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Abstract: Optimized Doxorubicin hydrochloride (DOX) loaded poly(lactic-co-glycolic acid) (PLGA)
nanoparticles (DPN) were prepared by controlling the water/oil distribution of DOX at different
pH solutions and controlling the electrostatic interaction between DOX and different terminated-
end PLGAs. Furthermore, cationic polyethylenimine (PEI) and anionic poly (acrylic acid) (PAA)
were alternately deposited on DPN surface to form PEI-DPN (IDPN) and PAA-PEI-DPN (AIDPN)
to enhance cancer therapy potency. Compared to DPN, IDPN exhibited a slower release rate in
physiological conditions but PEI was demonstrated to increase the efficiency of cellular uptake and
endo/lysosomal escape ability. AIDPN, with the outermost negatively charged PAA layer, still
retained better endo/lysosomal escape ability compared to DPN. In addition, AIDPN exhibited
the best pH-dependent release profile with 1.6 times higher drug release in pH 5.5 than in pH 7.4.
Therefore, AIDPN with the characteristics of PEI and PAA simultaneously was the most optional
cancer therapy choice within these three PLGA nanoparticles. As the proposed nanoparticles
integrated optimal procedure factors, and possessed cationic and anionic outlayer, our drug delivery
nanoparticles can provide an alternative solution to current drug delivery technologies.

Keywords: doxorubicin; carboxylic acid terminated PLGA; ester terminated PLGA; polyethylen-
imine; poly(acrylic acid); endo/lysosomal escape; pH-dependent

1. Introduction

Nanomedicine [1] plays an important role in cancer therapy because it can accumu-
late in tumors with a high vessel density, surrounded by an enhanced permeability and
retention (EPR) effect [2,3]. Compared to the fast elimination of free drugs, nanomedicine
exhibits a sustained release of up to four weeks [4,5]. Recently, many materials have been
used to make drug delivery nanoparticles [6]. These materials should demonstrate biocom-
patibility, biodegradability, and low toxicity [7,8]. Poly(lactic-co-glycolic acid) (PLGA) is
one of the most successful polymers used in the drug delivery system and is approved by
the Food and Drug Administration (FDA) and the European Medicines Agency (EMA) in
drug delivery systems [9,10]. Depending on the properties of drugs, preparation methods
such as emulsification–evaporation, nanoprecipitation, spontaneous emulsion solvent dif-
fusion, and membrane emulsification, have been chosen to produce drug-loaded PLGA
nanoparticles [11,12].

Doxorubicin hydrochloride (DOX), an anthracycline anticancer drug, is used widely
in several human cancers by DNA damage through two proposed mechanisms, which
are topoisomerase II inhibition and free radical generation [13,14]. However, dose-limited
cardiotoxicity and myelosuppression restrict DOX treatment in cancer therapy [15,16].
Antitumor drugs encapsulated in biodegradable polymers is one of the successful methods
used to reduce their side effects [17,18].
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The purpose of this study is to systematically analyze and optimize the effect of
various variables on the size, zeta potential, and encapsulated efficiency percentage (EE%)
of drug-loaded PLGA nanoparticles. In general, PLGA nanoparticles are deficient in the
endo/lysosomes escape capability. Therefore, polyethylenimine (PEI), with the “proton
sponge” effect rupture endo/lysosomes [19–22] was employed in the system by direct
addition of PEI to nanoparticle formulation and by coating on PLGA nanoparticle surface.
However, the positive charge of PEI is potentially cytotoxic and is tended to aggregate
with serum protein [23,24]. To diminish this defect of PEI, another anionic polyelectrolyte
poly(acrylic acid) (PAA) was involved in this drug-loaded nanomedicine, which could be
adsorbed on PEI because of its anionic polyelectrolyte property [25].

In the present study, DOX-loaded PLGA nanoparticle (DPN), PEI-DPN (IDPN),
and PAA-PEI-DPN (AIDPN) were prepared. Characterization of these nanoparticles,
including particle size, zeta potential, morphology on transmission electron microscopy
(TEM), and DOX release profile were determined. Cell cytotoxicity, cellular uptake, and
endo/lysosomes escape of DPN, IDPN, and AIDPN were analyzed using A549, non-small
cell lung cancer (NSCLC) cell line. A549 was chosen as the cell testing model because
lung cancer is the leading cancer-related cause of death, and NSCLC is the most com-
mon type of lung cancer [26,27]. Finally, nanoparticles decorated with the combination of
cationic/anionic polyelectrolyte (PEI/PAA) were found to be the most suitable in cancer
therapy.

