanicidal effect, caused by the activity of the human enzyme, while that of
the parasite was selectively inhibited.

3.4. Leishmanicidal Activity on Intracellular Amastigotes of LdGSK-3s Quinone Inhibitors

The assay of drugs on intracellular parasites is a model closer to the natural infection,
due to the inclusion of traffic and accumulation of the drug into the parasitophorous
vacuole, as well as feasible effects at the host–parasite interface. Consequently, the six
quinones with inhibitory activity on LdGSK-3s and leishmanicidal activity on axenic
amastigotes (compounds MBC-132 and 1–5) were tested on macrophages infected with
L. pifanoi amastigotes.

Compounds MBC-132 and 2 showed the higher decrease in parasite load (Figure 5).
Quinone 2 at 2 µM induced the highest decrease (76.3%), whereas quinone MBC-132 at 1 µM
caused a decrease of 39.1%. In all, we surmise that the loss of effectiveness in intracellular
infections for 2 of the 6 quinones relative to axenic amastigotes is likely due to a faulty
access of the quinone to the intracellular parasite. Figure 6 showed representative images
of infections treated with compound 2.
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Figure 5. Variation of the parasite load of BALB/c murine peritoneal macrophages infected
with mCherry-L. pifanoi axenic amastigotes after treatment with selected LdGSK-3s inhibitors.
Macrophages were infected with a 3:1 parasite:macrophage ratio for 4 h. Afterwards, infection was
allowed to progress for 24 h. Then, macrophages were challenged with the corresponding concen-
tration of each compound for 24 h, and changes in the parasite:macrophage ratio was obtained by
fluorescence microscopy. Compounds were added from stock solutions in DMSO. The same final con-
centration of DMSO (0.25% v/v) was present in all the samples, including control untreated infected
macrophages). Data were referred as the ratio percentage of treated vs. untreated macrophages.
Student’s t-test (*: p < 0.05, ***: p < 0.001).
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Figure 6. Leishmanicidal activity of quinone 2 in intracellular L. pifanoi amastigotes. Represen-
tative fields of BALB/c murine peritoneal macrophages infected with mCherry–L. pifanoi axenic
amastigotes. Macrophages were infected with a 3:1 parasite:macrophage ratio for 4 h. Afterwards,
infection was allowed to progress for 24 h. Then, macrophages were challenged with the correspond-
ing concentration of each compound for 24 h. The final percentage for DMSO in the incubation
medium was 0.25% v/v, including control, untreated macrophages. (A,B) Untreated macrophages.
(C,D) Infected macrophages treated with quinone 2 at 2 µM (5-fold its IC50 in axenic amastigotes).
(A,C) Phase microscopy. (B,D) Fluorescence microscopy (540–580 nm excitation filter). Magnification
bar: 20 µm.

3.5. Energy Metabolism of Leishmania as an Off-Target Effect of LdGSK-3s Inhibitors

The redox chemistry of quinones makes them suitable candidates to mimic ubiquinone,
a natural quinone working as electron carrier within the respiratory chain, thus with a po-
tential interference with the electron transport of the respiratory chain of trypanosomatids,
including Leishmania [73,74]. Therefore, appraisal of the effects of the quinones described
here on the energy metabolism of promastigotes was undertaken.

3.5.1. Inhibition of the Electrochemical Potential of the Leishmania Mitochondrion (∆Ψm)

In Leishmania, especially in the promastigote, oxidative phosphorylation is the main
source for ATP biosynthesis [75], dependent on the maintenance of the electrochemical
potential (∆Ψm) created by the respiratory chain.

