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Abstract

G protein-coupled receptors (GPCRs) are a superfamily of seven transmembrane-spanning proteins involved in a wide array of
physiological functions and are the most common targets of pharmaceuticals. This study aims to identify a cohort or clique of
positions that share high mutual information. Using a multiple sequence alignment of the transmembrane (TM) domains, we
calculated the mutual information between all inter-TM pairs of aligned positions and ranked the pairs by mutual information.
A mutual information graph was constructed with vertices that corresponded to TM positions and edges between vertices
were drawn if the mutual information exceeded a threshold of statistical significance. Positions with high degree (i.e. had
significant mutual information with a large number of other positions) were found to line a well defined inter-TM ligand
binding cavity for class A as well as class C GPCRs. Although the natural ligands of class C receptors bind to their extracellular N-
terminal domains, the possibility of modulating their activity through ligands that bind to their helical bundle has been
reported. Such positions were not found for class B GPCRs, in agreement with the observation that there are not known
ligands that bind within their TM helical bundle. All identified key positions formed a clique within the MI graph of interest. For
a subset of class A receptors we also considered the alignment of a portion of the second extracellular loop, and found that the
two positions adjacent to the conserved Cys that bridges the loop with the TM3 qualified as key positions. Our algorithm may
be useful for localizing topologically conserved regions in other protein families.
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Introduction

G protein-coupled receptors (GPCRs), with an estimated 1000

members [1], are the largest superfamily of membrane proteins in

the human genome. They are critical for numerous vital cellular

functions and their signaling governs various physiological and

pathological processes. For these reasons, GPCRs are the most

common targets for pharmacological intervention [2]. This study

aims to identify a cohort or clique of non-conserved, yet correlated

positions in GPCRs, common to the superfamily.

On the basis of whole sequence comparison, Fredriksson and

coworkers classified human GPCRs into five distinct subfamilies: the

rhodopsin family (R, also known as class A), the adhesion and secretin

families (A and S, also known as class B), the glutamate family (G, also

known as class C), and the frizzled/taste family (F, also known as class

F) [3]. Structurally, GPCRs consist of a single polypeptide chain that

crosses the plasma membrane seven times, with seven alpha-helical

transmembrane domains (7-TMs) connected by three intracellular

and three extracellular loops. The N-terminus is exterior to the cell,

while the C-terminus is within the cytoplasm [4].

GPCR crystal structures, available for rhodopsin and two

subtypes of the b-adrenergic receptors (b-ARs), and computational

models supported by biochemical and molecular pharmacological

data suggest the presence of a common binding cavity, located

within the TMs toward the extracellular side of the helical bundle

(7-TM cavity), considered to house the orthosteric ligand binding

site for most receptors [5–15]. The recent publication of the crystal

structure of the Adenosine A2A receptor also supports the presence

of a common binding cavity [16].

It is hypothesized that through gene duplications and

subsequent mutations, common ancestor proteins gave rise to

families of homologous proteins [17]. For paralogous protein

superfamilies, such as the GPCR superfamily undertaken in our

study, the germ of the function of novel proteins is usually present

in its ancestor(s), and new proteins with novel functions arise

mainly by the modulation of existing ones. In the course of this

evolutionary process, some of the amino acid residues involved in

the structure or function of proteins remained relatively conserved.

Mutations at other positions, possibly followed by subsequent

mutations elsewhere in the protein either preserved (or restored)

the original protein function or gave rise to a newly acquired one.

In this context, the identification of correlated residue positions in

multi-sequence alignments (MSAs) can help to identify biologically

relevant sets of residues and the functional surfaces that they form

in protein superfamilies. For instance, in previous studies involving

GPCRs, Oliveira and coworkers identified networks of correlated

mutations consisting of positions involved in ligand binding, G

protein coupling, and activation [18], while IJzerman and
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coworkers carried out an independent two-entropy analysis to

determine the potential function of TM positions [19]. In the

absence of comprehensive structural information from the entire

GPCR superfamily, bioinformatic algorithms (such as those just

mentioned) are used to predict specificity determining positions or

functionally important positions solely from their sequences.

We propose a generic algorithm that identifies a cohort of

correlated positions on the basis of mutual information and graph

theory from any MSA of AA residues (this algorithm can be

modified to incorporate nucleotide sequences). The algorithm does

not incorporate any structural information involving positional

specificity or physicochemical interactions amongst the residues

involved. We focused on the 7-TMs from GPCRs because the

MSA is devoid of gaps. Experimental evidence has also

demonstrated that residues located in the second extracellular

loop (EL2) constitute an integral part of the ligand-binding cavity

of class A GPCRs and may play a role in receptor activation [5–

7,9,20–28]. Thus, for a subset of class A, we added to the MSA of

the 7-TMs the alignment of 5 contiguous EL2 residues.

Our algorithm, described in a flowchart in Figure 1, involves the

pre-selection of pairs of aligned positions on the basis of the mutual

information (MI) between all possible inter-TM position pairs. The

MI between two positions (or columns) within an MSA, represents

the reduction in uncertainty of the residue at one position when

the residue at the other position (for the corresponding sequence) is

specified [29,30]. The higher the MI value the greater the

correlation or statistical dependence between the residues at the

two positions. There exists a range of methods to identify

correlated position pairs within an MSA using MI [31–57]. It

has also been widely reported that positions sharing high MI with

other positions are generally located within functionally important

surfaces such as the ligand-binding sites and form a network or

clique [31–38,40–47,49–55,57]. For instance, from amongst the

previously cited works, it has been specifically and independently

reported that residues which exhibit correlated mutations in

tandem with other residues are frequently located in protein active

sites and binding interfaces [38,51,52].

However, to our knowledge there has not been a quantitative

attempt to use concepts of graph theory to identify and

characterize a densely or fully connected network (i.e. clique) of

high MI position pairs in terms of a significantly high number of

high MI connections (degree) each position shares with other

positions. The novelty of our algorithm is in the extension of this

MI approach by constructing abstract MI graphs, where positions

were represented by vertices, and edges between vertices existed if

the MI between that pair of vertices exceeded a significance

threshold. The problem of clique identification in a graph is NP

complete. To reduce the computational complexity, we focused on

vertices in the graph that had a statistically significant degree, i.e.

high connectivity with other vertices.

Our goal was to identify positions within the TMs that possess

high MI with a large number of other positions on non-identical

TMs. Given that MI can be influenced by random or phylogenetic

sources, we also repeated our analysis with modified MI measures

[37,38,50]. We found that for class A and C receptors, the vertices

on the graph with high degree form a clique that correspond to

positions located within the 7-TM cavity and line the experimen-

tally determined or computationally proposed ligand binding sites,

suggesting their coevolution and their ability of altering an

essential component of the receptor function, i.e. ligand recogni-

tion. We also found that high degree vertices on the graph for class

B receptors are not located within the 7-TM cavity in accordance

with the fact that ligands that bind to their 7-TM helical bundle

have not been identified. As mentioned, for a subset of class A

receptors we also considered the alignment of a portion of the

second extracellular loop (EL2), two residues of which qualified as

key positions.