2. Materials and Methods
2.1. Materials

PLGA (carboxylic acid terminated, Mw = 7000–17,000 Da; ester terminated, Mw = 30,000–60,000 Da),
polyvinyl alcohol (PVA, Mw = 13,000–23,000 Da), dichloromethane (DCM), polyethylen-
imine (PEI, Mw = 25,000 Da), poly(acrylic acid) (PAA, Mw = 15,000 Da), dimethyl sulfoxide
(DMSO), and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) were
purchased from Sigma-Aldrich (St. Louis, MO, USA). Doxorubicin hydrochloride (DOX)
was purchased from LC Laboratories (Woburn, MA, USA). Ultrapure water (18.2 MΩ·cm
at 25 ◦C) was prepared by Cascada Purification System (Washington, NY, USA).

2.2. Preparation of DOX Loaded PLGA Nanoparticles

DOX-loaded PLGA nanoparticles were prepared using the double emulsion (W1/O/W2)
method. Briefly, 0.5% DOX aqueous solution (W1) was added to 2% carboxylic acid
terminated PLGA (A-PLGA) or ester terminated PLGA (E-PLGA) in DCM (oil phase; O)
with a 1:5 volume ratio and sonicated in 80% amplitude for 60 s to emulsify W1-in-O
(W1/O). Then, the primary W1/O was poured into the 5 mL outer water (W2), which was
composed of 1% PVA in water or 1% PVA in phosphate buffer (PB) at pH 8 and sonicated
for another 60 s in 50% amplitude. To evaporate DCM, W1/O/W2 solution was stirred
at 20 ◦C overnight. A-PLGA/water, A-PLGA/PB, E-PLGA/water, and E-PLGA/PB were
centrifuged by 22,140× g for 30 min and washed twice with water. DPN represented the
formulation of A-PLGA/PB. DPN was than resuspended in waster and stored at 4 ◦C
before use.

2.3. Preparation of iDPN and i’DPN

PEI was incorporated in DPN by adding 2 mg PEI in W1 (i) or O (i’) during the primary
emulsification process. Primary W1/O was then poured into 1% PVA in water or 1% PVA
in pH 8 PB W2 to produce i/water-DPN, i/PB-DPN, i’/water-DPN, and i’/PB-DPN. All
other processes were the same as previously mentioned.

2.4. Preparation of IDPN and AIDPN

Layer by layer (LBL) DPN was prepared by electrostatic interaction. To prepare posi-
tively charged IDPN, negatively charged DPN was added into 0.2% PEI (pH 7), incubated
for 30 min, and then centrifuged by 22,140× g for 10 min twice to remove excess PEI. To
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prepare negatively charged AIDPN, condensed IDPN was added dropwise into gently
stirring 0.2% PAA (pH 7) for another 30 min incubation. Excess PAA was removed by
22,140× g for 10 min centrifugation. Then, the palette of nanoparticles was resuspended in
water and centrifuged by 22,140× g for another 10 min.

2.5. Characterization of Nanocarriers

DPN, IDPN, and AIDPN were suspended in water, and particle size and zeta potential
were measured using ZETASIZER (Malvern Nano-ZS90, Malvern, Worcestershire, UK);
DPN, IDPN, and AIDPN were diluted in water to 150–200 kcps of ZETASIZER detection.
Morphology of nanoparticles (100,000× magnification) was observed by TEM (Hitachi
H-700 Transmission Electron Microscope, Tokyo, Japan); nanoparticles were dropped on
carbon-coated copper grids (EM REsolution, Sheffield, UK).

