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Abstract: Fire events in buildings can cause losses to human life and important material damage,
therefore a great deal of attention is paid nowadays to fire prevention. Buildings based on steel
structures are especially affected in the event of a fire, due to the important loss of load-bearing
capability when steel is heated at temperatures higher than 500 ◦C. Therefore, one possible method
to mitigate the deleterious effect of fire is to protect steel structures from direct heating by applying
protective coatings. In this paper, the ability of magnesium phosphate cement (MPC), based on
dead burned magnesite and calcium magnesium phosphate cement (CMPC) coatings, to protect a
steel substrate was assessed. CMPCs were obtained by mixing partially calcined dolomite with a
KH2PO4 (MKP) solution, and in some cases, with a setting retarder (borax). The main mineralogical
compounds assessed by X-ray diffraction and electronic microscopy (SEM-EDS) in CMPC are MgO,
CaCO3, and K-struvite (KMgPO4·6H2O). The coatings based on MPC and CMPC, applied to steel
plates, were tested in direct contact with a flame; the coatings of MPC and CMPC without the borax
addition prevented the temperature increase of a metal substrate above 500 ◦C. No exfoliation of
coatings (MPC and CMPC without borax addition) was noticed during the entire period of the test
(45 min).

Keywords: fire protection; coating; phosphate cement; dead burned magnesite; partially calcined
dolomite; steel

1. Introduction

Fire events in buildings can cause losses to human life and important material damages.
Therefore, a great deal of attention is paid to the fire safety of buildings during the design
and execution of constructions. Fire prevention methods include the use of active and
passive fire protections along with increased fire prevention awareness [1]. Passive fire
protection is designed to limit fires when they occur in buildings, and can consist of, among
other methods, the use of fire-resisting construction materials or the modification of the
usual construction materials in order to improve their fire resistance. This type of protection
is particularly important for buildings based on metal-framed structures, due to the loss
of steel’s load-bearing capability when heated at temperatures higher than 500 ◦C [1,2].
Therefore, this type of structure should be protected from direct heating in the event of
a fire, by applying protective coatings. The use of coatings based on Portland cement
(mortars or concretes) to protect the steel columns and beams is an attractive option due to
the ease of application and low cost of the material; nevertheless, the use of these types of
coatings also has serious limitations, one of the most important being their tendency to
crack and dislocate at higher temperatures [1].

Among other types of inorganic binders used for the preparation of fire-protective
coatings or composites is magnesium phosphate cement (MPC). This type of cement
is obtained by mixing dead burnt magnesia with phosphoric acid or phosphate salts.
Compared with Portland cement, MPC has numerous superior properties such as a short
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setting time, rapid development of mechanical strength, strong bonding strength to various
substrates, and very good resistance to high temperatures. Hence, MPC was used to replace
epoxy resins in the fabrication of fiber-reinforced polymer composites (FRP) with improved
fire-resistance [3] or for the preparation of fire-retarding coatings applied on plywood [4,5].

Calcium magnesium phosphate cements (CMPC) can be obtained if magnesia is
replaced with calcined dolomite. The conditions of the thermal treatment applied to natural
dolomite have an important influence on the properties of the corresponding CMPCs.

If the calcination of natural dolomite is performed in air at a relatively low temperature
(1200 ◦C), the reactivity of the resulting oxides (CaO and MgO) is very high, thus when
mixed with a phosphate (KH2PO4) solution, an important increase in system temperature
and expansion of the paste is recorded [6]. The increase in the calcination temperature
to 1400 ◦C determines a reduction of the CaO and MgO reactivity, thus it is possible to
obtain CMPC cement with improved mechanical properties when mixed with a KH2PO4
solution at an adequate dosage [6]. Another alternative to reduce the reactivity of CaO
and MgO oxides, while keeping the thermal temperature at 1200–1300 ◦C, is to calcinate a
mixture of natural dolomite and silica [6,7] or dolomite with bauxite and gypsum [8]. The
phosphate cement based on this type of calcined dolomite and phosphate salts (NH4H2PO4
or KH2PO4) exhibits a steady strength increase vs. time and adequate volume stability.

