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Abstract

Organisms are locked in an eternal struggle with parasitic DNA sequences that live inside

their genomes and wreak havoc on their host’s chromosomes as they spread through popu-

lations. To combat these parasites, host species have evolved elaborate mechanisms of

resistance that suppress their activity. A new study in Drosophila indicates that, prior to the

acquisition of resistance, individuals can vary in their ability to tolerate the activity of these

genomic parasites, ignoring or repairing the damage they induce. This tolerance results

from variation at genes involved in germline development and DNA damage checkpoints

and suggests that these highly conserved cellular processes may be influenced by current

and historical intragenomic parasite loads.

In the early days of genetics, genomes were largely thought to be tranquil places. Genetic maps

identified precise coordinates for genes that followed the rules of mendelian segregation. This

view, however, did not last long. Beginning in the 1940s, Barbara McClintock’s studies in

maize revealed that the genome could be unruly [1,2]. Her groundbreaking work showed that

autonomous and nonautonomous mobile elements could move throughout the genome, leav-

ing behind them a trail of broken chromosomes and mutations. In the 1950s and ‘60s, studies

using multiple species of Drosophila suggested that particular genotypes could have unstable

genomes, with high rates of mutation and chromosomal breakage (for two excellent historical

reviews, see [3,4]). In the 1960s, Mel Green showed that transposition also occurred in Dro-
sophila, with genetically similar effects to those seen in maize [5]. By the 1970s, molecular

genetic analysis in bacteria had begun to characterize mobile elements at the molecular

level [6]. We now know that mobile genetic elements are ubiquitous and significant compo-

nents of most eukaryotic genomes, comprising one-half of the nucleotides in our own chro-

mosomes. The mutagenic and genotoxic effects of these nuclear parasites have driven the

evolution of elaborate mechanisms of resistance in host eukaryotes that silence their activity.

Now, a study published in PLOS Biology by Dr. Erin Kelleher and her colleagues shows how,

rather than resisting, germlines can instead tolerate genomic damage wrought by mobile trans-

posons [7].
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The mysterious P cytotype

In 1971, while crossing flies taken from natural populations with laboratory strains carrying

visible markers, the Drosophila geneticist Yuichiro Hiraizumi observed unexpected recombi-

nation through males (crossing over is normally limited to the female germline in Drosophila
melanogaster) [8]. Hirazumi and his colleagues showed that the factors causing male crossing

over could be genetically mapped, and they designated these factors male recombination ele-

ments [9]. Shortly thereafter, Margaret Kidwell and John Sved independently discovered that

male crossing over was a component of a broader phenomenon they termed hybrid dysgenesis

[10]. Hybrid dysgenesis occurs when certain strains of D.melanogaster are crossed with one

another, leading to a syndrome of sterility, mutation, chromosome breakage, male recombina-

tion, transmission distortion, and nondisjunction. Kidwell and Sved made the crucial discov-

ery that hybrid dysgenesis was controlled by an interaction between the maternal cytoplasm

and elements residing on the paternal chromosomes. This was revealed by the fact that when

males of strains established from natural populations (P strains) were mated with laboratory

strain females (M strains), hybrid dysgenesis would occur, while the reciprocal cross of P strain

females with laboratory M strain males did not induce dysgenesis. This maternal effect was

attributed to a hypothesized factor designated the "P cytotype."

In 1983, the molecular nature of P elements was revealed when white alleles obtained in

dysgenic crosses were found to carry insertions of the same sequence [11]. Soon thereafter, the

P element was harnessed as a tool for transgenesis, leading to a revolution in genetic engineer-

ing in an animal system. However, even as P elements were adopted and refined as a powerful

tool for molecular genetics, the molecular basis for the P cytotype remained a mystery for two

more decades. Genetic analysis showed that defective P elements encoding truncated transpo-

sases or missing promoter sequences could nonetheless confer a P cytotype and maintain

repression of hybrid dysgenesis as long as these defective elements were present in the female

germline [12,13]. Screens for P elements in natural populations found that independent P ele-

ment insertions flanking the telomere of the X chromosome were potent suppressors of hybrid

dysgenesis [11]. These telomeric P insertions were also found at high frequencies within natu-

ral populations [14], suggesting the possibility that natural selection was driving them to high

frequency as a means to maintain P element control. But despite intense investigation, the

molecular nature of the cytotype remained elusive, except for a putative "homology effect."