2.6. Encapsulation Efficiency

To determine the encapsulated efficiency percentage (EE%), nanoparticles were added
to DMSO and sonicated for 10 min. After PLGA was completely dissolved in DMSO, the
DOX content was measured by UV–visible spectrophotometer at 480 nm. The EE% of each
formulation was calculated by the following equation:

EE% =

[
amount of DOX in nanoparticles

amount of DOX initial added

]
∗ 100% (1)

2.7. In Vitro Release Profile of DOX from DPN, IDPN, and AIDPN

A quantity of 60 µg of DOX contained in DPN, IDPN, and AIDPN were respectively
suspended in 5 mL PBS (pH 7.4 or pH 5.5, 37 ◦C) with constant shaking at 100 rpm for
3 days. At each defined time point, nanoparticle suspensions were centrifuged at 22,140× g
for 30 min and 1 mL of supernatant was replaced with PBS (pH 7.4 or pH 5.5). DOX in the
supernatant was determined by the measurement of fluorescence (Ex:480/Em:550).

2.8. Cell Culture

A549, a human non-small cell lung cancer cell line (NSCLC), obtained from BCRC
(Bioresource Collection and Research Center, Hsinchu, Taiwan), was grown in F-12K
Medium (Kaighn’s Modification of Ham’s F-12 Medium) (Gibco®, Gaithersburg, MD,
USA), supplemented with 10% fetal bovine serum (FBS; Biological Industries, Cromwell,
CT, USA) and 1% antibiotic–antimycotic (Gibco®, Gaithersburg, MD, USA). A549 was
incubated at 37 ◦C in a 5% CO2 humidified atmosphere.

2.9. Cytotoxicity

MTT assay was used to measure the cell viability after A549 was incubated with
free DOX, DPN, IDPN, and AIDPN. Briefly, A549 was seeded (3500 cells/well) in 96-
well plates. After overnight pre-incubation, free DOX, DPN, IDPN, and AIDPN from 0
to 1 µM were added. Cytotoxicity test in 24 h treatment, cells were incubated in a free
DOX/nanoparticles-filled medium for 24 h. Then, cells were washed twice with PBS and
were incubated in fresh medium for another 24 h. Cytotoxicity test in 48 h treatment, cells
were incubated in a free DOX/nanoparticles-filled medium for 48 h. After incubation, the
medium was then removed, and 100 µL of 5 mg/mL MTT was added and incubated for 4 h
at 37 ◦C. Finally, the supernatant was removed, and 100 µL DMSO was added to dissolved
formazan. The viability of A549 was evaluated by the absorbance of 570 nm.

2.10. Cellular Uptake

The uptake of free DOX, DPN, IDPN, and AIDPN was determined using flow cytome-
try FACSVerseTM (BD Biosciences, San Jose, CA, USA). A549 was seeded (105 cells/well)
in 6-well plates at 37 ◦C. After overnight pre-incubation, 0.1 and 1 µM of free DOX, DPN,
IDPN, and AIDPN were added and incubated for another 24 h and 48 h. A549 grown in



Polymers 2021, 13, 693 4 of 14

medium without free DOX or nanoparticles was used as a control group. Then, A549 cells
were washed with PBS and resuspended in 800 µL PBS. A549 cells (104 cells/experiment)
were analyzed by flow cytometry, and the fluorescence was detected by PE wavelength. The
mean fluorescence intensity (MFI) was acquired by BD FACSuite software (BD Biosciences,
San Jose, CA, USA).

2.11. Localization of Free DOX, DPN, IDPN, and AIDPN in Cells

A549 was seeded (2 × 104 cells/well) in 24-well plates and incubated overnight
at 37 ◦C. Then, 1 µM of free DOX, DPN, IDPN, and AIDPN was added and incubated
for another 24 hr. After incubation, A549 was washed with PBS twice and stained with
Hoechst 33342 and Lysotracker green DND-26. The fluorescence image of DOX, nuclei, and
endo/lysosomes were obtained using a fluorescent microscope (Leica, Wetzlar, Germany).

2.12. Statistical Analysis

Data are represented as the mean ± standard deviation (S.D.) of three repeat experi-
ments. Student’s t-test and one-way ANOVA with post hoc tests were used to compare
experimental data, considering p < 0.05 as statistically significant.

3. Results
3.1. Characterization of DPN

Because DOX has high solubility in aqueous solution, the present study used double
emulsion to encapsulate DOX in PLGA nanoparticles (Figure 1a) [28,29]. The EE% of two
different types of PLGA (A-PLGA and E-PLGA) and two different types of W2 (water
and PB; pH 8) were compared in this study. Figure 2a shows E-PLGA had a lower EE%
than A-PLGA regardless of whether W2 was water or PB. In addition, W2 composed
of PB increased EE% compared to water in both A-PLGA and E-PLGA. The size of all
formulations was around 150 to 230 nm, and zeta potential was around −25 mV to −35 mV
(Figure 2a,b). A-PLGA/PB was the best formulation due to its highest EE%. DPN for later
experiments was prepared using the A-PLGA/PB formulation.