Results

Data set
We performed our analyses using a publicly available MSA

relative to 7-TMs only, due to Rognan and colleagues (see

Methods for details) [15]. The set contains 287, 49 and 22

sequences from classes A, B, and C GPCRs, respectively. This

MSA primarily comprises receptors for which the natural ligand

binding site is known or thought to be located within the 7-TM

cavity, but also includes receptors the natural ligands of which

bind to large N-terminal soluble ectodomains, such as the

glycoprotein hormone receptor (GPHR) family of class A, and

virtually all the members of class B and C GPCRs.

Mutual Information
The MI for all inter-TM ordered pairs of positions was

computed. To eliminate potential nearest neighbor interaction/

correlation amongst residues within the same TMs, we did not

include the intra-TM position pairs. We used MI as defined in

Equation 1 of Methods section. This statistic is a function of the

independent probabilities p(x) and p(y) for obtaining AA residues x

and y at specific positions (in the MSA), as well as their joint

Figure 1. Algorithm. The flowchart of the algorithm used to establish
candidate positions.
doi:10.1371/journal.pone.0004681.g001

Correlated Positions for GPCRs
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probabilities p(x,y). The computed MI values are displayed on a 2D

grid plot displaying the ordered pair of positions (j,k) on the

vertical and horizontal axis respectively (only pairs with j,k are

displayed). The inter-TM MI for class A receptors is shown in

Figure 2. The asterisks mark the highly conserved positions named

1.50, 2.50, 3.50, 4.50, 5.50, 6.50 and 7.50 according to the

Ballesteros and Weinstein [58] indexing scheme. The dark violet/

blue striped patterns, corresponding to very low MI, demark the

locations of highly conserved TM positions. For positions that are

much more conserved, the joint probability between them and

other less conserved positions is approximately equal to the

product of the individual probabilities of the latter position,

resulting in low MI (see Equation 1 in Methods). Nevertheless,

such well conserved positions have been shown to be important in

the structure and function of the receptors [4].

The probabilities used to compute the MI in Figure 2 were

estimated from frequencies of AA appearances at each position or

position pair. It is well known that estimating MI from a finite set

of sequences will result in a finite-size error [56,59]. As an

example, for completely random sequences with complete

statistical independence between positions, the theoretical MI

between any two positions is zero because p x,yð Þ~p xð Þp yð Þ.
However, for a finite number of sequences S, it can be shown that

the estimate for MI can be nonzero and scales as MI ,log [1/S]

(See Methods). Thus, to assess the significance of our estimated MI

we compared it to a randomized/shuffled surrogate set with the

same number of sequences, as described by Mirny and Gelfand

[51]. By shuffling residues among the sequences at the same MSA

alignment position, simulated surrogate sets that preserved the

residue probabilities p(x) and p(y) but randomized the joint

probabilities p(x,y) were obtained (i.e. the joint entropy was

maximized by shuffling). As a null hypothesis, we attributed non-

zero MI values to arise from finite-size errors as represented by the

surrogate simulations. The alternate hypothesis was that pairs of

positions with high MI values represented true correlations. These

correlations could possibly be due to coevolving residues,

correlated mutations, phylogenetic noise, a biased dataset, or a

combination of these factors [32]. The probability density function

(PDF) representing the MI values for classes A, B, and C along

with the surrogate set of randomized sequences is shown in

Figure 3. The figures show that the PDFs are highly skewed and

finite-size errors can be quite large (as evidenced by the surrogate

set PDFs) especially for the smaller datasets.

Figure 2. Mutual information values. Mutual information MI(j,k)
values of all inter-TM position pairs for class A.
doi:10.1371/journal.pone.0004681.g002

Figure 3. Probability density function. Probability density func-
tions of MI(j,k) values for classes A, B and C (solid line) and for an
ensemble of surrogate sets of random TMs (dotted line).
doi:10.1371/journal.pone.0004681.g003

Correlated Positions for GPCRs
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MI Graph
We constructed a MI graph with N vertices that represented

TM positions and the M edges that represented highly significant

MI values with respect to the surrogate set. Given that MI is a

pair-wise measure, we used two elementary concepts from graph

theory to construct the graph and uncover a network of correlated

positions. We used closeness centrality to pre-select position pairs to

define the edges of a MI graph and degree centrality to identify highly

connected positions in the MI graph. We utilize two elementary

graph theoretic measures to analyze MI graphs. The MI values

that were significantly larger than those of the random surrogate

set of sequences were selected to construct the MI graph. Since

only edges with high MI were included, the resulting MI graph is

not complete (i.e. every vertex is not connected to every other

vertex). A range of P values for assigning the significance level,

denoted by PM, resulted in different sized graphs. For classes B and

C, varying PM (given by 0.010,PM,0.015) resulted in MI graphs

with the number of edges M ranging from 300 to 700. For class A,

the same range of M was obtained for PM that was an order of

magnitude smaller as evident in Figure 3. Since a given value of

PM corresponds to a unique M, we use both values interchange-

ably when describing the MI graph.

A representative MI graph for class A with 100 edges is shown

in Figure 4a. Here vertices of the MI graph are arranged on a

circular ring in the order of the corresponding position location on

the 7-TMs. Lines connecting the vertices represent edges

indicating significant MI between the position pairs. From the

graph, one can clearly see that some vertices have many more

edges than other vertices (i.e. higher degree) when contrasted with

a graph having identical M and N but obtained via random

connections (Figure 4b). In Figure 5, the distribution for the

number of vertices with given degree for the MI graphs (using

M = 600) and a set of random graphs having identical number of

vertices and edges is shown. The vertical line corresponds to

PD,0.010, (the choice of which is motivated later) implying that

vertices with degree exceeding 27, 27 and 22 edges for classes A, B

and C respectively are significant to this P value.

Key positions
We hypothesized that the non-conserved correlated positions,

called key positions, corresponded to vertices with high degree (i.e.

have a large number of edges incident to them) and identified the

significant high degree positions for the three classes of GPCRs.

Statistical significance was measured in terms of a P value (PD)

with respect to a simulated set of over twenty thousand random

graphs with identical M and N. Since the degree distribution

evolved by changing M, a different choice of PM and PD resulted in

a different cohort of high degree vertices, which we called

candidate positions.