Chong et al. [9] reported that the addition of limestone into the MPCs based on
dead burnt magnesia and KH2PO4 determines a decrease in the mechanical strengths,
irrespective of the curing medium (air or water). This is correlated with a significantly
negative influence exerted by limestone addition on K-struvite crystal growth and its
main characteristics.

Baghriche et al. [10] prepared MPC cements using partially calcined dolomite and
NH4H2PO4, with/without cement kiln dust addition (0–30 wt.%). The calcination of
dolomite was performed at 720 ◦C, thus the resultant material contained mainly MgO and
CaCO3. The authors reported that the addition of cement kiln dust up to 20 wt.% reduced
the apparent porosity of this type of MPC paste and improved the mechanical properties
and bond strength of old concrete.

The present study assesses the possibility of preparing fire-resistant coatings for
structural steel, starting with KH2PO4 and dead burned magnesia or dolomite calcined
at 750 ◦C. To the best of our knowledge, the preparation and characterization of CMPC
fire-protective coatings based on partially calcined dolomite is reported for the first time in
this study.

2. Materials and Methods

The materials used in this study were:

• Magnesite calcined at 1500 ◦C (M)—industrial product (Tremag, Tulcea, Romania) [6,11];
• Dolomite calcined at 750 ◦C for 3 h (D750); the natural dolomite (Rodbungrup, Bucharest,

Romania), submitted to this thermal treatment, had a content of 47% CaCO3 and 37.5%
MgCO3 [6];

• KH2PO4 (MKP)—chemical reagent (Sigma-Aldrich, Darmstadt, Germany);
• Sodium tetraborate decahydrate (Na2B4O7·10H2O)—chemical reagent (Sigma-Aldrich,

Darmstadt, Germany);
• Tap water.

The compositions of phosphate cement are presented in Table 1.
MKP and sodium tetraborate decahydrate (for certain compositions) were mixed

with water, followed by the addition of calcined magnesite (M) or calcined dolomite
(D750). The resulting paste was poured in molds or used to cover metals plates, as will be
further presented.
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Table 1. Compositions of studied phosphate cement.

Sample Calcined Magnesite
(M) %wt.

Calcined Dolomite
(D) %wt.

KH2PO4 (MKP)
% wt.

Na2B4O7·10H2O
* (B) %wt.

Water to Solid **
Ratio (wt.)

M_MKP_B 66.7 - 33.3 5 0.23

D750_MKP_B - 66.7 33.3 5 0.23 and 0.3

D750_MKP - 66.7 33.3 - 0.23 and 0.3

* calculated with reference to M (or D750) +MKP mixture; ** calculated considering also the water brought in the system by sodium
tetraborate decahydrate.

The X-ray diffraction (XRD) patterns were obtained in a 2θ range of 5–80, with a Shi-
madzu diffractometer XRD 6000 (Shimadzu, Kyoto, Japan), CuKα (λ = 1.5406 Ȧ) radiation;
the scanning speed was 2 ◦/min.

Differential thermal analysis (DTA) and thermogravimetry (TG) analysis were per-
formed in air, with a heating rate of 10 ◦C/min using a differential thermal analyzer
Shimadzu DTG-TA 51H (Shimadzu, Kyoto, Japan).

The microstructure of the studied materials was assessed using a Quanta Inspect F
scanning electron microscope (1.2 nm resolution-Thermo Fisher—former FEI, Eindhoven,
Nederland) with an energy-dispersive spectrometer (SEM-EDS).

The compressive strengths were assessed on paste specimens (prisms with 60 mm ×
15 mm × 15 mm—length × width × height); the pastes were hardened the first day in the
mold, and afterwards demolded in the air at 20 ± 2 ◦C for different periods of time (1, 7,
and 28 days). The compressive strength was determined using a testing machine (Matest,
Treviolo, Italy); the loading was performed at a rate of 5 mm/minute, and a minimum of
four values, assessed on specimens cured in similar conditions, were recorded.