3.2. DPN Decorated with Polyelectrolytes

In addition, polycationic PEI was used to change the zeta potential of DPN to a
positive value by the incorporation method (Figure 1b) [30,31] and adsorption method
(Figure 1c). However, when PEI was incorporated in DPN by adding it in the W1 (iDPN)
phase or the O (i’DPN) through the double emulsion process, the EE% was relatively low,
regardless of whether water or PB was W2 (Figure 2c). Each of these four types of DPN
incorporated by PEI exhibited a positive zeta potential (Figure 2d).

Figure 3 shows the variation of size, EE%, zeta potential, and PDI of DPN surface
coated by PEI (IDPN), and then by PAA (AIDPN). After the deposition of PEI and PAA
onto the core DPN surface, the particle size increased slightly and the surface charge
changed from −33.77 ± 4.97 mV to 40.74 ± 1.18 mV for IDPN and −26.76 ± 2.20 mV
for AIDPN, which confirmed the expected charge reversal and the opposite charge poly-
cation/polyanion absorption. Similar to results of the incorporation method, the EE%
decreased when PEI and PAA were assembled onto the DPN surface, which may be at-
tributed to the additional washing and centrifugation steps. TEM photographs show the
morphology of DPN, IDPN, and AIDPN was round (Figure 3e–g).

3.3. The Release Profile of DPN, IDPN, and AIDPN

The controlled release profile of DOX was successfully characterized by using PLGA
as a carrier of nanomedicine at both pH 7.4 or pH 5.5 PBS solution (Figure 4). All three types
of nanoparticles DPN, IDPN, and AIDPN at pH 5.5 had higher release rate than at pH 7.4
within three days. DPN had the highest initial release rate at both pH conditions. At pH 7.4,
DOX release from AIDPN was less than that from DPN and IDPN. From the inserted graph
of Figure 4, during the first eight hours at pH 7.4, there was a significant difference in the
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release slope (release%/hour) between IDPN and AIDPN (p < 0.05). However, a significant
difference between IDPN and AIDPN was not observed at pH 5.5.
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Figure 1. Schematic representation of (a) DPN (DOX-loaded PLGA nanoparticle), (b) iDPN (PEI was
added in W1 during the incorporation process), i’DPN (PEI was added in O during the incorporation
process), (c) IDPN (PEI-DPN), and AIDPN (PAA-PEI-DPN). Abbreviations: DCM, dichloromethane;
DOX, Doxorubicin hydrochloride; W1, 0.5% DOX aqueous solution; W2, outer water, which was
water or PB (phosphate buffer; pH 8); PEI, polyethylenimine; PAA, poly(acrylic acid).

3.4. Cytotoxicity

After treatment of DPN, IDPN, and AIDPN for 24 and 48 h, the viability of A549 cells
decreased with increasing concentration (Figure 5). After treatment for 24 h, the difference
of cytotoxicity of nanoparticles only could be observed in a 1 µM concentration. Free DOX
showed the highest cytotoxicity in this study and IDPN had a significantly higher cytotoxic
effect than AIDPN (p < 0.05). However, all three nanoparticles showed similar results after
treatment for 48 h. These nanoparticles without DOX had no toxicity to A549 cells for 48 h
of incubation (Figure 5c).
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Figure 2. The effect of different types of PLGA and W2 on (a) diameter and EE% (encapsulated efficiency percentage)
(b) zeta potential and PDI (polydispersity index) of DPN, and the effect of incorporated PEI and W2 on (c) diameter and
EE% (d) zeta potential and PDI of iDPN and i’DPN. (n = 3; mean ± standard deviation). E-PLGA/water (E-PLGA was
dissolved in O and W2 was water), E-PLGA/PB (E-PLGA was dissolved in O and W2 was PB), A-PLGA/water (A-PLGA
was dissolved in O and W2 was water), A-PLGA/PB (A-PLGA was dissolved in O and W2 was PB), i/water-DPN (PEI
was added in W1 during the incorporation process and W2 was water), i’/water-DPN (PEI was added in O during the
incorporation process and W2 was water), i/PB-DPN (PEI was added in W1 during the incorporation process and W2 was
PB), i’/PB-DPN (PEI was added in O during the incorporation process and W2 was PB). Abbreviations: E-PLGA, ester
terminated PLGA; A-PLGA, carboxylic acid terminated PLGA; PB, phosphate buffer (pH 8).