To decide upon a single clique or cohort of key positions, we

used an additional criterion of invariance to changes in PM, PD

and a leave-one-out analysis for sequences. For a range of M

values (50#M#2050 in steps of 50), we found that for PD,0.010

the candidate positions were mostly invariant to the leave-one-out

analysis depending on PM. As M increased, the number of

candidate positions also increased but not all of the candidate

positions were invariant (i.e. positions found for a lower value of M

were not necessarily found for a higher value of M). For M,500,

none of the three classes had an invariant cohort. For class A, an

invariant cohort existed for M = 500, 550, 600 and 750 (and none

for M = 650, 700, or from M = 800 up to M = 1400). The

minimum value of M for which a stable and invariant cohort of

candidate positions consistently appeared in classes A, B and C

was M = 600 and these positions were selected as the cohort of key

positions. Rank-wise, these pairs were among the top 4% of the

inter-TM MI pairs. Using PD = 0.010 and M = 600, resulted in 10

key positions for class A and 9 positions for classes B and C, which

are listed in Table 1. All the key positions were connected to all the

other key positions (within the graph of interest) so the key

positions obtained from all three classes form a clique.

The key positions of class A GPCRs, calculated on the basis of

the alignment of the 7-TMs, are visualized in Figure 6 in the 3D

crystallographic structures of rhodopsin (panel a), the b2-AR (panel

b) and the b1-AR (panel c). Table 2 reports all residues in the 7-

TMs of rhodopsin, the b2-AR and the adenosine A2A receptor that

Figure 4. Mutual information graphs. (a) Class A MI graph for 100 edges with the highest MI. Solid black vertices are the 10 key positions. (b)
Example random graph with 100 edges.
doi:10.1371/journal.pone.0004681.g004

Correlated Positions for GPCRs
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are in contact with the co-crystallized ligand (underlined entries)

and all the residues predicted in this study as key positions

(denoted in bold and marked with an X). The table also reports the

MI data relative to the listed residues. As evident from Figure 6

and Table 2, the cohort of key positions resulting from the analysis

of class A receptors consists of residues that are all located in the

exofacial 7-TM-binding cavity and that, with two notable

exceptions (i.e. positions 4.60 and 5.35), closely surround the

synthetic inverse agonists and antagonists co-crystallized with the

b-ARs and the adenosine A2A receptor, and the natural inverse

agonist 11-cis-retinal covalently bound to rhodopsin. In particular,

with the exceptions of P4.60 and N5.35, all of the residues at the

key positions establish direct contacts with carazolol in the b2-AR.

The key positions 4.60 and 5.35 are located at the C-terminal end

of TM4 and the N-terminal end of TM5, respectively, and can be

regarded as two hinges connecting EL2 with TM4 and TM5. We

argue that the biological significance of these residues could be

linked to their role in the proposed functionally relevant ligand-

induced conformational changes of EL2 leading to receptor

activation, rather than to interactions with ligands [21,28]. In the

crystal structure of rhodopsin, residues at three additional key

positions, namely V5.39, A6.55, and M7.35, are not in direct

contact with the ligand. However, these residues are located in

proximity to retinal and are in direct contact with three (in the case

Figure 5. Degree distributions. Cumulative degree distribution
function for class A, B and C MI graph (solid line) and simulated random
graphs (dotted line). Degree values higher than the vertical line have
PD,0.010.
doi:10.1371/journal.pone.0004681.g005

Table 1. Identified key positions (Ballesteros-Weinstein index)
for class A (exclusively involving the 7-TMs as well as the EL2)
and for the 7-TMs from classes B and C.

class A class A w/EL2 class B class C

TM1 1.33

1.36

TM2 2.38

2.54

2.62

2.67

TM3 3.22

3.26

3.29 3.29

3.32 3.32

3.33 3.33

TM4 4.41

4.60 4.60

4.61

EL2 EL2.49

EL2.51

TM5 5.35 5.35

5.38

5.39 5.39

5.42 5.42 5.42

5.43

5.44

TM6 6.30

6.33

6.55 6.55

TM7 7.35 7.35

7.36

7.39 7.39 7.39

7.40

doi:10.1371/journal.pone.0004681.t001
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of M7.35) or four (in the case of V5.39 and A6.55) residues that

establish contacts with it, and thus can be considered an integral

part of the binding cavity. In the crystal structure of the A2A

receptor, besides the two hinges of EL2, there are two additional

key positions that are not in direct contact with the ligand, namely,

A3.28 and V5.39. Also in this case, these residues are in direct

contact with residues that, in turn, establish fundamental

interactions with the ligand, namely F(EL2.52) and N(6.55). These

data demonstrate that our key positions identify very well the

binding pockets of all four crystallized receptors.

Among the key positions indicated in Figure 6, particularly

important in the b2-AR-carazolol interactions are positions D3.32

and N7.39, which coordinate the positively charged amino group

of carazolol, and S5.42, which coordinates its aromatic amine.

These residues are maintained to establish fundamental interac-

tions also with the natural agonists epinephrine and norepineph-

rine [60–62]. In rhodopsin, the side chain of positions G3.29,

A3.32, T3.33, and A7.39 surround the polyene chain of retinal,

with T3.33 contributing to the position of the C9-methyl group,

while M5.42 interacts with the b-ionone ring [5].

Residues located at the key positions identified in this work,

have been experimentally demonstrated to be implicated in ligand

recognition in several systems, including, among many others,

adenosine, serotonin, P2Y, and free fatty acid receptors [20,28,63–

66]. Our analysis also included the sequences of the class A

receptors which are naturally activated by large peptides that bind

to their N-termini, such as glycoprotein hormone receptors

(GPHRs). Mutagenesis data and chemical modification of the

ligands demonstrated that, as supported by our analysis, also the

activity of these receptors can be modulated through synthetic low

molecular weight compounds that allosterically interact with the 7-

TM binding cavity [67–69].

It was also found that for class C receptors the key positions

were located within the exofacial 7-TM cavity, in proximity to the

orthosteric binding site crystallographically identified for rhodop-

sin and the b-ARs (Figure 7). Although the natural ligands of class

C receptors bind to their N-terminal domains, a number of

articles, in agreement with our results, have reported the possibility

of allosterically modulating their activity through ligands that bind

to the 7-TM cavity [70–76]. While for class A receptors the key

positions are concentrated in a region between TM3, TM5, TM6,

and TM7, for class C receptors they are more widely spread out

throughout the whole upper portion of the helical bundle,

encompassing residues from TM1 too. Molecular modeling and

mutagenesis data have consistently suggested the presence of two

adjacent potential sites of binding for different classes of allosteric

modulators of the human Ca2+ receptor – a member of class C –

located within the upper part of the helical bundle. As shown in

Figure 7, all the identified key positions fall within the two adjacent

sites proposed in the published in silico model [71].

