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Changes in the sequence of an organism’s genome, i.e., mutations, are the raw material of

evolution. The frequency and location of mutations can be constrained by specific molecular

mechanisms, such as diversity-generating retroelements (DGRs). DGRs have been char-

acterized from cultivated bacteria and bacteriophages, and perform error-prone reverse

transcription leading to mutations being introduced in specific target genes. DGR loci were

also identified in several metagenomes, but the ecological roles and evolutionary drivers of

these DGRs remain poorly understood. Here, we analyze a dataset of >30,000 DGRs from

public metagenomes, establish six major lineages of DGRs including three primarily encoded

by phages and seemingly used to diversify host attachment proteins, and demonstrate that

DGRs are broadly active and responsible for >10% of all amino acid changes in some

organisms. Overall, these results highlight the constraints under which DGRs evolve, and

elucidate several distinct roles these elements play in natural communities.
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D iversity-generating retroelements (DGRs) are genetic
elements that can produce a large number of mutations in
a specific region of a target gene through error-prone

reverse transcription1,2. The first DGR identified induces hyper-
variation in a structural protein responsible for host recognition
and attachment of bacteriophage BPP-13. Other examples of
DGRs have been subsequently characterized, with the best-
studied instances in Legionella and Treponema that target surface-
displayed proteins4,5. All currently known DGRs seem to use the
same molecular mechanism, known as mutagenic retrohoming,
to generate hypervariation in the target protein1,6,7. Mechan-
istically, a DGR requires three main components: a reverse
transcriptase (RT); a template region (TR), which in most cases is
intergenic; and a variable region (VR) that is nearly identical to
the TR and located within the coding sequence of the target
protein (Fig. 1a). The DGR-encoded RT uses a primary TR
transcript as the template for error-prone reverse transcription.
Our current understanding is that DGR RTs are strongly pro-
miscuous at template adenines, leading to the incorporation of
dATP, dGTP, and dCTP in roughly equal proportions to the
templated dTTP. The resulting sequence variant, i.e., TR-cDNA,

is then integrated into the protein-coding gene, replacing the
original VR sequence, through a yet-undefined homing
mechanism6,7.

Building on the handful of well-characterized DGRs, recent
studies have sought to explore DGR diversity by mining genomic
data for DGR-like RT genes located next to imperfect repeats with
mismatches opposing adenine positions. This approach was
successfully applied to both draft genomes2,8,9 and metagenome
assemblies10–17. Collectively, these studies identified ~1500 DGRs
and suggested that DGRs are present in diverse environments
ranging from the human gut to deep-sea sediments and terrestrial
groundwater10,12,13. DGRs were also associated with a broad
range of genomes including uncultivated bacteria from the can-
didate phyla radiation (CPR) and several archaea12,13, as well as
human gut phages15.

While DGRs are now broadly recognized as important diver-
sification mechanisms in microbes, their specific activity and role
across organisms and biomes remain elusive. Specifically, ecolo-
gical and evolutionary drivers of targeted hypermutation are
currently unknown due to the lack of a global contextualized map
of DGRs. Similarly, predicting the potential role of individual
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Fig. 1 Distribution of DGR diversity across organisms, biomes, and taxa. a Schematic representation of the DGR mutagenic retrohoming process. The
main components of a DGR are highlighted in colors, and the three main steps of the process are indicated directly on the diagram. TR, Template repeat/
region. VR, Variable repeat/region. b Phylogeny of DGR and non-DGR reverse transcriptases (RT). RT protein sequences were first grouped into “RT
clusters”, and a representative for each cluster was included in the tree building process (see “Methods”). Branches are colored according to the type of RT
in the corresponding cluster. All nodes with support <50% were collapsed. From inside to outside, the outer rings display the consensus genome type,
taxonomic classification, and biome of each RT cluster. CPR: Candidate Phyla Radiation. DPANN Diapherotrites, Parvarchaeota, Aenigmarchaeota,
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c Distribution of each feature at the RT OTU level across DGR clades. The colors used in the bar chart are identical to panel (b), and NA values were not
included. d Enrichment of DGR-encoding genomes across taxa. The total number of genomes observed across metagenome assemblies was calculated
based on single-copy marker genes (see “Methods”), and an average frequency of DGR was derived from the entire dataset. A frequency of DGR detection
per genome was then calculated for each taxonomic group and compared to the overall frequency to derive log2 enrichment ratios. All log2-ratios
presented in the figure are statistically significant (Chi-square test of independence corrected p-value < 1E−10) except for the Cyanobacteria group (p-value
= 0.21). e DGR enrichment across biomes. For each biome, a linear regression was computed between the estimated total number of genomes and the
number of DGRs detected in each metagenome (see Supplementary Fig. 5). The regression slope was then considered as an estimation of the average
number of DGR per genome and is displayed here with error bars representing the standard error of the slope estimation. Cutoffs of 0.05 and 0.25 DGRs
per genome are highlighted with vertical dashed lines. For these calculations, viral and low complexity metagenomes were excluded (see Methods and
Supplementary Data 1). Dots are colored according to the biome type (blue: aquatic, brown: engineered, pink: host-associated, green: terrestrial).
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DGRs is currently challenging because the vast majority of
putative targets are functionally uncharacterized. Therefore, it
remains unclear for which proteins, functions, organisms, or
environments this type of targeted hyper-diversification con-
stitutes a selective advantage.

Here we analyze 31,007 DGRs identified from public meta-
genomes and metatranscriptomes to obtain a holistic view of
DGR diversity and their spatial and temporal dynamics. We
leverage this uniquely comprehensive DGR collection to (i)
evaluate the global ecology and evolution of DGRs across viral
and cellular genomes, (ii) characterize the functional diversity and
molecular constraints of DGR targets, and (iii) infer temporal
patterns of DGR activity across organisms and biomes. Taken
together, these analyses reveal how DGRs are frequently trans-
ferred between genomes, yet clearly restricted to specific ecolo-
gical niches, within which they likely impact both viral and
microbial dynamics by driving sustained amino acid-level diver-
sification of their target domains.

Results
Large-scale metagenome mining uncovers an extensive diver-
sity of DGRs. To identify candidate DGRs, we searched for RT
genes found within 1 kb of an imperfect repeat and used phylo-
genetic placement and mismatch patterns to identify false-
positive detections (see “Methods”). We applied this approach to
81,404 public genomes and 9467 public metagenomes, repre-
senting 163 environment types, to obtain a global view of DGR
diversity (Supplementary Data 1). In the analyzed genomes, we
detected a total of 1314 DGRs, comparable in number and
diversity to those identified in previous mining of genome
databases2,13. Meanwhile, we detected 31,007 DGRs in public
metagenomes, a ~15-fold increase compared to the total number
of DGRs previously reported10–17. Overall, DGRs were detected
from ≥1500 bacterial and archaeal genera and ≥90 environment
types (Supplementary Data 2, Supplementary Note 1). Notably,
because of the fragmented nature of metagenome assemblies
(median size of DGR-encoding contigs: 9584 bp), our approach
would not detect DGRs acting on remote targets9,13, i.e., DGR for
which the VR is not located next to the RT. This dataset thus
likely still underestimates the true DGR diversity.

Next, we used average amino acid identity (AAI) to group RT
sequences, first into 13,415 OTUs (≥95% AAI), then into 1318
clusters (≥50% AAI, Supplementary Fig. 1, Supplementary Data 3
and 4). Members of each OTU and cluster were associated with
the consistent genome (i.e., viral vs cellular), taxa, and biome
types, suggesting that these groupings represent cohesively and
mostly vertically inherited DGR evolutionary units (Supplemen-
tary Note 2, Supplementary Fig. 2). To obtain an overview of
global DGR diversity, a phylogenetic tree was then built including
a representative of each RT cluster along with other RT genes
such as group II introns, retrons, and uncharacterized RTs
(Fig. 1b). DGRs formed a monophyletic clade separated from all
other types of RTs, supporting a single evolutionary origin for
these elements, as previously hypothesized2,18. Overall, 75% of
clusters were composed exclusively of metagenome-derived DGR
sequences. Sequences from our survey spanned across an almost
six-times larger phylogenetic diversity (573%) compared to
previously known DGRs2, highlighting the significant contribu-
tion of metagenome and metatranscriptome assemblies to the
exploration of DGR sequence space.