3.5. Cellular Uptake

Cellular uptake of free DOX, DPN, IDPN, and AIDPN was determined by the fluo-
rescence intensity of DOX in A549 cells. Both the mean fluorescence intensity (MFI) and
the number of positive cells increased with increasing nanoparticle concentration and
incubation time (Figure 6). As expected, the highest uptake of IDPN nanoparticles with
positive surface charge was observed in A549 cells at all incubation conditions. In contrast,
although both DPN and AIDPN with negative surface charge could be taken up by A549
cells, their MFI was not higher than that of free DOX.
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Fluorescence intensity in A549 measured by flow cytometry after 24 h incubation of (c) 0.1 µM and (d) 1 µM of free DOX
(red), DPN (blue), IDPN (orange), AIDPN (green), and control (black) and 48 h incubation of (e) 0.1 µM and (f) 1 µM of
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3.6. Endo/Lysosomes Escape Efficiency of DPN, IDPN, and AIDPN

The colocalization (yellow) of DOX (red) and Lysotracker (green) indicated that DPN,
IDPN, and AIDPN were internalized in endo/lysosomes (Figure 7). IDPN was most
capable of endo/lysosomal escape because it showed the greatest amount of separation of
red and yellow colors. The rank of the ability of endo/lysosomal escape from high to low
was IDPN, AIDPN, and DPN. Free DOX was also sequestered in acidic compartments, but
it did not find that any free DOX escaped.
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4. Discussion

In this study, DOX was loaded in PLGA nanoparticles for controlling release. To
optimize the formulation of DPN, two types of PLGA with carboxyl and ester end groups,
and two types of PVA-containing W2, water (pH 5–6), and PB (pH 7–8), were compared.
According to Figure 2a, the ideal formulation was composed of A-PLGA and PB. DOX acts
as a cationic ion at a pH around 4–6 and a less hydrophilic neutral compound at pH around
8.2 because the amine group pKa of DOX is 8.2 [32,33]. Therefore, the optimal formulation
is probably explained by the stronger electrostatic interaction of cationic DOX and anionic
A-PLGA in a weakly acidic environment, and less hydrophilic DOX is distributed to the
oil phase in W2 composed of PB in a weakly basic environment during the nanoparticle
formation process.

Recently, because PEI has been used in gene delivery systems due to its transfection
efficiency [34,35], PEI was further added to the DPN formulation to enhance the therapeutic
potency. Two procedures of PEI employed in DPN were compared in this study: (1) direct
addition of PEI to nanoparticle formulation by single procedure; and (2) PEI decoration on
the DPN surface using the electrostatic absorption process. However, positively charged
PEI could occupy the carboxylic acid of A-PLGA, so both A-PLGA and E-PLGA had low
efficiency to encapsulate DOX in this situation (Figure 2c). Therefore, the DPN surface was
decorated through an additional layer of PEI. In addition, PAA, pH-dependent anionic
polyelectrolyte, has been used to prepare a pH-responsive drug delivery system [36,37]. To
prepare DOX-loaded nanoparticles with both endo/lysosomal escape and pH sensitive
property, the present study tried to decorate PEI and PAA on DPN using the LBL self-
assembly technique.
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During the LBL self-assembly process, the pH value of polyelectrolyte solutions
should be considered. The ionization degree of PAA was increased with the increasing
pH value, and the protonated degree of PEI could be enhanced with the decreasing pH
value [38,39]. Furthermore, both alkaline and acid surroundings accelerated the degrada-
tion of PLGA [40]. Due to all of these restrictions, the process of LBL self-assembly should
be applied using a solution of around pH 7.