The discovery of RNA interference in Caenorhabditis elegans and plants was the key to

unlocking the molecular basis of the P cytotype. Soon thereafter, a complex pool of small

RNAs derived from transposable element (TE) sequences was found to be present in the

germline of D.melanogaster [15]. Curiously, these TE-derived small RNAs were slightly

longer than the small interfering RNAs processed through the standard RNA silencing path-

way. They were originally designated repeat-associated RNAs (rasiRNAs) until they were

found to form complexes with Piwi proteins, giving them the new designation piwi-interacting

RNAs (piRNAs). piRNAs are transcribed from discrete loci called piRNA clusters, where frag-

ments of TE insertions generate a pool of antisense piRNA molecules that silence TEs and pro-

tect the genome [16]. In the case of the P cytotype, the P elements inserted near the telomere of

the X chromosome are the source of piRNAs in the germline, and these piRNAs are transmit-

ted maternally [17]. Moreover, maternal transmission of piRNAs is required to establish P ele-

ment piRNA biogenesis in the next generation (Fig 1). Thus, maternal transmission of P

element piRNAs maintained P element repression across generations. When P elements are

inherited paternally, a maternal germline that lacks P element piRNAs is unable to maintain

repression and the paternally transmitted P elements mobilize, causing germline DNA damage

and the syndrome of hybrid dysgenesis. Laboratory stocks of D.melanogaster were established
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before the P element invaded wild populations of this species, hence the laboratory M

cytotype.

Germline piRNAs that suppress TEs have now been found across metazoans [18]. The

piRNA pathway is therefore an ancient genome defense mechanism conserved over hundreds

of millions of years of evolution due to its ability to protect host genomes against the deleteri-

ous consequences of mobile genetic element activity. However, the mechanisms of piRNA bio-

genesis in Drosophila suggest that there may often be a significant lag between the invasion of

a genome by a new transposable element and the establishment of suppressing piRNAs in the

population. To produce the piRNAs that suppress the invader, the population must wait for

Fig 1. Maternally loaded piRNAs confer the P element cytotype and maintain P element resistance across generations. P–M dysgenesis is a syndrome of

gonadal atrophy, male recombination, mutation, and chromosomal damage that occurs when P strain males are mated with M strain females. P strains carry P

element transposons, and M strains do not. When P strain males fertilize the eggs of M strain females, P elements become mobilized in the germline. This

mobilization causes early death of germline stem cells, and the offspring are sterile. In the reciprocal cross, when P strain females are mated with M strain

males, repression of P elements is maintained, and progeny are fertile. In this cross, repression of P elements is maintained by the transmission of P element

piRNAs in the female germline. In P strains, P element insertions in piRNA clusters provide a germline supply of P element piRNAs. This phenomenon

constitutes a maternal effect because repression of dysgenesis can be maintained even if the progeny do not inherit the P strain alleles that are the source of

piRNA.Ovary image obtained from the public domain: https://en.wikipedia.org/wiki/File:DrosophilaOvary.png. piRNA, piwi-interacting RNA.

https://doi.org/10.1371/journal.pbio.3000036.g001
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the invading element to insert into a piRNA cluster locus and for these insertion alleles to

reach high frequency. Some evolutionary models indicate that selection for alleles that sup-

press TE movement is weak [19], which could further delay the spread of resistance. Therefore,

following the invasion of a new TE but prior to the acquisition of piRNA-mediated resistance,

the fitness of host individuals may be determined by their ability to tolerate transposable ele-

ment activity in their genome. Until recently, the existence and nature of tolerance to TE activ-

ity has been overlooked. Now, a new study published in PLOS Biology by Dr. Erin Kelleher

and her colleagues has combined the P–M hybrid dysgenesis system with a powerful quantita-

tive genetic resource to study the genetic basis for tolerance to P element transposition in D.

melanogaster. This study provides new insight into how the germline can be robust to ongoing

genomic damage in the presence of an invading transposon.