DGRs dispersion is strongly constrained and reflected in
cohesive lineage partitioning. Mapping the organism type (viral
or cellular), taxonomy, and biome from which each DGR cluster
was derived onto the tree suggested that the global DGR diversity

could be divided into six main clades (DGR clades 1–6, Fig. 1b, c,
Supplementary Note 3). Three clades (DGR clades 1, 4, and 6) are
composed of DGRs identified almost exclusively in viruses, pre-
dominantly phages that are predicted to infect abundant gut
bacteria belonging to the Firmicutes, Bacteroidetes, or Proteo-
bacteria (DGR clades 1, 4, and 6, Fig. 1c, Supplementary Fig. 3).
Clades 2 and 5 are almost entirely composed of cellular-encoded
DGRs, mostly from aquatic biomes, and either restricted to the
Patescibacteria, also referred to as the CPR (DGR clade 2), or
affiliated to diverse phyla including Proteobacteria and Bacter-
oidetes (DGR clade 5). Finally, clade 3 includes a nearly even mix
of virus- and cell-derived DGRs that are mostly associated with
Proteobacteria and Bacteroidetes.

While mutation bias, i.e., mismatches opposing adenine
positions, was not used here as a criterion for DGR detection,
alignments between template repeat (TR) and variable repeat (VR)
overwhelmingly displayed ≥75% of mismatches facing adenine
residues in the TR across all clades (Fig. 1c). After manual
inspection of outliers (Supplementary Note 4), we identified only 7
clusters of seemingly genuine DGRs with <75% of mismatches
facing adenine residues (Supplementary Fig. 4, Supplementary
Data 4). This is consistent with previous comparative genomics
and biochemical studies6,7 and confirms that the mutation bias
towards adenine is an intrinsic feature of DGR RTs. The
monophyly in the RT tree and universality of the adenine
mutation bias combined suggests a single origin for all currently
known DGRs, followed by sporadic transfers across organisms
and biomes leading to the six main clades observed here. This
evolutionary scenario is also consistent with the hypothesis of
DGRs being initially encoded on mobile genetic elements, which
could spread DGRs across many taxa and ecosystems.

Across the 9467 metagenomes we examined, several taxa and
biomes were clearly enriched in DGRs. DGRs were significantly
more common (p-value < 10−16) in members of the CPR,
Firmicutes, and flavobacteria-bacteroidetes-chlorobi (FCB)
groups (Fig. 1d). Similarly, we observed a significantly higher
rate of DGR detection per genome in samples from several
environments, including the human gut, saline lakes, landfills,
and groundwater reservoirs (Fig. 1e, Supplementary Fig. 5).
Phylogenetic logistic regression further confirmed that both
phylogeny and ecology drive the distribution of DGRs (Supple-
mentary Note 5). DGRs are associated with specific monophyletic
clades in both cellular and viral genome trees. After accounting
for this phylogenetic signal, viral-encoded DGRs are still
significantly positively correlated with specific biomes, while
cellular-encoded DGRs are only negatively correlated with a
single biome (Supplementary Table 1). Taken together, these
results point towards a long and complex DGR evolutionary
history, with DGRs able to transfer between phylogenetically
unrelated organisms, but only retained in specific niches in which
targeted mutation would represent a selective advantage and/or in
taxa able to support DGR mutagenic retrohoming. This
hypothesis is supported by the broad yet uneven distribution of
these elements across genomes and biomes.

DGR targets share a conserved organization. To gain insight
into the potential roles of identified DGRs, we next investigated
the diversity of the 36,611 genes identified as putative DGR tar-
gets across genomes and metagenomes. As previously reported2,
the majority (68%) of these targets could not be functionally
annotated when individually compared to reference databases.
However, de novo clustering revealed that most DGR targets
(>92%) grouped into 24 protein clusters (PCs), which clearly
partitioned by genome type and DGR clade (Fig. 2a, Supple-
mentary Data 5, Supplementary Fig. 6, Supplementary Note 6).
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Analysis of functional domains and residue conservation across
PCs suggested a near-universal modular organization. Targets
were typically multi-domain proteins, with the VR region found
at the C-termini (Fig. 2a), which corresponds to the previous
observations2. This positioning of VR regions at the C-termini of
target proteins is likely due to the requirement of cis-acting DNA
elements for retrohoming19, since only for C-terminal VRs can
these cis-acting elements be intergenic and thus free from amino-
acid coding constraints. While these C-terminal regions include
DGR-variable residues, they were overall more conserved than
the rest of the sequence across all PCs, likely due to structural
constraints associated with DGR-induced hypervariation20,21

(Supplementary Fig. 7). Accordingly, whereas a range of folds
was predicted for N-terminal domains, annotated VR-containing
regions were systematically associated with C-type lectin (C-Lec)
folds. Some rare VRs had previously been tentatively linked to Ig-
like folds2, but a re-analysis of these sequences, leveraging the
larger context from our expanded catalog, suggests these targets
instead correspond to phage tail fibers containing Ig-like domain
(s) next to an uncharacterized, non-Ig-like, VR domain
(Supplementary Figs. 8 and 9, Supplementary Note 7). Since
novel variants of C-Lec fold domains are still being discovered on
a regular basis20,22, it is probable that other uncharacterized
conserved domains overlapping VR regions represent new
variants of the C-Lec fold domain family (Fig. 2a). Based on
the distribution of corresponding target PCs, these novel C-Lec

fold will most likely be associated with novel viruses and
uncultivated bacteria (CPR), and archaea (Supplementary Fig. 9).
The observed modularity of target proteins also suggests that
intragenic recombination may occur for DGR targets, with the
potential to fuse a wide range of independently folding domains
to a C-terminal C-Lec-encoding region to produce a chimeric
target ready for mutagenesis.

DGR targets are primarily involved in virus-cell and cell-
particle interactions. Given the near-universal modular organi-
zation of target proteins, putative functions were assigned based
on the presence of conserved domains or sequence features
identified outside of the C-terminal VR region. Within the 24
main target PCs, a majority of sequences (71%) did not display
any significant sequence similarity to any known protein domain
outside of the C-terminal VR region, even when using highly-
sensitive annotation tools such as HHblits23. Hence, we instead
classified targets into broad functional classes, namely “structural
proteins” vs “unknown” for viral-encoded DGRs and “mem-
brane-bound” proteins vs “unknown” for cellular-encoded DGRs,
using non-similarity-based protein annotation approaches24,25