The key positions identified from the analysis of class B

receptors, whose natural ligands also bind extracellularly through

the N-terminal domain, are not located in a common binding

cavity but concentrated in two regions (Figure 8). Five of them –

namely 2.54, 2.62, 3.22, 5.38, 5.44 – are located toward the

extracellular side of the helical bundle, loosely in correspondence

of the 7-TM binding cavity. However, the remaining four –

namely 2.38, 4.41, 6.30, and 6.33 – are located near the

intracellular loops. These key positions were not identified in a

topologically ordered manner. To the best of our knowledge,

ligands that bind to the 7-TM cavity of class B receptors have not

been found. Hence, the lack of a contiguous cohort of high degree

positions is consistent with the absence of a clearly defined 7-TM

binding cavity for class B receptors.

Second extracellular loop (EL2)
Given that the portion of EL2 connected via a disulphide bridge

to TM3 has been shown to be involved in ligand recognition and

receptor activation for a number of class A GPCRs [21,23–28], we

also investigated if any of the EL2 positions could be identified.

Figure 6. Class A key positions. Class A key positions visualized in the crystal structure of rhodopsin (a), b2-AR (b), and b1-AR (c) respecitvely. All
the key positions are located in the exofacial 7-TM binding cavity. Residues at positions 4.60 and 5.35 (in red) can be considered hinges for EL2. All the
residues at the remaining key positions (in green) directly line the cavities (pockets) for the co-crystallized ligands (in white). Ligands and residues at
key positions are represented as space filling models. The backbone of the receptor is schematically represented as a ribbon, depicted with the colors
of the rainbow from the N-terminus to the C-terminus (TM1: red; TM2: orange; TM3: yellow; TM4: yellow/green; TM5: green; TM6: cyan; TM7: blue).
doi:10.1371/journal.pone.0004681.g006

Correlated Positions for GPCRs

PLoS ONE | www.plosone.org 6 March 2009 | Volume 4 | Issue 3 | e4681



Thus, for a subset composed of 249 class A receptors, we added to

the MSA of the 7-TMs the alignment of 5 contiguous EL2

residues, starting at the position immediately preceding the

conserved Cys residue (whose position is identified here as

EL2.50) involved in the disulfide bridge with a second conserved

Cys located at the extracellular end of TM3 (position 3.25,

according to the Ballesteros and Weinstein scheme [58]). The

alignment is provided as supporting info. The receptors missing

either the Cys at position EL2.50 or the Cys at position 3.25,

hence lacking the disulfide bridge, were excluded from this

additional analysis.

For the analysis involving the EL2 region, the consistently

invariant cohort was obtained up to M = 700 (unlike the previous

case which involved the 7-TMs, for which the invariance was

limited to M = 600). Hence, the largest invariant cohort of key

positions was obtained for M = 700 from which 13 key positions

were identified (Table 1). All the key positions formed a clique in

the independent analysis. Amongst them were the 10 previously

identified key class A positions and one new TM position (2.67).

The other two positions, EL2.49 and EL2.51, were from EL2.

Notably, these two positions are the nearest neighbors of the

conserved Cys at position EL2.50 and were among the top 10 high

degree positions (out of the set of 13) in the MI graph of interest.

Notably residues at position EL2.51 are in contact with the co-

crystallized ligand in rhodopsin and the A2A receptor, but not in

the b-ARs. Position EL2.52 forms extensive contacts with the co-

crystallized ligand in the b2-AR and the A2A receptor [5,12], and

has been proposed to be functionally important also for other

GPCRs on the basis of molecular modeling. This position shares

significantly high MI with other positions, but it does not have

high enough connectivity with other TM residues to qualify as a

key position. Table 3 is analogous to Table 2, but, in addition to

the residues in the 7-TMs, it also reports those residues located in

EL2 of rhodopsin, the b2-AR and the adenosine A2A receptor that

are in contact with the co-crystallized ligands (underlined entries)

and/or are predicted in this study as key positions (denoted in bold

and marked with an X). The MI data reported in the Table refer

to the independent analysis performed while including the five

EL2 positions.

Additional tests
In addition to testing the significance of our degree distribution

against one generated from a set of random graphs, we also tested

against the degree distribution of graphs generated directly from

the surrogate set of shuffled sequences (null hypothesis). We again

found that there existed vertices in the MI graph that had degree

that were (statistically) significantly higher than the surrogate

graphs. The degree distribution of the dataset involving receptors

Table 2. List of positions located in the 7-TMs of rhodopsin (Rho), beta-2 adrenergic receptor (b2-AR) and adenosine receptor (A2A)
that are in contact with the co-crystallized ligand (underlined) and/or qualified as key positions (in bold and marked with an X).

position Rho b2-AR A2A key degree entropy Pair position (pp)

Pp rank MI

3.28 Glu 113 Trp 109 Ile 80 29 3.742 5.35 60 1.053

3.29 Gly 114 Thr 110 Ala81 X 32 3.883 5.35 14 1.153

3.32 Ala 117 Asp 113 Val 84 X 52 3.724 2.57 2 1.287

3.33 Thr 118 Val 114 Lue 85 X 37 3.772 6.55 9 1.167

3.36 Gly 121 Val 117 Thr 88 31 3.522 2.57 8 1.173

3.37 Glu 122 Thr 118 Gln 89 18 3.269 6.52 24 1.107

4.60 Pro 171 Pro 168 Pro139 X 39 3.604 7.39 7 1.191

5.35 Asn 200 Asn 196 Met 174 X 40 4.106 3.32 10 1.167

5.38 Phe 203 Tyr 199 Met 177 10 3.580 7.35 59 1.054

5.39 Val 204 Ala 200 Val 178 X 40 3.853 2.64 23 1.114

5.42 Met207 Ser 203 Asn 181 X 39 3.848 3.29 25 1.107

5.43 Phe208 Ser 204 Phe 182 11 3.507 3.32 62 1.051

5.46 His211 Ser 207 Cys 185 32 3.470 3.32 13 1.162

5.47 Phe212 Phe 208 Val 186 n.a. - 3.32 1013 0.801

6.44 Phe261 Phe 282 Phe 242 n.a. 1.275 7.43 7472 0.435

6.48 Trp265 Trp 286 Trp 246 n.a. 1.707 2.60 1453 0.749

6.51 Tyr268 Phe 289 Leu 249 n.a. 2.577 3.32 901 0.817

6.52 Ala269 Phe 290 His 250 16 3.333 3.37 24 1.107

6.55 Ala272 Asn 293 Asn 253 X 45 3.976 7.39 1 1.362

7.35 Met288 Tyr 308 Met 270 X 39 3.794 2.64 33 1.097

7.39 Ala292 Asn 312 Ile 274 X 49 3.806 6.55 1 1.362

7.42 Ala295 Gly315 Ser 277 1 2.753 3.32 712 0.851

7.43 Lys296 Tyr 316 His 278 15 3.293 3.32 5 1.232

The MI data refer to the analysis performed on the MSA of the 7-TMs class A receptors. The position has highest MI (among all other inter-TM positions) with the listed
pair position (pp). Rank is the MI ranking of that pair using the class A 7-TM MSA (287 sequences) and the degree is calculated using MI graph from top 600 MI pairs.
Positions not included in the MI graph have ‘‘n.a.’’ ascribed to the degree value. Entropy and MI are measured in bits.
doi:10.1371/journal.pone.0004681.t002
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from class A along with EL2 is shown in Figure 9. The open (red)

histogram represents the degree from the dataset and the filled

(blue) histogram corresponds to the degree distribution obtained

from the surrogate sets. The key positions are clearly statistically

significant with respect to the surrogate degree distribution.