Variation of the ∆Ψm of Leishmania parasites were monitored through the preferential
accumulation of rhodamine 123 (Rh123) within the mitochondrion [50], driven by the
Nernst equation. Quinones MBC-132, 1, and 2 were incubated for 4 h at their respective
IC80s on promastigotes prior to Rh123 accumulation. A 40 min incubation with 20 mM KCN
was used as a control inhibitor of oxidative phosphorylation (Figure 7). Quinone MBC-132
(3 µM) induced the highest decrease in Rh123 accumulation, similar to the KCN-treated
control (ca 70%). Quinones 1 and 2 showed similar effects at 2 µM, with decrease of 33.0 and
26.4% Rh123 fluorescence, respectively, supporting an inhibitory activity on the oxidative
phosphorylation of L. donovani, also described for other quinones in Leishmania [76–78].
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Figure 7. Variation of intracellular accumulation of Rhodamine 123 (Rh123) in L. donovani pro-
mastigotes by selected quinones. Parasites were incubated with the compounds at their IC80 for
4 h prior to Rhodamine 123 uptake, as described in the Materials and Methods Section. Rhodamine
123 accumulation was measured by flow cytometry (λEXC = 488 nm, λEM = 520 nm). Fluorescence
values were expressed as the percentage with respect to the untreated control. Incubation with 20 mM
KCN for 40 min was used as positive control for mitochondrial membrane depolarization.

3.5.2. Inhibition of Oxygen Consumption

To confirm the dysfunction of the respiratory chain achieved by the different com-
pounds, the inhibition of respiration was assessed by polarographic methods using a Clark
oxygen electrode. The cellular density required for this technique is five times higher than
that used for the other bioenergetic assays. Consequently, quinones MBC-132, 1, and 2
were assayed at 3.3–5-fold their IC80 (10 µM) (Figure 8) for inhibition of the respiration
of L. donovani promastigotes. Quinones MBC-132, 1 and 2 induced an initial acceleration
of the O2 consumption rates in the L. donovani promastigotes, followed by a deceleration,
which, only for quinone 2, was still higher than the initial respiration rate, prior to quinone
addition. The same process of deceleration, although in a lesser extent occurred in control
parasites (Figure 8A), due to the slight deviation underwent by the electrode at low oxygen
concentrations, even in the absence of cells using chemical reducing agents. Thus, a dual
quinone effect of the quinones with a poor and late inhibition of the oxygen consumption
rate may be reasonably discarded.
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After stabilization of the respiration rate, compounds were added from a stock at 100-fold final
concentration. Variation in the oxygen consumption rate were recorded for 8–10 min. Red arrow—the
addition of the respective compound and their respective code number and concentration used in bold
black over the upper part of the trace. (A) Control parasites treated with respiration buffer plus DMSO
at same final concentration as the quinones. (B) MBC-132 at 3.3-fold its IC80. (C,D) compounds 1 and
2, respectively, at a concentration 5-fold IC80s. Respiration rates were expressed as the percentage of
the O2 consumption rate respect to their basal rate, before addition of the compound. The different
colours of the dotted lines highlight the different slopes, with respective percentage values appear at
the lower left corner of each panel. The final concentration of DMSO in all the samples was 0.1% v/v.

3.5.3. Induction of Programmed Cell Death in L. donovani Promastigotes

The role of mitochondrion is mandatory for the intrinsic pathway of the programmed
cell death, the only pathway available for trypanosomatids [79]. The induction of apoptotic-
like processes in promastigotes was evaluated for quinones MBC-132, 1, and 2 at their
respective IC80s on L. donovani promastigotes, selected as inducers of mitochondrial de-
polarization, and evaluated by the induction of subG0/G1 population in flow cytometry
studies by DNA staining with propidium iodide (PI). Miltefosine at 15 µM was used as a
positive control for this process [50].