(Supplementary Note 8).
Viral targets from DGR Clades 1, 4, and 6 were mostly

annotated as tail structure proteins, which are typically involved
in host recognition and attachment (Fig. 2a). This includes the
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Fig. 2 Diversity and major types of DGR targets. a Prevalence and sequence characteristics of the most abundant DGR target protein clusters (PCs). The
24 PCs listed here represent >92% of all identified DGR targets. These were divided into four major types (left panel; predicted localization of target
proteins highlighted with red stars). Characteristics of each PC are indicated to the right, including a number of associated DGR RT OTUs, the relative
proportion of viral-encoded vs. cellular-encoded DGRs (“Genome type”), distribution across DGR clades, percentage of PC member with a detected C-Lec
fold around the VR region, percentage of PC members predicted as a tail structural protein (for viral targets) or membrane protein (for cellular targets), and
relative position of the VR region within the target sequence. The boxplot lower and upper hinges correspond to the first and third quartiles, respectively,
and the whiskers extend no further than ±1.5 times the interquartile range. For C-Lec fold VR and localization prediction data, only high-quality targets were
considered (see “Methods”). For mixed PCs (PC_00009 and PC_00021), targets with an unknown origin were excluded. b Estimated host diversity for
viral genomes encoding (DGR+, n= 822) or lacking DGRs (DGR−, n= 1182) matching at least 50 CRISPR spacers. The vertical axis shows the number of
connected host species per 50 protospacers. The boxplot lower and upper hinges correspond to the first and third quartiles, respectively, and the whiskers
extend no further than ±1.5 times the interquartile range. c Percentage of cellular targets with a predicted transmembrane domain (top) or one or more
functional domain(s) associated with cell adhesion and/or carbohydrate-binding identified outside of the VR region (bottom). Target sequences are
divided based on their PC membership into “membrane-bound” PCs or “other” PCs (see panel (a)).
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target protein from the original report of DGR-mediated
mutation of phage tail fibers in Bordetella bacteriophages which
has been shown to enable host switching3. We reasoned that
hyper-mutation of host attachment proteins may broadly enable
DGR-encoding viruses to access a larger diversity of host cells.
We tested this hypothesis by connecting DGR- and non-DGR-
encoding viruses to a comprehensive database of 6.7 million
CRISPR spacers derived from 576,561 prokaryotic reference
genomes26. This analysis revealed that DGR-encoding viruses are
associated with a significantly larger diversity of hosts than non-
DGR-encoding ones, even after controlling for several confound-
ing variables (Fig. 2b, Supplementary Fig. 10, Supplementary
Note 9). While these results suggest that DGR-mediated
hypermutation enables phages to attach to and inject their
genome into a broader range of host cells, it does not necessarily
imply that the phages are then able to perform a successful and
efficient replication cycle. Several host characteristics and defense
mechanisms can lead to aborted infections27, and a number of
additional adaptations will likely be required for these viruses to
successfully infect any new taxon, even ones closely related to
their original host28.

For cellular targets, most PCs contained at least one N-terminal
transmembrane domain or signal peptide, along with functional
domains involved in protein binding, carbohydrate-binding, and
cell adhesion (Fig. 2a, c, Supplementary Data 5). This suggests
that most of these targets are membrane-anchored proteins that
bind extracellular substrates, possibly including particle aggre-
gates, other microbial cells, or viral particles. Accordingly,
metagenome-assembled genomes (MAGs) associated with the
most prevalent of these targets (PC_00001) displayed a gene
content and functional annotation consistent with a copiotrophic
or particle-associated lifestyle (Supplementary Note 10). DGRs
with PC_00001 targets were primarily detected in aquatic
environments (Supplementary Fig. 9), although the frequency
of DGR detection was highly variable between different aquatic
biomes (Fig. 1e, Supplementary Fig. 5). Taken together, this
suggests that the selective advantage provided by broad-scale
particle binding, cell–cell attachment, or surface adherence may
vary between environments. For instance, in the open ocean,
random binding may not be advantageous as it could lead to
elevated cell loss due to sinking particles29, which may explain
why DGRs are rarely detected in these samples (Fig. 1).
Importantly, however, cellular membrane proteins can also be
used as host receptors by viruses, and some of these targets may
thus be under DGR-driven diversification as part of a virus-host
arms race30. Unlike most other cellular-encoded targets, the ones
encoded by CPRs of clade 2 and archaea of clade 5 do not
typically include any recognizable transmembrane or other
conserved domain (Fig. 2c), as previously reported12,13. Whether
this is due to functional domains that are not readily identified in
these divergent genomes or because these proteins represent
genuine non-membrane-bound DGR targets remains to be
established. Overall, the large collection of DGR targets identified
in this study provides additional and strong evidence that DGRs
are primarily linked to cell-particle, cell–cell, and virus–cell
interactions, and in some rare cases may be involved in microbial
cell regulation13.

DGRs are broadly active across organisms and biomes. Next,
we evaluated the population diversity at DGR loci across taxa and
ecosystems. To that end, we analyzed single-nucleotide and
amino acid variants31,32 for 6901 DGRs with ≥10 kb genomic
context and ≥20× coverage (see “Methods”). Overall, single-
nucleotide variants (SNVs) could be detected for 70.1% of the VR
loci (Fig. 3a, Supplementary Fig. 11, Supplementary Note 11).

When SNVs were detected, VR loci were strongly enriched in
non-synonymous SNVs. We first evaluated this through the ratio
of non-synonymous to synonymous polymorphism rates (pN/
pS33): while nearly all non-target genes displayed pN/pS < 1
consistent with a purifying selection, >80% of VR loci with ≥ 1
SNV(s) displayed pN/pS ratios > 1, indicating a strong enrich-
ment in non-synonymous mutations (Fig. 3b). Since pN/pS
cannot be calculated in the absence of synonymous SNV, and
36% of VR loci displayed exclusively non-synonymous SNVs, we
opted to directly estimate the enrichment of VR loci in non-
synonymous SNVs as a marker for recent DGR activity (see
“Methods” and Supplementary Note 11). We reasoned that when
VR loci displayed a significantly higher non-synonymous SNV
density than their neighbor genes, this was the result of a recent
and/or ongoing DGR-driven mutagenesis.

For all DGR groups, 50–75% of DGRs showed signs of recent
activity (Fig. 3c). Viral-associated DGRs were linked to the
highest activity level, while members of DGR clades 2 and 3
displayed a significantly lower-than-average activity level (Sup-
plementary Fig. 12). However, the strong purifying selection that
would reduce population diversity may mask DGR activity in
these single-sample variant analyses, i.e., active DGRs may
generate new variants that would almost instantaneously be
purged from the population and thus evade detection.

DGR activity drives frequent changes in target residues. Given
widespread DGR activity, most VR loci can be expected to evolve
under two antagonistic forces: DGR diversification and purifying
selection. The relationship between these forces can be examined
from time-series data so long as the adaptive value of different
variants fluctuates over time (Fig. 3d, Supplementary Fig. 13,
Supplementary Note 12). Specifically, we hypothesized DGR
diversification to lead to high population diversity within each
sample and changes in dominant allele between time points, while
purifying selection would reduce population diversity within each
sample. For alternating phases of diversification and purifying
selection, we expect to observe a low population diversity within
each sample but changes in the dominant allele between samples
(Supplementary Fig. 14).

To test this hypothesis and to shed light on the balance
between DGR diversification and purifying selection in nature, we
analyzed the subset of DGRs found across metagenomic time
series. We identified 130 longitudinal data sets containing 563
DGRs amenable to analysis, i.e., having ≥10 kb genomic context,
with coverage ≥10×, and detected at ≥2 time-points (Supple-
mentary Data 6). Overall, a majority of predicted VR positions in
these DGRs showed high diversity associated with frequent amino
acid replacement, suggesting a high DGR activity overpowering
purifying selection (Fig. 3e, f). This pattern was consistent across
natural biomes but absent for in vitro microbiomes, i.e.,
laboratory incubations. There, both the observed diversity and
amino acid change frequency were much lower for all types of
DGRs, probably due to the population bottlenecks34,35, lack of
various environmental stress, and/or shorter time frames of these
experiments (Fig. 3f). Overall, viral-encoded DGRs in clades 1, 4,
and 6, targeting mostly structural proteins, systematically
displayed a higher rate of amino acid turnover than DGRs of
the cellular-encoded clades 2 and 5 or from “mixed” clade 3 from
the same environments (Fig. 3f, Supplementary Fig. 15). Extra-
polating from the average mutation rates observed here, we
conservatively estimated that DGR-driven mutations would be
responsible for 6–16% of all amino acid changes in an average
viral genome, even though DGRs target only ~0.1% of amino acid
residues (see Supplementary Note 13). In addition, we observed a
higher level of DGR activity in human gut samples from
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individuals following a 12-month weight-loss program36 com-
pared to “unperturbed” gut microbiome samples from the
Human Microbiome Project37, with a more pronounced increase
in activity for cellular-encoded clade 3 DGRs (Fig. 3f, Supple-
mentary Fig. 16). Taken together, this suggests that DGRs drive
more steady changes in viral structural proteins through time
compared to non-structural or cellular targets, and some of the
latter may be more associated with adaptation during stress
episodes. Whether this is due to stronger control of DGR RT
activity or a stronger selection exerted on targets outside of stress
episodes remains to be determined.