The tensile adhesion strength was determined on phosphate cement pastes applied
to a metal substrate. A layer of cement paste (85 mm × 60 mm × 10 mm—length ×
width × height) was applied to a metal (steel) plate (previously sanded and degreased).
On the top of this layer, a ceramic plate was placed (50 mm × 50 mm × 5 mm—length
× width × height), and a supplementary mass (2000 g) was placed on the top, remained
for 5 s, and then removed (Figure 1a). The specimens were cured in the air at 20 ± 2 ◦C
for 1 day and 27 days. After this, a metallic pull-out head (cube—50 mm) was glued to
the ceramic plate with an epoxy binder and cured for 14 h in air. The tensile adhesion
strength was assessed with HZP 12 FORM +TEST machine (FORM + TEST Prüfsysteme,
Riedlingen, Germany) for a direct-pull tensile force test by applying a force at a constant
rate of 100 N/s (Figure 1b).
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Figure 1. Pull-out test: (a) Preparation of test specimens; (b) test setup.
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In order to compare this property of the studied phosphate cement with that of
Portland cement (CEM I), a cement paste was prepared by mixing the cement with the
amount of water corresponding to a water-to-cement ratio of 0.3 and applied to the metallic
plate as previously presented.

The fire test was performed on steel plates (50 mm × 50 mm × 2.7 mm—length ×
width × height) to which a layer of phosphate cement paste was applied by tape casting
(blading) and cured in the air at 20 ± 2 ◦C for 28 days. The plates were set vertically in
a holder and the face covered with the phosphate cement layer was put in direct contact
with a flame (propane burner) [12]. The temperature was assessed on the opposite side
(back side) of the plate with a pyrometer. The accuracy of the pyrometer was ±1% from
the recoded value +1 ◦C [12].

The mass loss was calculated with the following formula:

∆m= [(mf − mi)/mi] × 100 (%) (1)

where:

mi = the coating mass before the test (g).
mf = the coating mass after the test (g).

3. Results

The mineralogic compositions of calcined magnesite, natural dolomite, and dolomite
thermally treated at 750 ◦C were assessed by X-ray diffraction (XRD). The XRD patterns
presented in Figure 2 show the presence of MgO in calcined magnesite, CaCO3.MgCO3 and
CaCO3 in natural dolomite, and MgO and CaCO3 in the dolomite calcined at 750 ◦C. As
expected, the thermal treatment at this relatively low temperature determined the partial de-
composition of dolomite (CaCO3.MgCO3) with the formation of MgO and CaCO3 [13–15].
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Figure 2. XRD patterns of (a) natural dolomite and dolomite calcined at 750 ◦C for 3 h (D750); (b) calcined magnesite.

When calcined magnesite is mixed with a KH2PO4 solution, the main product assessed
by XRD is K-struvite–KMgPO4·6H2O [11]. This compound is essential for the development
of mechanical strength, as can be seen from the data presented in Figure 3. The phosphate
cement based on calcined magnesite (M_MKP_B) has the highest values of compressive
strengths for the studied time period. The compressive strengths of the phosphate cement
based on calcined dolomite (D750) are smaller as compared to those of M_MKP_B, mainly
due to the lower amount of MgO available for the formation of K-struvite. The use of a
retarder (borax) improves the compressive strengths of phosphate cement based on D750,
due to the increase in the setting time, and consequently, the maintenance of adequate
workability of fresh paste for a longer time; also, the decrease in water dosage (from a
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water-to-solid ratio of 0.3 to a water-to-solid ratio of 0.23) further improves the compressive
strength, most probably due to the reduction of porosity.
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Figure 3. Compressive strengths vs. time for phosphate cement pastes based on calcined magnesite
(M) or dolomite calcined at 750 ◦C for 3 h (D750), with water-to-solid ratios (w/s) of 0.23 and 0.3.

The XRD patterns of the phosphate cement based on calcined dolomite (D750_MKP_B)
after 1 day of curing (Figure 4) show the presence of K-struvite along with CaCO3 and MgO.
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Figure 4. XRD patterns of phosphate cement based on calcined dolomite (D750_MKP_B) with a
water-to-solid ratio of 0.23.