Tolerant genomes

Kelleher and colleagues utilized the Drosophila Synthetic Population Resource (DSPR) [20]—

a set of fully genotyped recombinant inbred lines generated from eight founder strains—to

characterize and map genetic variation affecting female tolerance to P element transposon

activity. The eight DSPR founder strains were brought into research labs prior to the P element

invasion of natural D.melanogaster populations so are free of P elements and are susceptible

to P element–induced hybrid dysgenesis. Kelleher and colleagues crossed DSPR females to

males from a strain that is a strong inducer of hybrid dysgenesis and examined F1 females for

the presence of normal or atrophied ovaries, the latter phenotype indicative of hybrid dysgene-

sis. At high temperatures, such dysgenic crosses produce uniform and complete ovarian atro-

phy, so these crosses were done at a lower, permissive temperature to reveal variation in the

degree of dysgenesis. Differences in the degree of hybrid dysgenesis between F1 females from

different DSPR strains indicated the existence of genetic variation affecting tolerance to P ele-

ment mobilization.

To phenotype replicate individuals from 660 DSPR genotypes, Kelleher and colleagues

scored the proportion of replicate females of each genotype that had at least one mature egg

chamber. This phenotype showed the full range of variation: in some genotypes, 100% of

females assayed had zero mature egg chambers, while in other genotypes, all females had at

least one mature egg chamber (Fig 2). Kelleher and colleagues estimated the broad-sense heri-

tability of tolerance in this mapping population to be 40%, suggesting that such genetic varia-

tion is likely segregating in natural populations and could respond to selection following the

invasion of a new transposable element. Furthermore, there is likely to be additional genetic

variation associated with quantitative differences in fecundity between genotypes that was not

assayed in this study. Standing genetic variation and selection for tolerance to transposable ele-

ment activity may therefore be an important component of population responses to these

parasites.

The fully genotyped DSPR strains were designed for quantitative trait locus mapping, and

using this approach, Kelleher and colleagues discovered a 300-kb region on Chromosome 2L

that strongly influences the proportion of ovarian atrophy across DSPR genotypes. Within this

region, they identified just one gene that is both highly expressed in the ovary and contains

polymorphisms that segregate in phase with phenotypic variation (i.e., polymorphisms that

differentiate resistant and sensitive haplotypes). This gene, bruno, encodes an RNA-binding

protein that is required for both germline differentiation in the ovary [21] and proper pattern-

ing of the embryo [22]. Two additional pieces of evidence implicate bruno as a tolerance locus

in the DSPR. First, gene expression assays indicate that tolerant alleles of bruno have approxi-

mately 20% lower transcript levels than intolerant alleles in six of the DSPR lines. Second, loss-
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of-function and deletion alleles of bruno greatly increase tolerance to P element dysgenesis.

Together, these data suggest that bruno function is inversely correlated with P element toler-

ance and that regulatory variation at this gene leads to variation in tolerance to dysgenesis in

the DSPR mapping population.

Beyond bruno

The identification and characterization of genetic variation for tolerance to TE activity opens

the door for studies into the mechanisms and evolution of this host–parasite interaction. One

question immediately raised by the results of this study is how variation in bruno function

leads to variation in tolerance. One hypothesis put forward by Kelleher and colleagues is that

the balance between germline stem cell renewal and differentiation in the ovary is disrupted by

TE-induced DNA damage, leading to the loss of stem cells and ovarian atrophy. bruno pro-

motes stem cell differentiation, so reduced bruno activity could lead to increased retention of

stem cells in the niche, ultimately generating tolerance to DNA damage. This hypothesis is

supported by experiments showing that mutations in genes required for the DNA damage

response also modify the degree of hybrid dysgenesis [23]. This in turn raises the possibilities

that both the optimal stringency of DNA damage checkpoints and regulation of germline stem

cells could be influenced by current levels of TE activity within a population and that variation

in TE tolerance could contribute to natural variation in fertility.