Discussion
The extensive comparative analysis of metagenome-derived
DGRs presented here highlights DGRs as a fundamental com-
ponent of microbial and viral genome evolution. The near-
universal conservation of the adenine mutation bias and the C-
Lec fold in target proteins suggests that DGR RTs are mechan-
istically constrained in the type and location of mutations they
can generate and, reciprocally, that C-Lec folds have a seemingly
unique ability to accommodate massive sequence variation20. The
strong DGR enrichment observed in select biomes and taxa likely
reflect specific ecological conditions and lifestyles for which

hypermutation is advantageous. For instance, in human gut
microbiomes, the combination of high resource availability and
frequent infections by a broad diversity of phages is expected to
favor resistance through cell wall modification38. This would in
turn select for DGR-encoding viruses, which would leverage
hypervariation of host recognition proteins such as tail fibers to
bypass these host resistances39, and possibly expand their range of
potential hosts in the process. Finally, the widespread and see-
mingly constant DGR activity suggests that these elements are
mostly used to maintain a high population diversity at target loci
rather than only being triggered in case of extreme stress. Overall,
our global analysis of DGR diversity and activity indicates that
DGRs likely shaped long-term microbe-microbe and virus-host
interactions in multiple taxa and biomes; that they drive the
diversity and evolution of key components of viral particles and
microbial cells envelopes; and that they may represent a funda-
mental mechanism by which viruses and cellular microorganisms
adapt and respond to an ever-changing environment.

Methods
Collection and annotation of reverse-transcriptase (RT) and DGR reference
sets. Reference sequences of RTs (DGRs and non-DGR) were collected from
ref. 18. Additional DGR references were obtained from ref. 2. For the latter, cor-
responding TR/VR and target sequences were extracted from the supplementary

Fig. 3 Diversity patterns associated with DGR target loci. a Proportion of genes with ≥1 SNV observed (synonymous or non-synonymous), for both non-
target genes within 10 kb of a DGR RT (left) and VR loci (right). “Low coverage” category includes cases in which the coverage of the VR region was
significantly lower than that of the surrounding genes, suggesting that the read recruitment may be only partial, and the population diversity in the VR
cannot be reliably inferred (see Supplementary Fig. 11). b Distribution of pN/pS values for genes with ≥1 synonymous SNV, for both non-target genes and
VR loci. A dashed line indicates pN/pS= 1. Boxplot lower and upper hinges correspond to the first and third quartiles, whiskers extend no further than ±1.5
times the interquartile range. pN/pS distributions for non-target genes and VR loci were compared using a Kruskal–Wallis test (***p-value < 2.2E−16 and
Cohen’s d effect size >1.7). c Proportion of DGRs estimated as “active” vs. “inactive” based on enrichment of VR loci in non-synonymous SNVs compared
to surrounding genes, across different DGR classifications. Groups with a significantly lower proportion of active sequences (Chi-squared test of
independence) are highlighted with star symbols (Bonferroni-corrected p-values: *<1E−03, **<1E−05, ***<1E−10). d Schematic representation of the two
competing forces exerted on VR loci: purifying selection and DGR diversification. Three examples of possible DGR activity levels are indicated in color, with
the resulting observations across a time series (“Sample_1” and “Sample_2”) summarized in the right column. e Example of diversity and changes observed
for one DGR target across two-time series datasets. For each position, the corresponding amino acid is indicated in the main heatmap with its frequency
within the population indicated in color. The right panel indicates the category of the position, colored as in panel (d), based on within-sample entropy,
between-samples cosine distances, and the number of amino acid changes in the time series (see Supplementary Note 12). The top panel indicates the
median coverage of all positions in each sample. For reference purposes, ten random positions from the same protein outside of the predicted VR are
included. f Distribution of VR positions into “activity” categories (colored as in panel (d)) across different biomes and clades. Cases with <50% of variable
positions and <5% of amino acid changes were considered as “low DGR activity” and colored in white. Only groups for which ≥10 DGRs were available are
included.
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html and fasta files (respectively) provided. Taxonomic classification of reference
sequences was derived from the NCBI database based on the genome identifier
provided for each DGR. For DGRs not taxonomically classified as viruses, the
genome sequence was downloaded from NCBI GenBank and VirSorter was used to
identify whether the DGR RTs were encoded in an integrated provirus or meta-
genomic viral contig.

Detection of DGRs in (meta)genomes. The overall detection pipeline consisted
of three main steps: (i) identification of RT based on matches to HMM profiles
using hmmsearch v3.2.140, (ii) detection of repeats around the candidate RT using
blastn v2.9.0+ 41 with option -word_size 8 -dust no -gapopen 6 -gapextend 2, and
(iii) selection of putative DGRs, TRs, and target genes based on repeat patterns and
RT length. Importantly, unlike existing tools42, this detection was agnostic to the
variation between the repeats, because it did not require mismatches between
repeats to be associated with adenine residues. The input sequences for this
detection pipeline were (i) all genes predicted from IMG public genomes, and (ii)
genes predicted on contigs ≥1 kb and encoding ≥2 genes from IMG public meta-
genomes (Supplementary Data 1). The former (i.e., IMG public genomes) were
used to complete the reference set of DGRs already collected from the literature.
These sequences were included in the DGR catalog studied here (see Supple-
mentary Data 1, Dataset Type “Genome”), but were not the subject of any targeted
analysis. The latter (i.e., sequences from IMG public metagenomes) formed the
bulk (96%) of the dataset analyzed in this study. Notably, while IMG public
metagenomes do not include the entirety of publicly available metagenomes, this
database was selected because it includes datasets from a very broad range of
environments and taxa, enabling a global survey of DGR diversity.

Successive rounds of the detection pipeline were performed as follows.
Candidate DGRs were first detected based on matches to Pfam reverse-
transcriptase domains (PF00078, PF07727, PF13456, and PF13655), with a score of
≥20 for genomes and ≥30 for metagenomes43. Candidates with an RT sequence
length of 250–550 amino acids and an imperfect repeat detected within 20 kb of the
RT in 5′ or 3′ (blastn hit ≥50 bp with <99% nucleotide identity), with one of the
repeats within ≤1 kb of the 5′ or 3′ end of the RT gene, were selected as putative
DGRs. Sequences obtained from isolates were clustered with literature-derived
references to remove redundancy (cd-hit44 v4.8.1, ≥95% AAI). All candidate DGRs
were included in a phylogenetic tree along with DGR and non-DGR references,
based on multiple alignments of RT amino acid sequences obtained with mafft45

v7.407 using iterative refinement (“einsi”), and built with FastTree46 v2 using the
WAG substitution model. Since known DGRs formed a large monophyletic clade
in this phylogeny, new sequences that branched within this clade were assumed to
be likely DGR, regardless of the characteristics of their predicted TR and VR
sequences, i.e., whether or not the TR was intergenic and the mismatches between
TR and VR reflected an A mutation bias. Representatives of each novel RT group
that branched outside of the known DGR clade were manually inspected to
evaluate whether these could represent novel DGRs. In all such cases, we observed
that the predicted TR and VR were found in genome regions with high repeat
content, often next to insertion sequences or transposases, TR and VR were
typically either both predicted as part of a cds or both intergenic, and TR-VR
alignments typically did not show any mutational bias. We reasoned that these RTs
were unlikely to represent new DGR elements, and to enable automatic filtering of
these sequences branching outside of the main DGR clade, all those for which
<75% of the mismatches between repeats were associated with A residues were
discarded. All retained candidate DGRs were used to generate six new HMM
profiles representing the main clades in the RT tree, using multiple alignments built
with Muscle47 v3.8 and the hmmbuild tool from HMMER40 v3.2.1, with default
parameters.