The electronic microscopy analyses presented in Figure 5 confirm this composition for
the phosphate cement based on calcined dolomite; the BSE image presented in Figure 5a
shows the presence of big grains intermixed with small plate-like particles. The EDS
analysis of this area shows the presence of calcium along with magnesium, potassium,
and phosphorous. The atomic ratio of Mg:P:K = 9.63:5.86:5.54 suggests the presence of
K-struvite along with CaCO3. The elemental maps presented in Figure 5c–f confirm the
presence of Ca mainly in the big grains and Mg, K, and P in the smaller plate-like particles
with a morphology specific to K-struvite i.e., triangular prisms [16].
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The adhesion of the studied phosphate cement to metal/ceramic substrates was also
assessed. The main results are presented in Table 2. As can be observed, the magnesium
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phosphate cement (M_MKP_B) has the highest adhesion to the metal substrate (failure
occurred between the cement paste and ceramic tile glued to the pull-out head). The
phosphate cement based on D750, with/without the borax addition, showed good adhesion
to the metal substrate after 2 days of hardening. The adhesion strength to the metal
substrate of D750_MKP_B and D750_MKP is higher as compared with the adhesion strength
to the metal substrate of Portland cement (CEM I) paste (PC paste). The higher value of
adhesion strength to the ceramic plate recorded after 2 days for the specimen with borax
(D750_MKP_B) as compared with the one without (D750_MKP) could be due to initially
better workability of the first paste. For longer curing periods (28 days), the adhesion to the
metal substrate of the phosphate cement based on calcined dolomite decreases. Therefore,
the fire test was performed on specimens cured for 28 days in similar conditions.

Table 2. Assessment of adhesion strength to various substrates after 2 and 28 days of hardening; phosphate cement pastes
were prepared with a water-to-solid ratio = 0.23 and PC paste was prepared with a water-to-solid ratio = 0.3.

Sample
2 Days 28 Days

Photo Failure Adhesion
Strength (N/mm2) Failure Adhesion

Strength (N/mm2)

M_MKP_B
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In order to evaluate the behavior of these coatings when put in direct contact with a
flame, the back-side temperature of the metal plate covered with the studied cement pastes
and the corresponding mass losses were recorded. As expected, the D750_MKP_B coating
prepared with a lower water-to-solid ratio (0.23) had a high thickness i.e., 2.36 mm (due to
a high initial viscosity of the paste); therefore, we also prepared a coating with a higher
water-to-solid ratio i.e., 0.3 (D750_MKP_B_0.3). The mass losses (Figure 6) are mainly due
to the water loss from K-struvite [16] as well as the decarbonization of calcite, as will be
further presented.
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Figure 6. Film thickness (points) and mass loss—∆m (columns) after fire test for the studied coatings
prepared with different water-to-solid ratios (0.3 and 0.23).

The coating based on calcined dolomite with the borax addition (D750_MKP_B) shows
important delamination from the metallic support during the fire test (Figure 7). For these
specimens, the coating failed from the surface of the metallic plate after approximately
2 min of contact with the flame. A possible explanation for this behavior could be the
formation of a lower amount of K-struvite (due to the delay determined by the borax
addition) as well as the reaction of CaCO3 with KH2PO4 still present in the system with a
negative influence on the mechanical properties [9].

A much better behavior was observed for the phosphate cement based on dolomite
without the borax addition (D750_MKP_0.3) when put in direct contact with the flame i.e.,
the coating adhered to the surface of the metal plate during the entire test period (45 min)
and maintained a back-side temperature below 500 ◦C (the temperature considered critical
for this type of structure [1,12])—see Figure 8. Similarly good behavior during the flame test
was noticed for the coating based on calcined magnesite M_MKP_B_0.23 (Figure 8), although
in one corner of the plate, one can notice the presence fine cracks that formed during the
flame test (Figure 9a). Still, it is worth noting that the zone that was in direct contact with
the flame (dotted circle in Figure 9a) presented no delamination and was crack-free.