Due to the penetration of water in nanoparticles enhanced by the high content of
water-soluble drugs [41], hydrophilic DOX in DPN might facilitate PBS penetration into
DPN. DOX was then transported into the water-filled pore network and diffused into the
medium. Again, because acid surrounding could increase the solubility of cationic DOX,
the amount of DOX in pores would increase when DPN was suspended in pH 5.5 PBS. As
a result, all DPN, IDPN, and AIDPN had a higher release percentage at pH 5.5 PBS than
at pH 7.4 PBS (Figure 4). Generally, the environment surrounded tumor tissue is slightly
acidic than physiological conditions. This release profile implied that the acidic condition
can promote DOX released from DPN, IDPN, and AIDPN, with the potential for selective
tumor therapy. In particular, DOX release of AIDPN at pH 5.5 continued to constantly
increase within the 72 h of the experiment until it reached its equilibrium at 63.9%, showing
a significantly higher drug release (39.4%) than the corresponding nanoparticles in the
physiological solution (pH 7.4). The increased DOX release at pH = 5.5 can be attributed to
the higher anionic degree of PAA at pH 7.4 than at pH 5.5 [38,39] with stronger binding
affinity to protonated DOX, which resulted in an approximately 1.6 times higher drug
release from AIDPN at pH = 5.5 compared to that at pH = 7.4. Due to the additional PAA
layer, the release profile of IDPN and AIDPN was significantly different in pH 7.4 PBS
but similar in pH 5.5 PBS (Figure 4). Therefore, AIDPN can be considered the best option
in this study with the lowest DOX release from nanoparticles to reduce the side effect on
normal cells under physiological conditions.

Previous research has demonstrated that the uptake of nanoparticles with a positive
surface charge was higher than that with a negative surface charge in cancer cells [42].
Similarly, IDPN had significantly higher efficiency than DPN and AIDPN in cellular uptake
(Figure 6). However, compared to that of DPN, the higher uptake of IDPN by A549 cells
did not correspond with the higher cytotoxicity at 1 µM concentration (Figure 5), which
may be due to the more DOX release from DPN within the initial four hours (Figure 4).
This indicates the burst effect of DPN could be shielded by the PEI layer on the outside
surface. Additionally, the PAA layer on the IDPN surface further shielded the AIDPN,
possibly contributing to low release and cytotoxicity.

The endo/lysosomal escape of drug is considered to affect the efficiency of drug
cytotoxicity strongly [43]. IDPN was shown to be the most efficient endo/lysosomes escape
in three different types of nanoparticles (Figure 7). This implied that IDPN was entrapped
in cells by endocytosis and would be delivered to cytoplasm rather than degraded in acidic
endo/lysosomes or ejected by lysosome secretion [44,45]. The escape ability of IDPN could
be attributed to PEI, whose buffer capacity was supposed to rupture acid organelles by the
“proton sponge” effect [19–22]. PAA seemed to diminish the escape ability contributed from
PEI due to fewer red spots spread from the yellow region when A549 was incubated with
AIDPN. However, compared to DPN, AIDPN, with the outermost negatively charged PAA
layer, still retained better endo/lysosomal escape ability. Therefore, the cationic/anionic
LBL controlled release nanoparticle, AIDPN, is an ideal formulation in cancer therapy for its
pH-dependent release profile and endo/lysosomal escape ability. In further investigation,
we will deliver AIDPN to animal model to evaluate safety, efficacy, and pharmacokinetics
in vivo. Furthermore, we plan to prepare a lyophilized formulation of AIDPN to dissolve
the problem of not-convenient for commercial application.

5. Conclusions

In summary, based on the optimized formulation of A-PLGA and the W2 phase, three
types of nanoparticles—DPN, IDPN, and AIDPN—were prepared using the PEI/PAA
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LBL technique. DPN showed poor ability in terms of endo/lysosomal escape, and its
undesired high burst release in physiological conditions might result in greater toxicity in
normal cells. IDPN decorated with PEI, compared to DPN, had a slower release rate in
physiological conditions but had higher efficiency in cellular uptake and endo/lysosomal
escape. However, the cationic surface of IDPN might restrict its application in vivo due
to aggregation with serum protein. AIDPN, with the outermost negatively charged PAA
layer, retained endo/lysosomal escape ability and mitigated the risk of aggregation with
serum protein in vivo. In addition, the pH-sensitive PAA modified AIDPN to possess the
best pH-dependent release profile. As a result, AIDPN, with the properties of both PEI
and PAA, was found to be the most suitable cancer therapy amount these three different
nanoparticles.
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