A second round of search was conducted on the same input dataset by using
these new DGR RT HMM profiles instead of Pfam HMM profiles in the initial
search (score ≥ 50 and e-value ≤ 1E−05). Putative DGRs were then selected as in
the first round, except for the RT sequence length which was extended to range
from 150 to 650 amino acids. After manual inspection and removal of false-positive
detections based on a phylogeny (as in the first round), another set of 4 HMM
profiles were constructing. These new HMM profiles were used in a third and last
round of search, which did not yield any new plausible candidate DGR, detecting
only seven previously undetected sequences that were all identified as likely false
positives. The protein sequences of all DGR RTs are provided as Supplementary
Data 7, the protein sequences of the predicted targets as Supplementary Data 8, and
the nucleotide sequences of the TR-VR pairs as Supplementary Data 9.

Selection and annotation of reference genomes and metagenome sequences.
For additional DGRs identified from IMG genomes, taxonomic classification was
derived from the IMG taxonomy database. VirSorter48 v1.0.5 was used to identify
which of these DGRs were encoded in proviruses: predictions of categories 1, 2, 4,
and 5 were considered as viral, while predictions of categories 3 and 6 were pro-
visionally listed as “putative viral” for the RT OTU-level aggregation (see below).

For DGRs detected on metagenome contigs, the taxonomic classification of
DGR-encoding contigs ≥3 kb were derived from the automatic taxonomic
annotation provided by IMG, based on majority ruling from gene-level best blast
affiliations, i.e., each contig is affiliated based on individual gene affiliation up to the
rank at which there is no majority affiliation anymore49. For contigs <3 kb,

taxonomic classification was set as “unclassified” because there are not enough
predicted genes beyond the RT and DGR target on these contigs for a robust
classification using the majority rule approach. Viral origin was predicted using a
combination of VirSorter48 v1.0.5 (as for genomes), the Earth’s Virome pipeline50,
and the inovirus detector pipeline51. All sequences identified as viral with the
Earth’s Virome pipeline, the inovirus detector pipeline, or VirSorter categories 1, 2,
4, and 5 were considered “viral”, while sequences only predicted with VirSorter as
categories 3 or 6 were listed as “putative viral” for the RT OTU-level aggregation
(see below). For sequences not identified as viral by any pipeline, contigs ≥10 kb
were considered as “cellular”, while contigs <10 kb were considered as “unknown”,
based on previous benchmarks of viral sequence detection tools48,50. For contigs
identified as viral, host taxonomic classification was determined as follows. For
contigs ≥10 kb, IMG blast-based taxonomy was considered as the predicted host
taxonomy52. All sequences predicted as viral were also compared to IMG CRISPR
spacer database53 using blastn41 with options—dust no and—word_size 7. Hits
between viral sequences and CRISPR spacers with 0 or 1 mismatch over the entire
spacer length were selected and used to infer host taxonomic classification of the
corresponding viral sequence. In the rare cases where IMG and CRISPR match
taxonomic affiliations were inconsistent, IMG taxonomy was used. Viral contigs
were also classified using vContact2 v0.9.1054, to obtain a taxonomic affiliation of
the virus itself (instead of the host) at the genus rank. vContact2 was run with the
“diamond” option to generate the PCs, clustering of VCs with cluster_one, and the
reference database “ProkaryoticViralRefSeq94-Merged”, all other parameters left as
default. Metagenome-derived DGRs were also associated with a biome type based
on the original sample classification available in the Gold database55

(Supplementary Data 1).
In all analyses, the taxonomic classification used was the microbial one (i.e.,

“host” classification for viral contigs) at the domain and phylum ranks or
equivalents. Members of the Candidatus Phyla Radiation (for bacteria) and
DPANN (for archaea) were gathered in “Bacteria:CPR” and “Archaea:DPANN”
groups (respectively) based on the supergroup classification proposed in ref. 56.
Similarly, genomes classified as Bacteroidetes, Chlorobi, Cloacimonetes,
Fibrobacteres, and Marinimicrobia were gathered in a “Bacteria:FCB” group, and
genomes classified as Omnitrophica, Chlamydiae, Lentisphaerae, Planctomycetes,
and Verrucomicrobia in a “Bacteria:PVC” group.

Clustering and annotation of DGR based on RTs. The global DGR collection was
clustered based on RT sequences, along with non-DGR RTs, representing a total of
33,342 RT sequences: 655 non-DGR RTs, 1680 “reference” DGR RTs either from
literature or from IMG genomes, and 31,007 from IMG metagenomes. These
sequences were first clustered into “RT-OTUs” at 95% AAI using cd-hit44 v4.8.1.
Next, the representatives (longest sequences) from each RT-OTU were collected
and compared all-vs-all using blastp41 v2.9.0+. Blast hits with e-value < 0.001 and
with AAI ≥50% (based on the whole query length) were used as input to an MCL
clustering (v14-137) with inflation value 2.0 and AAI percentage as edge weight57.
The groups provided by MCL are designated as “RT-Clusters”.

RT-OTUs and RT-Clusters were associated with a genome type (viral or
cellular), taxonomic classification, biome classification, and target gene (see below)
as follows. Because DGRs were detected across >1500 different bacterial, archaeal,
and viral genera, and >90 different environment types, we opted to conduct global
analyses at a coarse level, i.e., phylum-level for taxonomy and broad ecosystem
types (e.g., “Aquatic:Freshwater”, “Host-associated:Rumen”) for biomes.
Taxonomic classification of RT-OTUs was based on RT-OTU member affiliations
using a majority rule, and an LCA if the top two affiliations had an identical
number of members. A similar approach was used for the biome classification and
the target PC, i.e., majority rule and LCA in case of a tie. For genome type, RT-
OTUs with all members unknown were considered “unknown”, RT-OTUs with at
least 1 “viral” or “putative viral” member and no cellular were considered “viral”,
while others were considered “viral” or “cellular” based on a majority rule between
viral and cellular members (if tied, the RT-OTU is considered as “unknown”). A
consensus bias vector, representing the frequency of individual A, T, C, and G
nucleotides in the TR for positions with mismatch, was also calculated by averaging
the bias vector of RT-OTU members. For this average, we discarded cases in which
the RT was found within 500 bp of the contig edge of the target gene was found
within 200 bp of the contig edge, and the bias vector had an atypical A frequency
<70%, as these likely represent misprediction of the TR/VR and/or target (based on
manual inspection of these contigs). Similarly, in cases where RT-OTUs included
both members with “typical” and “atypical” bias vectors, i.e., A frequency ≥70%
and <70% respectively, the average vector for the RT-OTUs was calculated only
with the “typical” ones. For RT-Clusters, a 2/3rd majority rule was applied based
on the annotation of the RT-Cluster members. For multi-level data (taxonomy,
biome, and target PC), the 2/3rd majority rule was applied first to the first level,
then to the second level. In cases for which the majority value was found in less
than 2/3rd of the RT-Cluster, the value was set as “unknown”.