However, estimates from classes B and C have yielded ,20%

and ,15% chances for key positions to arise from the null

hypothesis respectively (results not shown), indicating the possibil-

ity for false positive identification. Along these lines, we note that

while both classes B and C did have 10 candidate positions, only 9

of them were invariant and consistently appeared in the top 10

ranks from the full dataset and all leave-one-out studies.

We also performed analyses similar to that proposed by Gloor et

al. [38,50], which is summarized in the Methods section. Their

selection criteria were based on high normalized MI position pairs

(MI normalized by the joint information entropy of residues at the

paired positions) with Z-score.4.0, which is a threshold analogous

to PM. They then selected positions that shared high normalized

MI with three or more positions (i.e. degree$3), which as

analogous to our degree threshold PD. There were 20 TM

positions that shared high normalized MI with other positions and

13 of those had a degree$3. Four of those 13 positions (3.29, 5.35,

6.55 and 7.39) were common to those within the binding cavity

listed in Table 2. In addition there were 2 positions (5.36 and 7.36)

which happened to be nearest neighbors of positions in the binding

Figure 7. Class C key positions. Class C key positions visualized in a
molecular model of the Ca2+ receptors. The key positions (in green) are
located in correspondence with two predicted adjacent sites for
different classes of allosteric modulators that bind to the exofacial 7-TM
cavity of the receptor [58]. Although the natural ligands of class C
receptors bind to their large N-terminal ectodomain, our analysis
supports experimental evidence that their activity can be modulated
through molecules that allosterically bind within the transmembrane
helical bundle. Ligands and residues at key positions are represented as
space filling models. The backbone of the receptor is schematically
represented as a ribbon, depicted with the colors of the rainbow from
the N-terminus to the C-terminus (TM1: red; TM2: orange; TM3: yellow;
TM4: yellow/green; TM5: green; TM6: cyan; TM7: blue).
doi:10.1371/journal.pone.0004681.g007

Figure 8. Class B key positions. Class B key positions visualized in
the crystal structure of rhodopsin (a class A receptor). Unlike in the case
of class A and class C, the key positions identified for class B receptors
are localized in two different areas: five of them (in green) are located
within the exofacial 7-TM cavity, while the remaining four (in red) are
located near the intracellular loop. Ligands and residues at key positions
are represented as space filling models. The backbone of the receptor is
schematically represented as a ribbon, depicted with the colors of the
rainbow from the N-terminus to the C-terminus (TM1: red; TM2: orange;
TM3: yellow; TM4: yellow/green; TM5: green; TM6: cyan; TM7: blue).
Although the topology of the TM helices appears to be substantially
conserved within class A GPCRs, the topology of family B receptors may
be different from that of rhodopsin, thus the figure is only intended as a
schematic. We do not represent the extra and intracellular portions of
the receptor, since they are not conserved.
doi:10.1371/journal.pone.0004681.g008
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cavity. The remaining 7 positions did not directly line the binding

cavities of carazolol and retinal, but were located toward the

extracellular side of the 7-TM binding cavity (data not shown).

When we repeated this analysis using un-normalized MI

(defined in Equation 1), we obtained two pairs of positions that

had Z-score.4.0. However, with a relaxed significance threshold

of Z-score.3.0, we identified 9 positions having degree$3. Seven

of those 9 positions overlapped with our 10 key positions, while

two of the positions were in exofacial side of TM 2 (2.57 and 2.64)

in proximity, although not in direct contact with the ligands co-

crystallized with rhodopsin and the b-ARs. For classes B and C,

two and four positions, respectively, were obtained (data not

shown) and these positions overlapped with our key positions. As

an aside, we note that in our analysis for class A, the top 10 MI

position pairs overlapped with only 6 of the 10 key TM positions,

with the tenth key position ranked 33 in terms of MI. These results

indicate that prioritizing selection of positions by high degree

rather than by high MI may be more useful for identifying the

ligand-binding cavity of GPCRs.

Dunn et al. [37] established a method to obtain a correction

term to MI due to possible random or phylogenetic influences. We

used this method to compute the corrected MI and repeated the

analysis and obtained 11 key positions. These are compared to the

known ligand binding positions in Table 4. Of the nine true

positives, seven (3.29, 3.32, 3.33, 5.35, 5.42, 6.55 and 7.39) had

been identified earlier using the raw MI. The two other positions

which were not identified initially are 3.36 and 6.52. Two positions

(2.57 and 2.67) are identified as false positives. A similar approach

for class B and class C yielded eight positions that were common

with the previously obtained nine key positions. For class B,

position 1.31 was the new key position. For class C, 3.51 was the

new position.

Table 3. List of positions located in the 7-TMs and EL2 of rhodopsin (Rho).

Position Rho b2-AR A2A key degree entropy Pair position (pp)

