
Path4Drug: Data ScienceWorkflow for
Identification of Tissue-Specific
Biological Pathways Modulated by
Toxic Drugs
Barbara Füzi 1, Jana Gurinova1, Henning Hermjakob2,3, Gerhard F. Ecker1* and
Rahuman Sheriff 2*

1Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria, 2European Molecular Biology Laboratory,
European Bioinformatics Institute, Hinxton, United Kingdom, 3Beijing Institute of Lifeomics, National Center for Protein Sciences,
Beijing, China

The early prediction of drug adverse effects is of great interest to pharmaceutical research,
as toxicity is one of the leading reasons for drug attrition. Understanding the cell signaling
and regulatory pathways affected by a drug candidate is crucial to the study of drug
toxicity. In this study, we present a computational technique that employs the propagation
of drug-protein interactions to connect compounds to biological pathways. Target profiles
for drugs were built by retrieving drug target proteins from public repositories such as
ChEMBL, DrugBank, IUPHAR, PharmGKB, and TTD. Subsequent enrichment test of the
protein pool using Reactome revealed potential pathways affected by the drugs.
Furthermore, an optional tissue filter utilizing the Human Protein Atlas was applied to
identify tissue-specific pathways. The analysis pipeline was implemented in an open-
source KNIME workflow called Path4Drug to allow automated data retrieval and
reconstruction for any given drug present in ChEMBL. The pipeline was applied to
withdrawn drugs and cardio- and hepatotoxic drugs with black box warnings to
identify biochemical pathways they affect and to find pathways that can be potentially
connected to the toxic events. To complement this approach, drugs used in cardiac
therapy without any record of toxicity were also analyzed. The results provide already
known associations as well as a large amount of additional potential connections.
Consequently, our approach can link drugs to biological pathways by leveraging big
data available in public resources. The developed tool is openly available and modifiable to
support other systems biology analyses.
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INTRODUCTION

The interaction between a chemical compound and the human body can be a complex cascade of
different mechanisms. For understanding these mechanisms, the use of systems biology approaches,
which are moving away from the one drug-one target concept, has seen a consequent rise in the last
couple of years. Biological pathways are described as a sequence of interactions between biochemical
molecules. Systems biology approaches such as pathway-level analysis of drug actions can reveal
information about the underlying mechanisms induced by the drug. Furthermore, it can help to
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increase our understanding of the possible adverse events in
connection to the compound (Yahya et al., 2021).

The National Research Council described the concept of
toxicity pathways as a regular biological pathway that becomes
perturbed beyond the normal homeostasis of the organism
leading to toxicity (Council National Research, Division on
Earth and Life Studies, 2007). On this basis, existing biological
pathways could be connected to toxic events. Defining
pathways involved in such events can help set a warning
sign towards drugs that affect certain pathways (Ganter and
Giroux 2008). As an example, selective COX-2 inhibitors
(celecoxib, rofecoxib, valdecoxib) received a warning from
the FDA because the pathways they target are related to the
mechanism of cardiovascular toxicity, and shortly afterward,
they were withdrawn from the market (Yuryev 2008).
Therefore, pathway-based toxicology is an important field,
providing tools for interpreting and understanding the
increasing amount of toxicity data (Hartung et al., 2017).
Analyzing toxic compounds and pathway relations provides
a way to shed light on pathways potentially involved in toxic
mechanisms.

Drugs usually affect multiple biological pathways. To
understand the toxicological relevance of pathways affected by
toxic drugs, drug-pathway connection data is needed. There are
databases available capturing biological pathways: Reactome
(Jassal et al., 2020), KEGG (Kanehisa et al., 2017), and
Wikipathways (Slenter et al., 2018). Some of them contain
compound relations as well. However, these connections are
often limited to drug metabolism or mode of action pathways
(Zeng et al., 2015). Therefore, they are most probably unable to
capture a complete picture of the relations between drugs and
biological pathways.