Enrichments of DGRs across taxa and biomes. Two different approaches were
used to evaluate potential enrichment in DGRs of specific taxa and/or biomes. To
link DGRs with specific taxa, the number of genomes affiliated to each taxon (at the
same rank as for the DGR, see above) was estimated for each metagenome based on
a list of 139 single-copy marker genes58. Briefly, for each metagenome, the total
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number of genomes for a taxon was estimated as the median number of single-
copy marker genes affiliated to this taxon, similar to the estimation performed in
Anvi’o59. For each taxon, an enrichment in DGRs was calculated as the log2 ratio
between the frequency at which DGRs were observed in this taxon (i.e., total
number of DGR OTUs observed for this taxon divided by the total estimated
number of genomes for this taxon across all metagenomes) and the average fre-
quency of detection of DGRs across all taxa (i.e., total number of DGR OTUs
divided by total estimated number of genomes across all metagenomes). The sta-
tistical significance of these differences in DGR frequency was evaluated using a
Chi-square test of independence (prop.test function in R v3.6.1 on 2 × 2 con-
tingency table for each taxon).

For biomes, the same set of single-copy marker genes were used to estimate the
total number of microbial genomes in each metagenome. For each biome group
(see above), a linear regression model was then fitted using the number of genomes
as a predictor for the number of DGRs. For statistically significant fits (p-value <1E
−4), an estimated number of DGRs per genome was derived based on the
regression coefficient. Metagenomes with ≥40% of contigs ≥10 kb identified as viral
were excluded from this analysis as they likely derive from samples strongly
enriched in viral genomes, for which the count of microbial genomes will not be
reliable.

Clustering and functional annotation of predicted target genes. For each DGR
RT, target genes were identified by comparing the predicted VR repeat to CDS
predictions available in the IMG database. If multiple VR repeats were detected for
a single DGR RT, the one with the highest A mutation bias or, if tied, the closest to
the DGR RT on the contig, was considered as the primary target. Genes associated
with other VR repeats were then included as “secondary” targets if the VR repeat
was associated with a plausible A mutation bias (≥75% of mismatches on A
positions in the TR).

For de novo clustering of predicted targets, high-quality target sequences were
first selected as genes longer than 300 nucleotides and not within 50 bp of the edge
of the contig, i.e., less likely to represent partial genes. These high-quality target
genes were clustered at 99% AAI using cd-hit44 v4.8.1, then clustered in a two-step
process as in ref. 51. Briefly, sequences are first clustered using MCL v14-13757

from an all-vs-all blastp, using blast score as edge weight and an inflation value of
2.0, then HMM profiles were built for these clusters and HHsearch23 v3.1.0 was
used to identify similarities between clusters. This led to the definition of
“superclusters” (i.e., clusters of clusters) based on a single-linkage clustering using
similarities of ≥90% probability of ≥50% of the profile length or ≥99% over ≥20%
of the profile length and 100 positions. Target sequences that were initially
discarded because shorter than 300 nucleotides and/or within 50 bp of the contig
edge were then mapped to these superclusters using hmmsearch40 v3.2.1, with each
sequence affiliated to the cluster with the highest score if ≥30.

This two-step clustering pipeline was further evaluated on reference genomes to
verify that it was not too sensitive and did not over-cluster either microbial or
phage proteins. For this benchmark on cellular genomes, 25,000 protein sequences
were randomly selected among all predicted cds in DGR-encoding IMG genomes
(genome list provided in Supplementary Data 5). Two clustering analyses were
performed: one including the 25,000 proteins, and one including a random subset
of 15,599 sequences to match the exact input size of the DGR target clustering. For
benchmarking viral protein clustering, 24,753 predicted cds from 200 Caudovirales
genomes randomly selected from NCBI Viral RefSeq v20160 (genome list provided
in Supplementary Data 5) were gathered and clustered using the same pipeline,
including a separate clustering with a 15,599 sequences subsample. The different
clustering results were compared by evaluating the number of sequences gathered
in the 20 largest clusters (Supplementary Fig. 6) and by calculating Shannon’s
Entropy index on each set of clusters using custom Perl scripts. Further, the
functional annotation of individual PC members for both benchmark datasets is
presented in Supplementary Data 5, to confirm that PCs obtained with this pipeline
include protein sequences with similar functions.

Functional annotation of superclusters was obtained from analysis of the
supercluster multiple sequence alignment and from the annotation of individual
members. For the former, multiple sequence alignments were built using Muscle47

v3.8 after dereplicating the supercluster sequences at 90% AAI using cd-hit44

v4.8.1. These alignments were then used as input in HHblits23 which compared the
alignments to the Pdb70 v190918, Pfam v32, and SCOPe70 v1.75 databases
(database package downloaded in Feb. 2019 from the HH-Suite website). Each
target sequence was also annotated the same way, using a direct hhblits23

comparison to the same Pdb70 v19091861, Pfam v3243, and SCOPe70 v1.7562

databases, and using an hmmsearch40 comparison to the Pfam v31 database43.
Annotations were derived from hits with a score of ≥50 in hmmsearch or ≥90%
probability in hhblits, except for hits overlapping the prediction VR region for
which these cutoffs were lowered to ≥30 on score and ≥80% probability, in order to
enable the identification of distantly related C-lectin folds. In addition, individual
target sequences were also searched for transmembrane domains and signal
peptides using TMHMM63 v2.0c (default parameters) and SignalP64 v4.1 (score
D ≥Dmaxcut), and searched for potential Caudovirales structural proteins (capsid
or tail proteins) using DeepCapTail v3038c4d24 (version downloaded Jan. 2020)
and PhANNs v1.0.025 with thresholds of ≥0.9 and ≥0.2 on the score, respectively.
The same clustering and annotation pipeline were applied to predicted cds from

NCBI RefSeq Caudovirales genomes, after having dereplicated these protein
sequences at 99% using cd-hit44 v4.8.1 (n= 250,209 proteins), in order to evaluate
the functional annotation across all Caudovirales of (i) sequences containing an Ig-
like domain (ii) sequences predicted as “capsid” or “tail” via DeepCapTail (see
Supplementary Note 8).

A prediction of 3D structure was computed for selected target sequences using
I-TASSER65 5.1, using default reference libraries and 25 h-long simulations. The
average conservation of residues in target clusters was based on the multiple
alignments generated for cluster annotation (see above). For comparing
conservation within and outside of the VR regions, a predicted “extended” average
VR region was defined by adding 200 residues upstream and 20 residues
downstream of VR regions predicted on individual sequences. The size of this
“extended” VR regions was defined based on the coordinates of predicted VRs and
surrounding conserved C-Lec fold on reference DGRs.

The association between RT, TR-VR, and target protein sequences was
evaluated as follows. Predicted TR sequences associated with high-quality targets
and typical mutational bias (see above) were compared using all-vs-all blastn41

v2.9.0+ with options adapted for short sequences (“-dust no -word_size 7”). The
global nucleotide identity between two TR sequences was then calculated based on
the number of identical residues in the best blast hit compared to the length of the
shortest TR sequence of the pair.

DGRs identified in genome bins. When available, automatically-generated gen-
ome bins (“GEM dataset”) were searched for DGR-encoding contigs. Briefly,
genome bins were automatically generated for public metagenomes on IMG, using
metabat66 v0.32.4 for binning with a 3000 bp minimum contig cutoff, contig
coverage information, and parameter “-superspecific” for maximum specificity,
checkM67 v1 for quality estimation, and gtdb-tk68 v0.3 for taxonomic
assignment26. Only medium- and high-quality bins according to the MIMAG69

criteria were included. DGRs encoded on contigs identified as entirely viral were
not considered in this process, since previous studies have indicated that these
contigs are often binned incorrectly26. Overall, 13,180 MAGs were searched, and
1509 were found to include at least 1 DGR locus. For metagenomes including at
least 1 genome bin with a DGR-encoding contig and at least 10 genome bins, the
relative abundance rank of each genome bin was determined as follows: for all MQ
and HQ genome bins identified in the metagenome, the bin coverage was estimated
as the median coverage of all contigs. The genome bins were then ordered based on
this median coverage of contigs to determine the rank(s) of genome bin(s)
encoding DGRs.