pp rank MI

2.67 His 100 Met 96 Gly 69 X 45 4.021 7.39 25 1.164

3.28 Glu 113 Trp 109 Ile 80 30 3.650 7.39 107 1.073

3.29 Gly 114 Thr 110 Ala81 X 35 3.743 5.35 18 1.189

3.32 Ala 117 Asp 113 Val 84 X 58 3.665 7.39 2 1.371

3.33 Thr 118 Val 114 Lue 85 X 41 3.733 6.55 21 1.176

3.36 Gly 121 Val 117 Thr 88 34 3.474 7.39 15 1.208

3.37 Glu 122 Thr 118 Gln 89 20 3.193 6.52 13 1.214

4.60 Pro 171 Pro 168 Pro139 X 36 3.645 7.39 9 1.249

EL2.49 Ser 186 Cys 190 Ala 165 X 47 4.051 5.35 34 1.142

EL2.50 Cys 187 Cys 191 Cys 166 n.a. - - - 0.0

EL2.51 Gly 188 Asp 192 Leu 167 X 33 3.949 6.55 75 1.094

EL2.52 Ile 189 Phe 193 Phe 168 22 3.737 3.32 14 1.210

EL2.54 Tyr 191 Thr 195 Asp 170 - - - - -

5.35 Asn 200 Asn 196 Met 174 X 45 4.118 7.39 7 1.261

5.38 Phe 203 Tyr 199 Met 177 10 3.383 7.35 91 1.084

5.39 Val 204 Ala 200 Val 178 X 41 3.849 2.64 20 1.187

5.42 Met 207 Ser 203 Asn 181 X 41 3.777 3.32 33 1.143

5.43 Phe 208 Ser 204 Phe 182 11 3.440 3.32 114 1.068

5.46 His 211 Ser 207 Cys 185 31 3.423 3.32 4 1.293

5.47 Phe 212 Phe 208 Val 186 n.a. - 3.32 866 0.874

6.44 Phe 261 Phe 282 Phe 242 n.a. 1.347 3.32 6029 0.523

6.48 Trp 265 Trp 286 Trp 246 n.a. 1.615 3.32 1755 0.764

6.51 Tyr 268 Phe 289 Leu 249 n.a. 2.410 3.32 1685 0.771

6.52 Ala 269 Phe 290 His 250 14 3.195 3.37 13 1.214

6.55 Ala 272 Asn 293 Asn 253 X 37 3.889 7.39 1 1.391

7.35 Met 288 Tyr 308 Met 270 X 31 3.755 3.32 23 1.166

7.39 Ala 292 Asn 312 Ile 274 X 47 3.815 6.55 1 1.391

7.42 Ala 295 Gly 315 Ser 277 n.a. 2.736 3.32 696 0.902

7.43 Lys 296 Tyr 316 His 278 8 3.099 3.32 5 1.282

beta-2 adrenergic receptor (b2-AR) and adenosine receptor (A2A) that are in contact with the co-crystallized ligand (underlined) and/or qualified as key positions (in bold
and marked with an X). The MI data refer to the analysis performed on a subset of class A receptor adding to the MSA of the 7-TMs the alignment of five EL2 positions.
The position has highest MI (among all other inter-TM positions) with the listed pair position (pp). Rank is the MI ranking of that pair using a subset of class A 7-TM along
with EL2 MSA (249 sequences) the degree is calculated using MI graph from top 700 MI pairs. Entropy and MI are measured in bits.
doi:10.1371/journal.pone.0004681.t003
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Sensitivity and specificity of key positions
We computed the sensitivity and specificity of our algorithm to

predict the ligand binding-positions of the b2-AR structure. We

computed the sensitivity and specificity for a range of threshold PM

values and plotted the ROC curve i.e. sensitivity versus (1 -

specificity) (see Figure 10). For low PM values the algorithm is

highly specific in identifying the cohort of positions within the

ligand-binding region. The sensitivity has a value near 0.5 for a

specificity of 1. The estimated area under the ROC curve is 0.92,

which indicates a high level of discrimination.

Discussion

Using a novel algorithm based on mutual information and

graph theory, we identified a clique of non-conserved positions in

the 7-TM alignment of GPCRs that have a high degree of

connectivity to other positions with respect to MI, i.e. high degree,

high MI cohort. In addition, for a given statistical significance, the

method provided a list of positions in hierarchical order of their

connectivity. These key TM positions, which have been identified

solely on the basis of sequence analysis without any prior

hypotheses or knowledge involving the biological or structural

Table 4. List of leading positions located in the 7-TMs of the b2-AR and rhodopsin (Rho) that are in contact with the co-crystallized
ligand (underlined) and/or qualified as leading positions (in bold and marked with an *).

Position Rho b2-AR A2A Key Degree entropy Pair position (pp)

pp rank MIp

2.57 Gly 90 Val 86 Ala 59 * 35 3.214 3.32 6 1.068

2.67 His 100 Met 96 Gly 69 * 34 4.052 3.32 7 1.063

3.28 Glu 113 Trp 109 Ile 80 32 3.742 6.55 27 1.026

3.29 Gly 114 Thr 110 Ala81 * 38 3.883 6.55 12 1.050

3.32 Ala 117 Asp 113 Val 84 * 50 3.724 6.55 1 1.156

3.33 Thr 118 Val 114 Lue 85 * 34 3.772 6.55 24 1.030

3.36 Gly 121 Val 117 Thr 88 * 35 3.522 6.55 22 1.032

3.37 Glu 122 Thr 118 Gln 89 17 3.269 6.55 93 0.961

5.35 Asn 200 Asn 196 Met 174 * 38 4.106 3.32 5 1.076

5.38 Phe 203 Tyr 199 Met 177 18 3.580 3.32 67 0.980

5.39 Val 204 Ala 200 Val 178 31 3.853 3.32 15 1.043

5.42 Met 207 Ser 203 Asn 181 * 38 3.848 3.32 4 1.084

5.43 Phe 208 Ser 204 Phe 182 8 3.507 3.32 111 0.952

5.46 His 211 Ser 207 Cys 185 19 3.470 3.32 54 0.991

5.47 Phe 212 Phe 208 Val 186 n.a. - 3.32 3259 0.604

6.44 Phe 261 Phe 282 Phe 242 n.a. 1.275 3.32 7329 0.444

6.48 Trp 265 Trp 286 Trp 246 n.a. 1.707 3.32 2461 0.654

6.51 Tyr 268 Phe 289 Leu 249 n.a. 2.577 3.32 1497 0.733

6.52 Ala 269 Phe 290 His 250 * 35 3.333 3.32 19 1.037

6.55 Ala 272 Asn 293 Asn 253 * 51 3.976 3.32 1 1.156

7.35 Met 288 Tyr 308 Met 270 32 3.794 3.32 13 1.047

7.39 Ala 292 Asn 312 Ile 274 * 45 3.806 3.32 2 1.120

7.42 Ala 295 Gly 315 Ser 277 n.a. 2.753 3.32 1190 0.767

7.43 Lys 296 Tyr 316 His 278 22 3.293 3.32 51 0.997

The MI data refer to the analysis performed on the MSA of the 7-TMs class A receptors using Dunn, Wahl and Gloor’s (2008) method [37] to obtain MIp the corrected MI.
The position has highest MI (among all other inter-TM positions) with the listed pair position (pp). Rank is the MI ranking of that pair using the class A 7-TM MSA (287
sequences) and the degree is calculated using MIp graph from top 600 MIp pairs. Positions are not included in the MIp graph have ‘‘n.a.’’ ascribed to the degree value.
Entropy and MI are measured in bits.
doi:10.1371/journal.pone.0004681.t004

Figure 9. Comparison of degree distributions. The degree
distribution from M = 700 MI graphs obtained from MI involving the
7TMs from class A dataset as well as the EL2 in red (dark). For
comparison, the degree distribution from surrogate subsets (light blue)
is overlaid.
doi:10.1371/journal.pone.0004681.g009
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role of specific residues, are all located within the 7-TM binding

cavity for classes A and C but not for class B, where experimental

evidence for a common binding cavity does not exist. The key

positions also form a MI clique.