The aim was to connect drugs to biological pathways through
proteins they modify to obtain a complete overview of the drug’s
systemic effect. Our approach uses broader drug-target profiles
for uncovering unknown connections between drugs and
biological pathways and eventually between toxic events and
pathways, using statistical analysis.

In the first instance, the focus was on drugs which have been
withdrawn because of their toxic properties and black box
warning cardio- and hepatotoxic compounds. Withdrawn
drugs were once approved and later withdrawn from the
market for toxicity or efficacy reasons. The FDA has
introduced black box warnings to call attention to serious
or life-threatening risks. With our method, we aimed to place
cardio- and hepatotoxic events into their biological context
and to gain more knowledge on two of the most often
occurring organ-specific toxicities. A tissue-specific filtering
system for the collected target proteins was also included to
discover the organ level events’ characteristics. By completing
an overrepresentation test with the retrieved tissue-specific
target profiles, our aim was to define pathways relevant to the
toxicity classes. We developed Path4Drug, an open-source
KNIME workflow, which allows the analysis of other
datasets as well, to support other pathway-oriented systems
biology approaches.

MATERIALS AND METHODS

Path4Drug Input Data Selection
The input of the workflow is a drug or compound, and it should
be provided as a ChEMBL identifier or a list of identifiers for
multiple compounds. When a list compound IDs is provided, the
workflow can sequentially run for each compound.

Our analysis pipeline was based on a set of cardiotoxic and
hepatotoxic compounds for identifying target proteins and
biological pathways that can be involved specifically in one
type of organ-level toxicity. The compounds were selected
from drugs labeled as withdrawn or black box warning
compounds by ChEMBL (Hunter et al., 2021).

First, drugs from four of the most common organ or organ
system-specific toxicity classes across withdrawn and black box
warning drugs–neuro-, nephro-, cardio- and liver toxicity - were
extracted. Since the main aim comprised a comparison of toxicity
classes, compounds that are present in more than one of the
classes and therefore cannot be explicitly connected to one
toxicity type were excluded. Thus, there is no overlap between
the compound groups. The filtered list contained 57 cardio, 75
hepato-, 12 nephro-, and 28 neurotoxic compounds. The
subsequent analysis was carried out with the two most
populated classes, i.e., cardio- and hepatotoxic compounds.

Additional compounds with cardiovascular toxicity from the
withdrawn database were used as an external test set (Siramshetty
et al., 2016). Since the number of withdrawn compounds is
limited, we could only find four compounds with target data,
which were not in our initial dataset (see Supplementary
Material.) Nevertheless, we applied the analysis workflow to
this group, to confirm the results of the initial cardiotoxic group.

Furthermore, the workflow was also applied on approved
cardiac therapy drugs that are still on the market and are not
connected to toxicity, to compare the pathways they affect with
those that are modulated by cardiotoxic compounds. Small
molecules from the category “cardiac therapy” from ChEMBL
were downloaded with a maximum phase of 4, which means they
were approved. The already withdrawn ones and the ones with a
black box warning were filtered out from the cardiac therapy list.
The final set contains 27 compounds.

Consequently, the cardiotoxic compounds had comparison
groups, allowing the distinction of pathways between two tissue-
specific toxicity classes and between therapy and toxic
compounds of the same tissue-group, allowing identification of
pathways that could play a specific role in cardiotoxicity.

Path4Drug KNIME Workflow
Path4Drug is a computational pipeline that employs drug-protein
interactions to identify biological pathways perturbed by a drug.
Path4Drug was implemented as a KNIME workflow (version:
KNIME 4.1.2) to perform automated data retrieval and perturbed
pathway prediction. KNIME is an open-source, graphical-
analytics platform, and workflow management system, created
for data science purposes (Berthold et al., 2009). Figure 1 outlines
the graphical overview of the approach. The steps involved in the
workflow are described below.
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Step 1. Building protein target profiles
In this step, for each inputted drug, a protein-target profile was