The diversity of DGR-encoding genomes identified in human gut samples was
evaluated through an RNA polymerase B (RpoB) tree. RpoB protein sequences
were first identified in isolate genomes and genome bins associated with human gut
and encoding a DGR of clade 1, 4, or 6, based on significant hits to the pfam
domain PF04563 (hmmsearch score ≥50). Multiple alignments were then built with
MAFFT45 v7.407 using default parameters, automatically trimmed using TrimAl70

v1.4.rev15 with the -gappyout option, and used as input to build a tree with IQ-
Tree71 v1.5.5 with built-in model selection (optimal model suggested: LG+ R6).

The gene content of DGR-encoding genomes was evaluated based on
metagenome bins as follows. For each metagenome including at least one Clade 5
DGR in a genome bin, the number of proteins affiliated to each COG in each MQ
or HQ bin was tallied. The number of proteins associated with each COG category
(level 1) was then compared between DGR-encoding genome bins and non-DGR-
encoding genome bins for each metagenome using a Kolmogorov–Smirnov test
and Cohen’s effect size.

Phylogenetic analyses. For RT phylogeny, a representative of each RT cluster was
selected as the sequence with the highest score when compared to the RT cluster
hmm profile, or the longest sequence in case of ties, first among the references if
available, then among the new sequences if no reference was present in the RT
cluster. An RT tree was then built with IQ-Tree71 v1.5.5 using the built-in model
selection (optimal model suggested: VT+ F+ R10), based on an amino acid
multiple alignments computed with MAFFT45 v7.407 using the einsi mode and
automatically trimmed using TrimAl70 v1.4.rev15 with the -gappyout option.
Sequences from the non-DGR RT reference set (see above) were included in the
alignment, with the exception of sequences identified as “unknown” or “unclassi-
fied” by Wu et al., as these led to a lower quality alignment and long-branch
attraction issues in the resulting tree.

The distribution of DGR features (genome type, taxonomy, target, and biome)
across the tree was analyzed by computing unweighted Unifrac distances72 between
all pairs of values for each features and comparing these with the distance for the
same pair of values on 100 randomly shuffled trees. Ancestral state reconstructions
were conducted using the R package phytools73 v0.6-99 with the options model
= “ER” and type= “discrete”, separately for each feature. The increase in
phylogenetic diversity associated with this new extended DGR catalog was
calculated as the total length of all branches leading to cluster(s) entirely composed
of metagenome-derived sequences described in this study, divided by the total
length of all branches leading to clusters including at least one of the 366 reference
DGR sequences described in ref. 2.

A similar pipeline was used to build the trees of target sequences from
PC_00003. Briefly, for PC_00003 targets, high-quality target protein sequences (see
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above) clustered into PC_00003 were gathered and dereplicated at 80% amino acid
identify using cd-hit44 v4.8.1. A multiple alignment of representative sequences was
then generated with MAFFT45 v7.407 using the einsi mode, automatically trimmed
using TrimAl70 v1.4.rev15 with the -gappyout option, and used as input to build a
tree with IQ-Tree71 v1.5.5 with built-in model selection (optimal model suggested:
WAG+ F+ R10).

Phylogenetic logistic regression between DGR presence in a genome and
biome type. Two trees were built for phylogenetic logistic regression, one for
cellular-encoded DGRs, and one for viral-encoded DGRs. For cellular-encoded
DGRs, all bacterial genome bins from the GEM dataset26 were searched for the
presence of the phylogenetic marker RNA Polymerase beta subunit (RpoB) based
on IMG annotation to the pfam domain PF04563. For genome bins with multiple
hits to this pfam domain, the sequence with the highest score was retained. The
corresponding RpoB protein sequences were clustered at 90% identity using cd-
hit44 v4.8.1 to get a non-redundant set. Next, RpoB sequence representatives from
DGR-encoding genome bins (previously identified, see above) were compared with
blastp41 v2.9.0+ to all RpoB representatives (maximum e-value: 1E−03), and the
40 most similar sequences (i.e., best blastp score) from non-DGR-encoding bins
were collected. This yielded a dataset of 2169 sequences, including 174 from DGR-
encoding bins. These 2169 were used as input in a standard tree building pipeline
including multiple alignments with MAFFT v7.40745 using the auto mode, auto-
matic trimming using TrimAl v1.4.rev1570 with the -gappyout option, and tree
built with FastTree46 v2 using the LG model. A similar approach was used for viral-
encoded DGRs, using the Terminase large subunit (TerL) as a viral marker gene.
First, contigs from the IMG/VR v3 database74 (i.e., independently identified as
viral) were searched for TerL sequences using hmmsearch v3.2.140, using pfam
domains PF03354, PF04466, PF03237, and PF05876 (maximum e-value: 1E−05).
Next, viral contigs encoding both a DGR and a TerL gene were identified, the
corresponding TerL sequence extracted, and compared to all TerL sequences from
IMG/VR high-quality viral genomes via blastp v2.9.0+41 (maximum e-value: 1E
−03). For each TerL sequence associated in a DGR-encoding genome, the 40 most
similar sequences (i.e., best blastp score) from non-DGR-encoding genomes were
collected. The final dataset included 5326 sequences, including 883 from DGR-
encoding genomes.

Each tree was then used as input in a phylogenetic logistic regression analysis
using the phyloglm function from the phylolm R package v2.6.275. To this end, the
presence of DGR on individual genomes (represented by individual marker genes)
was coded as “1” if present and “0” if absent, and each genome was also associated
with the biome (2-level category) of its original metagenome. Phylogenetic
regression was performed with 5000 bootstraps, all other parameters default. For
results reported in Supplementary Table 1, the alpha parameter is log-transformed
and interpreted as suggested in ref. 76, i.e., the phylogenetic signal was considered
as significant if the minimum value of a parameter across all bootstrap replicates
was >−4.

Estimation of host range for DGR-encoding phages. To estimate phage host
range, we formed a comprehensive database of 6,675,007 CRISPR spacers (497,912
arrays) identified from 576,561 prokaryotic reference genomes (38% with a pre-
dicted CRISPR array). These reference genomes were compiled by a previous
study26 and include 52,515 MAGs from the genomes from earth’s microbiomes
(GEM) catalog, as well as all publicly available isolate genomes, MAGs, and single-
amplified genomes available at the time of that publication. The 576,561 genomes
were previously clustered into 45,599 species level operational taxonomic units
(OTUs) based on 95% average nucleotide identity and taxonomically annotated
using the GTDB-tk toolkit v0.368. CRISPR arrays were identified using a
combination of CRT v1.177 and PILER-CR v1.0.678 with default parameters.
Redundant CRISPR arrays predicted by both tools were merged based on genomic
coordinates.

To determine the host range, CRISPR spacers were matched against 3575 viral
genomes containing a DGR (DGR+ viruses) and 19,761 viral genomes lacking a
DGR (DGR− viruses). DGR+viruses were identified as described above, and DGR−
viruses were extracted from the IMG/VR v3 database74 using only metagenomes
containing at least one DGR+ virus, such that DGR+ and DGR− viruses were
derived from the same set of samples. Only viral genomes estimated to be >90%
complete based on CheckV v0.7.079 were included in this analysis. CRISPR sequence
matching was performed using blastn from the blast+ package v.2.9.041 (options:
-dust= no -word-size= 18), allowing a maximum of one mismatch or gap over the
full length of the spacer.