The visualization of the key positions for class A receptors in the

crystal structures of the b-ARs and rhodopsin revealed that these

positions closely surround the co-crystallized ligands (Figure 6).

The finding has suggested that the 7-TM binding cavity might be

even more topologically conserved than previously thought [12–

15], and is crystallographically supported by the substantial

overlap of retinal bound to rhodopsin and the synthetic inverse

agonists cyanopindolol and carazolol bound to the b1- and b2-AR,

respectively. Although the binding mode of ZM241385 – the

synthetic antagonist co-crystallyzed with the A2A receptor – shows

some dissimilarities when compared to carazolol and retinal, the

binding pocket identified by our key positions matches that

indicated by the crystal structure (Tables 2–4) The natural ligands

of class A GPCRs bind extracellularly to large soluble N-terminal

ectodomains, i.e. the GPHRs. Consistent with the results of our

analysis, it has been reported that the activity of these receptors

can be modulated through allosteric ligands that bind within the 7-

TM cavity in correspondence with the canonical orthosteric site of

binding of class A GPCR ligands. This substantial topological

conservation of the binding cavity of class A GPCR supports the

applicability of molecular docking at GPCR homology models to

computer-aided drug discovery [11].

As mentioned before, residues in EL2 are involved in ligand

recognition and activation, and after including the EL2 domain to

the class A subset, a pair of the EL2 positions had a significantly

large degree to be classified as key positions. Additionally, two of

the identified non-EL2 key positions are located at the C-terminal

and N-terminal ends of TM4 and TM5, respectively, and can be

regarded as the hinges of EL2. These two residues may play a role

in the agonist-induced conformational changes of the loop that

have been proposed to be required for receptor activation [21,28].

Our algorithm finds a 7-TM binding cavity also for class C

receptors, even though their natural ligands bind to their

extracellular N-terminal domains. In agreement with our results,

for several class C receptors have been reported allosteric

modulators that bind to the 7-TM cavity [70–76]. The key

positions identified here are all located within the two adjacent

sites for two different classes of allosteric modulators of the Ca2+

recetor that have been proposed according to an experimentally

supported in silico model [71] (Figure 7). Moreover, our analysis

confirms that the high MI hub positions in class B receptors do not

possess a well-defined 7-TM binding cavity for ligands that is

shared by the entire class.

Our algorithm was able to highlight positions located in the

exofacial ligand binding cavity, not those located within the 7-TM

core or close to the intra-cellular region. Evolving from a common

GPCR ancestor through the subsequent mutation of neighboring

AA residues, GPCR binding cavities have diversified and acquired

the ability of selectively recognizing specific ligands. Other

biologically relevant GPCR residues – such as those important

for structural integrity, activation, or G protein coupling – may be

correlated with a limited number of partners, or may have

remained too conserved during the evolution to be detected by our

algorithm. We note that previous bioinformatic analyses involving

GPCRs have uncovered residues located in the ligand-binding

region as well as within the receptor core [15,18,19,77–85], but

whether all identified positions have the same statistical signifi-

cance is not obvious.

The prediction of a cohort of functionally important, specificity

determining, or coevolving residues, without involving MI, has

also been addressed extensively [15,18,19,57,77,78,80–83,83–117]

and a few of these strategies were summarized by those previously

cited and by Ortiz and colleagues [118] and Donald and

Shakhnovich [36]. For class A GPCRs, investigators have used

independent theoretical analyses [15,18,19,77–85] involving the

entire superfamily as well as select subfamilies from the class A

superfamily. However, this is the first comprehensive investigation

for correlated residues involving class B and C GPCRs.

The general significance of our results and previous findings

that involve coevolving cohorts are supported in recent work from

Ranganathan and colleagues [119–121]. They have demonstrated

that maintaining the conservation pattern in a protein family,

along with a small subset of coevolving residues, may enable the

generation of low-homology sequences that fold and function. This

work supports their finding that the number of key/critical

interactions in a protein may be smaller than previously thought.

We propose that our algorithm could be used to identify

positions as hubs of high MI. For an evolutionary diverse

superfamily such positions can be involved in its structure/

function such as ligand-binding, provided an accurate MSA is

used as an input. If applied to families of proteins completely

lacking three-dimensional information, our procedure could

potentially lead to the identification of the residues lining the

binding cavities solely from the alignment of homologous

sequences provided those positions are not conserved. These

theoretical predictions, in combination with experimental data,

could be a great asset for the identification of ligand recognition

sites and to the drug discovery process.

Methods

Data set
This work involves the published MSA of 358 non-olfactory

human GPCRs due to Rognan and colleagues [15], with 287, 49 and

22 sequences for classes A, B, and C respectively. The list of

sequences and their MSA is available at ‘‘human GPCR database’’

http://bioinfo-pharma.u-strasbg.fr/gpcrdb/gpcrdb_form.html web

Figure 10. ROC curve. The measure of sensitivity versus (1-
specificity) obtained for the beta2-adrenergic receptor 3D
structure. The different points represent the varied significance
threshold PM for generating the MI graphs. Lower PM values correspond
to the region with the greatest specificity and moderate sensitivity.
doi:10.1371/journal.pone.0004681.g010
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site. We also use the 249 sequences from class A for investigating 5

selected AA positions from EL2 in the proximity of TM3 (see MSA

S1). To facilitate the comparison of AA residue positions among

receptors, we identified the TM positions using the indexing scheme

of Ballesteros and Weinstein [58]. In this scheme, the most conserved

residue within a given TM is assigned a positional index X.50 (where

X is the TM number), while the remaining residues are numbered

relative to position 50. Similarly, here we assigned the positional

index EL2.50 to the Cys in the second extracellular loop involved in

the conserved disulfide bridge with TM3, and numbered the

remaining EL2 residues relative to that position.

MI estimation
The MI for an ordered set of position pairs (j, k), which

corresponds to two distinct positions within the MSA of the TM

regions, is defined as

MI j,kð Þ~
X

x

X

y

pj,k x,yð Þlog2

pj,k x,yð Þ
pj xð Þpk yð Þ ð1Þ

where pj(x) is the estimated probability of AA x occurring at

position j, and pj,k(x,y) is the joint probability of AAs x and y

occurring at positions j and k respectively. The logarithm to the

base 2 is an arbitrary choice. The sums are over the 20 naturally

occurring AAs. Measured AA frequencies from the sequences in

the data sets for each class are used to estimate the occurrence

probabilities in Equation 1 and will be associated with uncertainty

in the probability estimates due to random occurrences in a finite

number of sequences. A null value of MI represents a sequence set

in which all the positions in the alignment are completely

independent, while a high MI value corresponds to high

correlations between the position pairs. Since MI(j,k) = MI(k,j),

only MI(j,k) with j,k is computed.