Fig 2. QTL analysis reveals variation in bruno mediates natural tolerance to P element–induced gonadal atrophy. Natural variation in resistance to

hybrid dysgenesis was identified using a large number of RILs from the DSPR. A key feature of the DSPR is that it was constructed from strains that lack

P element insertions and, hence, also lack P element piRNAs. Multiple females from each RIL were crossed to males of a P strain with a strong capacity

to induce dysgenesis. Variation in tolerance to P element–induced atrophy was revealed by performing crosses at a mildly permissive temperature. This

experiment revealed a tremendous amount of variation: some strains exhibit no gonadal atrophy, while others exhibit complete gonadal atrophy. Using

this variation in a QTL analysis, segregating variation at the bruno gene was found to be an important determinant of tolerance to P element–induced

sterility in the DSPR. DSPR, Drosophila Synthetic Population Resource; QTL, quantitative trait locus; RIL, recombinant inbred line.

https://doi.org/10.1371/journal.pbio.3000036.g002
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P–M hybrid dysgenesis has been a powerful system for studying the interplay between TEs

and their hosts, but it is not clear how representative this system is of such interactions in

nature. This is because the dysgenesis syndrome results from an extreme difference in TE bur-

den caused by the sequestration of D.melanogaster strains in research laboratories, while the

ancestral population outside was infected. Population structure can influence rates of TE

spread through a species, but very low migration rates would be required to keep a subpopula-

tion completely free of transposable elements that are infecting neighboring demes [24]. More

often, matings will occur between individuals with modest differences in the number of active

TEs they carry. It is unknown whether quantitative differences in TE burden can cause milder

derepression of TE activity and concomitant reductions in fertility than seen in P–M dysgene-

sis. In the laboratory, it is difficult to detect the fertility effects of minor differences in germline

stem cell number that might result from such quantitative differences in TE burden. However,

in large populations, such differences will be visible to natural selection and are expected to

shape the "decision" a stem cell must make to repair its DNA or undergo cell death when trans-

position occurs outside of the context of hybrid dysgenesis. Thus, although Kelleher and col-

leagues’ study used P–M dysgenesis as a sensitized system, the genetic variation it uncovered

may nonetheless be an important target for selection in the early stages of invasion or in later

stages when transposition rates are low.

More generally, both theory and data suggest that tolerance to parasites may be a wide-

spread and evolutionarily significant strategy for host organisms. Resistance to parasites

decreases infection frequency within populations, and this negative feedback can impede the

spread of resistance traits. In contrast, tolerance to parasites increases infection frequency and

promotes the spread and fixation of tolerance traits [25] and typically does not select for coevo-

lutionary responses from pathogens. The significance of tolerance is exemplified by the attenu-

ated immune response of green monkeys to simian immunodeficiency virus, which allows

green monkey populations to experience high infection prevalence and viremia with no loss of

health [26]. Tolerance to parasites may therefore be a more successful long-term strategy than

resistance, and by allowing host populations to coexist with their parasites, tolerance could

potentially facilitate transitions between parasitic and mutualistic interactions. Eukaryotic

genomes show signatures of transposable element families that were active for millions of

years [27], perhaps as a result of host tolerance to these mobile genetic elements’ activity.

Such patterns raise the question of whether TE invasions occur frequently enough to produce

signatures of recurrent selection at genes like bruno, with the relative fitness of more and

less tolerant alleles determined by fluctuating burdens of active transposable elements. The

P element alone has colonized the genomes of at least two species of Drosophila within the

last 100 years [28,29], indicating that such invasions are not rare. How these dynamics of resis-

tance and tolerance might differ between infectious, horizontally transmitted parasites and

vertically transmitted genetic parasites is unclear. Investigating these and related questions will

illuminate not only the nature of interactions between these ubiquitous genetic parasites and

their hosts but may more broadly inform our understanding of parasite burden, health, and

disease.
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