The XRD patterns of the coating before the flame test show the presence of K-struvite
together with MgO—Figure 9b. The XRD patterns of the material sampled after the direct
flame test (from the dotted circle corresponding to the contact zone with the flame) shows
certain compositional changes i.e., in the 2θ range 26–30 (see insert) new peaks specific
to KMgPO4 [16] are also identified. This suggests that the main process that takes place
during contact with the flame is the loss of water from K-struvite (KMgPO4·6H2O) with
KMgPO4 formation; the identification in the XRD patterns of M_MKP_B, after the flame
test, of the peaks specific to K-struvite (with low intensities) can be due to an impurification
of the specimen with material from layers adjacent to the zone considered to be in direct
contact with the flame.
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Figure 7. The visual aspect of metal plates with phosphate cement coatings (D750_MKP_B, with
water-to-solid ratios of 0.23 and 0.3) and their behavior during the direct flame test.
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Figure 9. The visual aspect of M_MKP_B_0.23 coating after direct flame test (a) and the XRD patterns of the coating before
and after the test (b).

The visual aspect of the coating based on calcined dolomite (D750_MKP_0.3) after
the flame test (Figure 10a) confirms its good behavior (no visible cracks, no exfoliation).
The XRD patterns of the coating before the flame test show the presence of the main
crystalline phases of CaCO3, KMgPO4·6H2O, and MgO; after the flame test, new peaks
attributed to KMgPO4, Ca5(PO4)3(OH) (HAP), and CaO are also assessed in the XRD
patterns (Figure 10b). Based on these results correlated with the literature [17–20] one
can also consider the formation of HAP (or apatite phases [20]) with a low crystallinity
degree in the reaction of the phosphate solution with calcium carbonate (at longer curing
periods—up to 28 days) and its crystallization at the increase in temperature (during the
flame test).
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Figure 10. The visual aspect of D750_MKP_0.3 coating after direct flame test (a) and the XRD patterns of the coating before
and after the test (b).

DTA and TG analyses of M_MKP_B_0.23 and D750_MKP_0.3 are presented in Figure 11.
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Figure 11. TG and DTA curves of M_MKP_B_0.23 and D750_MKP_0.3.

On the DTA curve of magnesium phosphate cement (M_MKP_B_0.23), one can assess
an important endo effect with the maximum at 109 ◦C, for which the weight loss assessed
on the TG curve is 18.21%. According to the literature [16], this endo effect is determined by
the water loss from KMgPO4·6H2O. On the DTA curve of the CMPC (D750_MKP_0.3), one
can assess the endo effect with the maximum at 130 ◦C with a corresponding weight loss of
17.3% (on TG) and a second endo effect with the maximum at 765◦C (with a corresponding
weight loss on TG curve of 12.2%), attributed to the decarbonation of CaCO3. The calculated
heat for the effect(s) present on the DTA curve, between 30 and 1000 ◦C, was −2169 J/g for
M_MKP_B_0.23 and −3105 J/g for D750_MKP_0.3, which suggest a good ability to prevent
the heat increase of the metal plate for both studied cements.

4. Conclusions

Based on the experimental results obtained in this study, the following conclusions
can be formulated:

• The partial calcination of dolomite at a relatively low temperature (750 ◦C) permits
the obtention of a mixture of MgO and CaCO3. The calcium magnesium phosphate
cements (CMPC) resulting when partially calcined dolomite is mixed with a KH2PO4
solution contains the main crystalline compounds MgO, CaCO3, and K-struvite.

• The adhesion strength of magnesium phosphate cement (MPC) paste (based on dead
burned magnesite) to a metal substrate is higher as compared to that of a ceramic
substrate. The calcium phosphate cements (based on partially calcined dolomite) had
better adhesive strength to the metal substrate as compared with the Portland cement
paste after a short period of curing (2 days).

• The coatings based on MPC and CMPC, applied to a metal plate, were tested in
direct contact with flame; the coatings of MPC and CMPC without the borax addition
prevented the temperature increase of the metal substrate over 500 ◦C (considered
critical for steel strength); moreover, during the entire period of the test (45 min), no
exfoliation was noticed i.e., the coatings had good adhesion to the metal substrate.

• The results are promising but the study should be extended, also considering various
additions to MPC and CMPC, aiming to improve the workability in fresh state as well
as the adhesion to a metal substrate or/and fire resistance of these coatings.
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