We note that an equivalent definition of mutual information is

in terms of the informational entropy:

MI j,kð Þ~H jð ÞzH kð Þ{H j,kð Þ

where H jð Þ~{
P
x

pj xð Þlog2pj xð Þ is the entropy and

H j,kð Þ~{
X

x

X

y

pj,k x,yð Þlog2pj,k x,yð Þ

is the joint entropy.

Finite size effect
We demonstrate that the estimated mutual information for a

finite set of sequences with random AAs (i.e. with completely

independent positions and hence theoretically zero MI) can have a

nonzero MI that depends on the number sequences. Let S be the

number of sequences in the set. Suppose that the true probability

of the occurrence of AA x is fx, so p(x) = fy. The true joint

probability of a pair of AAs is then p(x,y) = fx fy. However, for small

sets, if 1/fxfy,S, as in our case, then the most likely scenario is that

the pair never appears and thus our estimate for p(x,y) is zero,

which does not contribute to the MI computation. However, if a

pair does appear then the lower bound of our estimate on its

probability is 1/S. Hence, log[p(x,y)/(p(x)p(y))],log[1/S]. The sum

in the MI will be dominated by terms to this order leading to a

spurious estimate of the MI that is proportional to 2log S.

The maximal MI for a set of sequences is obtained when

p(x,y) = p(x) = p(y). Thus:

max MI~{
X

x

p xð Þlog2 p xð Þ:

For S&20 (the number of AAs), the above expression is limited by

p(x),1/20, which in turn yields:

max MI~log220~4:32:

However, when S#20, the nonzero lower bound on p(x) is 1/S

and this in turn yields:

max MI~
20

S
log2S:

MI graph construction
For a single GPCR there are 189 positions within the 7-TMs.

We computed the MI for the 15,255 inter-TM position pairs. (For

the class A subset involving EL2 there are 16,200 inter-TM

position pairs). Using an ordered list of the top most MI pairs as

edges, a MI graph was constructed. The graph consisted of

vertices that corresponded to TM positions. We inserted an edge

between two positions if the MI between those positions exceeded

a MI threshold. This threshold was chosen such that the MI value

would be significant with respect to a surrogate set of sequences

(with the same number of sequences as the corresponding class)

but with the TM residues randomized. The randomization was

achieved by shuffling residues across sequences at a given

alignment position as done by Mirny and Genfand [51]. This

strategy preserved p(x) and p(y) but eliminated any correlation in

the joint probability p(x,y). As shown before, the estimated MI for a

finite set of random sequences may be nonzero and will depend on

the number of sequences in the set. We thus defined the

significance threshold for MI in terms of the probability or P-

value PM of that MI value to occur in a surrogate set. Each PM will

yield a MI graph with N vertices and M edges.

Key position identification
After constructing the MI graph, we identified the vertices in the

MI graph with highly significant degree with respect to a null

hypothesis of a randomly connected graph (Erdos-Renyi graph)

with N vertices and M edges. The comparison was facilitated by

constructing a distribution function for vertices with a given

degree. We then established degree significance in terms of the

probability or P-value PD of a vertex of that degree to occur in a

random graph as illustrated in Figure 5. For each M and PD, a

ranked list of positions in terms of degree, which we call candidate

positions, were obtained. The algorithm generating candidate

positions is summarized in the flowchart in Figure 1.

As a criterion for identifying a unique and robust cohort of key

positions, we insisted that the key positions be the candidate

positions that are invariant to a leave-one-out analysis of the

sequences (i.e. for S sequences, the analysis was repeated S times,

each time leaving out one of the sequences) and over a range of PD

and PM. By invariant, we mean that there exists some ranking

number n such that all positions with ranking higher than n

retained a ranking higher than n (independent of order) over a

range of PD, PM and the leave-one-out analysis. We were not

concerned if the rankings were permuted within the top n
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positions, they simply had to appear in the top n consistently. This

invariant set defined the cohort of key positions. We note that our

analysis did not require that the cohort of key positions reside in

the same clique i.e. a mutually connected subgraph. We thus made

the additional check of whether the key positions were directly

connected by mutual information to other key positions and thus

formed a clique.

Additional tests
To further confirm our results, we performed an additional

significance test for our high degree positions by testing

significance with respect to a degree distribution that corrsesponds

to a surrogate set of graphs generated directly from shuffled

sequences.

We also selected positions using MI criteria proposed by Gloor

et al. [38,50]. They considered mutual information normalized by

the joint entropy MI(j,k)/H(j,k) and set a threshold of Z-score.4.0

for accepting pairs of positions. Z-score is defined as (MI -

,MI.)/sMI, where ,MI. is the mean and sMI is the standard

deviation of the MI distribution. They then set a threshold of

degree $ 3 for selecting positions. We performed this analysis for

both normalized and un-normalized MI and for differing criteria

for Z-score and degree.

To control against possible random or phylogenetic sources, we

used the approach of Dunn, Wahl and Gloor [37] to reduce the

background MI for every inter-TM position pair. The estimated

average product correction (APC) for position pair (j,k) was

obtained by taking the product of the average MI values across

row j and column k illustrated in Figure 2 (using all position pairs).

The relevant correction was then normalized by the overall

average MI (MI ), as

APC j,kð Þ~MI j,nð ÞMI m,kð Þ
�

MI ,

which is Equation (5) of reference [37]. MI j,nð Þ is the average MI

in row j, and MI m,kð Þ the average MI from column k. This

unique correction was then subtracted from the raw MI value:

MI(j,k). The leading corrected MIp(j,k) values were used to compute

the MI graphs.

The significance and specificity of the identified key positions

was evaluated using positional information from the crystal

structure of b2-AR. From a total of 189 positions, the 18 ligand-

binding positions of b2-AR are underlined in Table 2, column 2.

For a specific threshold significance PM, the identified number of

key positions represented the sum of true positives and false

positives. The true positives were established by confirmation with

the list of the underlined positions on Table 2. The false positive

positions were those key positions not confirmed on the list of 18.

The underlined positions from Table 2 that were not identified as

key positions were classified as false negatives. Of the total 189

positions, those that were neither true positives nor false positives

nor false negatives were true negatives. Sensitivity is the ratio of

the number of true positives to the sum of true positives and false

negatives. Specificity is the ratio of the number of false positives to

the sum of false positives and true negatives. The sensitivity versus

1- specificity (ROC curve) was then computed.

Additional Files
MSAof five contiguous EL2 residues of a subset of 249 class A

receptors. The file (MSA S1.fst) is provided in FASTA format.

Supporting Information

MSA S1

Found at: doi:10.1371/journal.pone.0004681.s001 (0.00 MB

DOC)
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