We used the CRISPR spacer matches to estimate the species-level host range for
each virus using two diversity metrics: richness and Shannon’s Entropy. To
estimate host richness, we counted the number of distinct host species (i.e., OTUs
based on 95% ANI) connected to each virus using a random subset of 50 CRISPR
spacer matches. This resulted in 822 DGR+ and 1182 DGR− viruses with at least
50 protospacers. We estimated Shannon’s Entropy for the same subset of viruses,
using the entropy function in SciPy (scipy.org). Host range (i.e., richness and
entropy statistics) was compared between DGR+ and DGR− viruses using the
Wilcoxon rank-sum test in R v3.6.180.

Diversity estimation of DGR target loci. Nucleotide and amino acid diversity
evaluation was conducted on the metagenome-derived DGRs with contig length
≥10 kb and median coverage ≥20×. The coverage cutoff was applied to ensure that
single nucleotide polymorphisms (SNVs) could be called with enough certainty,
while the length cutoff was used to ensure that enough surrounding genes were
available to evaluate background microdiversity for the DGR-encoding genome.
For this analysis, combined assemblies (i.e., datasets obtained by combining reads
from multiple samples), metatranscriptomes, and viral metagenomes were not
included. The final set included 6901 DGRs, with representation of all DGR clades
(1968 DGRs from DGR_Clade_1, 972 from DGR_Clade_2, 1359 from
DGR_Clade_3, 1147 from DGR_Clade_4, 1095 from DGR_Clade_5, and 350 from
DGR_Clade_6).

For DGRs found on contigs ≥20 kb, a region of 20 kb around the RT (i.e., up to
10 kb in 5′ and 3′) was extracted and used in these analyses. Reads from the original
metagenome were first recruited to the contig (or selected contig subset if the
original contig was ≥20 kb) using bwa81 v0.7.17-r1188 (default parameters). Reads
which matched the reference sequence on at least 50% of their length were then
extracted using filterBam (https://github.com/nextgenusfs/augustus/tree/master/
auxprogs/filterBam) and realigned against the same reference sequence using
bbmap82 v38.73 to obtain a global alignment of the read to the reference contig
instead of the local/soft-clipped alignment provided by bwa (bbmap options “vslow
minid= 0 indelfilter= 2 inslenfilter= 3 dellenfilter= 3”, see Supplementary
Note 11). This global alignment was required to accurately estimate SNVs in
regions with a high number of mismatches, such as VRs with many different
variants in the population. Typically, in these regions, local alignment tools will
either trim the mapping to remove these mismatch-containing regions, or “soft-
clip” them, i.e., mask them in the resulting sam file, which eventually means that no
SNV will be called in these variable regions. Instead, by re-aligning the same reads
with a global alignment algorithm, all positions from the read will be considered
and SNVs can be identified.

SNVs were called using bcftools83 v1.9 “mpileup” and “call” functions (options
“-A-Q 15-L 8000-d 8000” for mpileup, “-ploidy 1-A-m” for the call). Only SNVs
for which the alternative allele was supported by ≥4 reads or ≥1% of the reads
(whichever was smaller) were further considered. These SNVs were then classified
as synonymous or non-synonymous based on the available gene prediction, and
used to calculate pN/pS for each gene as in Schloissnig et al.33. Another set of SNVs
was called using FreeBayes84 v1.3.1 using the options “-ploidy 1-min-base-quality
15-haplotype-length 0-min-alternate-count 1-min-alternate-fraction 0-pooled-
continuous-limit-coverage 8000” and the same cutoff on read representation. The
two SNV sets were found to be mostly overlapping (see Supplementary Note 11),
and the bcftools SNVs were used in all subsequent analyses.

To evaluate DGR activity, an enrichment of the VR locus in non-synonymous
SNVs was calculated as follows. For each DGR, the frequency of non-synonymous
SNVs was first calculated as the average number of non-synonymous SNVs per
position observed across all genes for the contig (or contig subset). A Poisson law
was then used to compare the number of non-synonymous SNVs observed in the
VR locus to an expected number of non-synonymous SNVs based on surrounding
genes. All cases for which the number of non-synonymous SNVs observed in the
VR locus was significantly higher than expected by chance (Poisson law probability
<0.05) were considered as observations of DGR activity. For cases where different
metagenomes were available from the same sample, only the observation with the
highest coverage was selected and used in DGR activity evaluation. While no
significant correlation was detected between SNP density and coverage for the
sequences selected here (Pearson correlation p-value > 0.25), we did notice a higher
fraction of DGRs identified as “inactive” in the lower coverage range, which
suggests there may be some level of under-detection of DGR activity for these
~20–50× coverage (Supplementary Fig. 12).

To further explore the dynamics of VR loci in nature, 130 datasets were
identified as longitudinal sampling that enabled tracking of DGRs across time in
the same system (Table S7, including data previously analyzed in refs. 36,37,85–88).
For these, a similar mapping approach was used as described above, but including
all metagenomes from a single subject (for human-associated metagenomes) or
location (e.g., geographic coordinates and water layer). The same approach based
on non-synonymous SNV frequencies was used to evaluate DGR activity for each
individual sample, except that the minimum median coverage was set at 10×. For
cases in which multiple metagenomes were available for a single subject/location
and time point, the one with the highest coverage was used for each DGR. In
addition, nucleotide diversity (Π) was calculated for each VR locus as the average
nucleotide diversity observed for each position. To evaluate changes in the VR
locus between samples, amino acid variants were called using Anvi’o31,32,59 v6.1
based on the same read mappings. This enabled us to accurately evaluate the
frequency of individual amino acid residues, including the ones for which multiple
positions in the codon were variable.

Data processing and visualization. Plots and charts were generated in R80 v3.6.1
using the ggplot289 v3.2.1 package, while phylogenies were visualized using iToL90

v4 (https://itol.embl.de/) and predicted protein structures were visualized with
UCSF Chimera91 v1.11.2. Several programs used in this study benefited from the
GNU parallel tool v2019072292. The genome maps from Supplementary Fig. 4 were
generated using Easyfig93 v2.2.3.
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Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All metagenome assemblies are available through IMG (https://img.jgi.doe.gov) using
accession numbers listed in Supplementary Data 1. Additional processed results are
included as Supplementary Data as follows:- All_RTs.faa: fasta file of amino acid
sequences for all RTs used in the analysis (DGR and non-DGR). All_DGR_targets.faa:
fasta file of amino acid sequences for all predicted DGR targets. Note that this file
includes all sequences predicted by the automatic pipeline to be a DGR target, before any
of the manual curation steps mentioned in the Methods section. All_DGR_TR_VR.fna:
fasta file of nucleotide sequences for TR/VR pairs. As for the targets, this file includes all
sequences predicted by the automatic pipeline, before any of the manual curation steps
mentioned in the Methods section and Supplementary Notes. The same files are also
available at: https://bitbucket.org/srouxjgi/dgr_scripts/src/master/Companion_datasets/.
Other databases used in the study include: Pfam v31—the entire database was used for
functional annotation—http://pfam.xfam.org/—NCBI GenBank (sequences downloaded
on January 23 2019) —reference DGR sequences were obtained from GenBank, sequence
identifiers are listed in Supplementary Data 2—https://www.ncbi.nlm.nih.gov/—Pdb79 v
190918, Pfam v32, and SCOPe70 v1.75, provided as part of the HH-suite package—the
full databases were used for functional annotation—http://wwwuser.gwdg.de/∼compbiol/
data/hhsuite/databases/hhsuite_dbs/—Gold, i.e., Genome Online Database (accessed on
April 19, 2019)—Ecosystem classification was obtained for all samples using the
identifiers listed in Supplementary Data 1—https://gold.jgi.doe.gov.

Code availability
Scripts used in this study are available at https://bitbucket.org/srouxjgi/dgr_scripts/. The
version of the scripts used in the manuscript corresponds to the “v1.0” release/tag.
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