built by collecting target proteins from five different databases:
ChEMBL (version 27) (Mendez et al., 2019), DrugBank (version
5.1.6) (Wishart et al., 2018), IUPHAR (version 2020.4)
(Armstrong et al., 2020), TTD (last updated June 1st, 2020)
(Wang et al., 2020), and PharmGKB (downloaded files:
09.2020) (Whirl-Carrillo et al., 2012). The target data in these
databases are curated by scientific experts, hence are reliable and
comparable. We defined targets as proteins, for which a drug was
labeled as active in a biological assay or was annotated as a proven
target for the drug in one of the queried databases. These target
databases differ in their architecture and accessibility. Thus,
we applied different approaches as described below to retrieve
and prepare the data for further usage in the workflow.
Although all these databases are open for academic use,
their license policy varies. Hence users of our workflow
should ensure they have the necessary license to use them
or modify the workflow accordingly to amend the list of
databases used for target collection.

ChEMBL
ChEMBL (https://www.ebi.ac.uk/chembl) is a database of
bioactive molecules with drug-like properties, manually
curated from public literature. The web services offered by
ChEMBL (Davies et al., 2015) were used in the workflow to
extract drug target protein data. At first, for each inputted drug,
an assay search was performed across the database to query all
proteins showing bioactivity value of pChEMBL 5 or above.
pChEMBL is defined as: −log10 (molar IC50, XC50, EC50,
AC50, Ki, Kd or Potency) (Bento et al., 2014). After querying
as described above, all available target proteins were grouped into
human and non-human proteins.

With the human targets, a second ChEMBL API call was
performed to gain more information on the targets, such as the
UniProt accession number. We were interested in protein-type
targets, therefore, other types of targets were discarded from the
analysis. In case the target type was a whole protein family, the
accession numbers of all members were added to the protein pool.
UniProt contains reviewed and unreviewed entries. Only the
manually curated, reviewed ones were considered in our analysis.

FIGURE 1 | Graphical overview of the method.
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From the non-human targets, the non-mammalian ones were
eliminated by using the organisms ChEMBL API call. Based on
the hypothesis that mammalian targets act similarly to human
ones, we intended to enrich the sparse human data with
translated mammalian targets. This part of the workflow can
be viewed as optional considering the inconsistent concordance
rate of translational studies (Leenaars et al., 2019). However,
ignoring the non-human proteins will make the available data
more limited and therefore the scope of the analysis narrower.
Since the gene symbol is identical across different species, the
human equivalents of the mammalian targets were queried and
added to the list as well by using the Proteins API provided by the
EBI protein service (Nightingale et al., 2017).

In addition to the above approach, ChEMBL’s mode of action
API call was used to retrieve proven therapeutic targets. After
accessing and filtering the mechanism of action target data, the
received targets were also converted into UniProt accession
numbers. As a result of both approaches, for each drug
queried a collection of target proteins with UniProt accession
numbers were extracted from ChEMBL.

DrugBank
The DrugBank (https://go.drugbank.com) pharmaceutical
knowledgebase provides a download option for non-
commercial usage of the openly available portion of their data
in the form of one XML file. From that file, the target information
was extracted for further processing. Since the processing of the
whole XML is excessive, an excel file with the information needed
was created and read into the workflow for further usage. Since
the whole workflow starts with a ChEMBL identifier or a list of
CHEMBL identifiers, the UniChem service (Chambers et al.,
2013) was utilized to map DrugBank and ChEMBL IDs to
allow the assignment of the target information to the
appropriate compounds.

Therapeutic Target Database
Drug target protein dataset was downloaded from the
Therapeutic Target Database (TTD) (http://db.idrblab.net/ttd/).
The drug identifier cross-matching and the drug target mapping
files provide information for building the target profiles. Neither
does the drug ID cross-matching include ChEMBL identifiers,
nor does the UniChem translation service support TTD. Hence
PubChem compound IDs were chosen as a base for mapping, as
these identifiers are present in both sources. As the drug and
target file has no UniProt accession numbers, a python script
provided by UniProt was modified and introduced to the
workflow for translating the UniProt names to their accession
numbers. The output is a list of ChEMBL IDs with their targets by
UniProt accession numbers.