As shown in Figure 9, the three selected quinones induced programmed cell death in
L.donovani promastigotes, with increase in the subG0/G1 population in treated promastig-
otes. Therefore, the three naphthoquinones studied induced a bioenergetic collapse in the
promastigote of Leishmania by targeting the respiratory chain of the parasite leading to
apoptosis, thus adding a new off-target mechanism of action to these LdGSK-3s inhibitors.
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Figure 9. Cell cycle of L. donovani promastigotes treated with quinones MBC-132, 1, and 2 at
their IC80. Parasites were incubated with the corresponding drug for 72 h, followed by EtOH
permeabilization, incubated with 3 mg/mL Ribonuclease A and stained with 20 µg/mL of propidium
iodide (PI) before cytofluorometric analysis. (λEXC = 488 nm, λEM = 620 nm). The percentage of
subG0/G1 population (enclosed within green bars) stands for degraded chromatin, associated with
the apoptotic-like process. Miltefosine (hexadecylphosphocholine, HePc) at 15 µM was added as a
control for induction of apoptosis.
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4. Conclusions

In all, quinones have been added as a new and appealing template for leishmanici-
dal LdGSK-3s inhibitors, active on two quite different Leishmania species, from a clinical
perspective. These naphthoquinones showed a multitarget leishmanicidal mechanism
that may also encompass the respiratory chain, as it is the case here. Far from being
detrimental for its pharmacological development, this fact presents an immediate advan-
tage to curtail resistance induction by target mutation. As such, multitarget drugs have
been hailed as relevant approach for neglected tropical diseases [80] with miltefosine as a
paradigm [81], in tune with a current trend that advocate for a polypharmacology approach
for neglected diseases.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/biomedicines10051136/s1, Figure S1: Sequence alignment of
the GSK-3 structures of Leishmania major (Q4QE15) and Homo sapiens (P49841), Table S1: Chemi-
cal structures of the 24 compounds from the MBC library selected by virtual screening and their
biological evaluation.
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Abbreviations

AcOEt—ethyl acetate; ASTM—American Society for Testing and Materials; ATP—adenosine
triphosphate; CK1.2—casein kinase 1.2; 13C NMR—13C nuclear magnetic resonance; CRISPR-Cas9—
clustered regularly interspaced short palindromic repeats-associated protein 9; 2D—two-dimensional;
3D—three-dimensional; d—doublet; dd—doublet of doublets; DEAE—diethylaminoethyl; DMF—
N,N-dimethylformamide; DMSO—dimethyl sulfoxide; DNA—deoxyribonucleic acid; EGTA—ethylene
glycol tetraacetic acid; Equiv.—equivalents; ESI—electrospray ionization; FDA—U. S. Food and
Drug Administration; GSK-3—glycogen synthase kinase 3; GSK-3s—glycogen synthase kinase
3 short form; GS2—phospho-glycogen synthase peptide-2; HePc—hexadecylphosphocholine (milte-
fosine); HEPES—4-(2-hydroxyethyl)-1-piperazine ethanesulfonic acid; Hex—hexane; HIFCS—heat-
inactivated foetal calf serum; hGSK-3β—human GSK-3β; 1H NMR—1H nuclear magnetic resonance;
HRMS—high-resolution mass spectrometry; ICx—inhibitory concentration that decreases enzymatic
activity or parasite growth by x%; J—coupling constant; LC—liquid chromatography; LdGSK-3s—
L. donovani GSK-3 short form; Lit.—literature; LmjGSK-3s—L. major GSK-3 short form; m—multiplet;
MBC—medicinal and biological chemistry; Me—methyl; MeOH—methanol; Mp—melting point;
MPM—mouse peritoneal macrophages; MTT—3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium
bromide; M199—medium 199; ND—not determined; PAK—p21-activated kinases; PBS—phosphate-
buffered saline; PDB—protein data bank; PI—propidium iodide; PIM1 kinase; PKs—protein ki-
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nases; PKIs—protein kinase inhibitors; q—quadruplet; QTOF—quadrupole time-of-flight; Rh123—
rhodamine 123; RMSD—root mean square deviation; ROS—reactive oxygen species; RPMI 1640—
Roswell Park Memorial Institute 1640 medium; r. t.—room temperature; s—singlet; SAR—structure
activity relationships; sex—sextuplet; SI—selectivity index (IC50 MPM/IC50 axenic amastigotes);
SP—standard precision; t—triplet; td—triplet of doublets; tBu—tert-butyl; THF—tetrahydrofuran;
UV—ultraviolet; XP—extra precision.
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