Pharmacogenomics Knowledge Base
Similar to TTD, compound mapping and relationship files were
downloaded from the Pharmacogenomics Knowledgebase
(PharmGKB) database (https://www.pharmgkb.org). As
PharmGKB IDs are supported by UniChem, a direct
translation to ChEMBL IDs was feasible. From the
relationship files, rows that symbolize a relationship between a

drug and a target gene were extracted. The UniProt accession
numbers of reviewed human proteins expressed by the target
genes were queried via the EBI Protein API.

Guide for Pharmacology
IUPHAR (Guide for Pharmacology) (https://www.
guidetopharmacology.org) offers web services for protein
target search. The ChEMBL IDs were translated to IUPHAR
IDs and used in the IUPHAR’s ligand-interactors API, which
returned JSON file with target data. IUPHAR has one identifier
for a protein regardless of the organism; for instance, Catechol-O-
methyltransferase with the target ID 2472 represents the human,
mouse, and rat proteins. With the EBI Protein ID mapping
followed by filtering steps the human equivalent UniProt
accession numbers of each target entry were obtained.

Step 2. Unifying the list of protein targets
The collected drug-protein pairs from each database were

harmonized and collated, resulting in a list with ChEMBL ID for
drugs and UniProt accession number for target proteins. It was
ensured, that the final list only contains reviewed human proteins,
and the duplicate drug-protein pairs were removed. After
slimming the data to unique pairs, a protein pool was built for
every compound by concatenating the target proteins separately
for each drug`s ChEMBL ID.

Step 3. Tissue-specific target profiles
Subsequently, an optional filtering, which removes protein

targets not expressed in a tissue, was added to the workflow to
support the analysis of a specific tissue type. The expression data
from The Tissue Atlas of The Human Protein Atlas (https://www.
proteinatlas.org); (Uhlén et al., 2015) was used to build this filter.
The Tissue Atlas contained expression data of mRNA and protein
levels. Since the protein expression was not available for some
genes (for instance the hERG potassium channel), the consensus
mRNA expression was chosen, which is a merged dataset from
three sources. The tissue of interest was selected, and genes with
low or no expression in that tissue were removed from the drug
target profiles. As we focused on cardio- and hepatotoxicity, we
built target profiles for the drug groups with sub-list of proteins
that are expressed in the heart and the liver, respectively.

Step 4. Connecting drugs and biological pathways
With the list of tissue-specific target proteins for each drug, a

statistical overrepresentation test was performed through the
Reactome pathway analysis API service (Fabregat et al., 2017).
Reactome is a manually curated open-source pathway database,
which provides a high-performance pathway analysis service
(Jassal et al., 2020).

This statistical (hypergeometric distribution) test analyses
whether certain pathways are overrepresented in the submitted
data. Overrepresentation is described as the presence of more
proteins for a pathway in the submitted list than it would be
expected only by chance. The result of this test is a probability
score. This probability score is expressed as a p-value and is
corrected via the False-discovery rate (FDR) (Benjamini and
Hochberg 1995). The smaller the p-value, the higher the
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significance of the pathway (Kapitulnik 2004). The False-
discovery Rate indicates whether the so-called significant
features are indeed significant or not. We used a cut-off of
0.05 FDR to select pathways significantly connected to the drug.

The test is completed via a POST request in Reactome. Our
request was carried out with a taxonomy identifier of 9606,
whereby disease pathways were not included. The request
body is equal to the protein pool we built in the first part of
the workflow. The JSON file returned from the API call was
processed to export the workflow`s a table containing the drug(s),
associated pathways and statistical values (Table1).

Additionally, another POST request can be performed by the
workflow to retrieve the token of the analysis. With the token and
preparation of a JAVA snippet for URL encoding, a GET request
can be used to receive a link to the Reactome site´s analysis page
or to download the detailed analysis report as a pdf.

Figures 2A,B are schematic representations of the data
obtained by the workflow, illustrated with one example drug
of each toxicity class. The complete result for every analysed
compound is available in the Supplementary Material.
Supplementary csv Files “hepatotoxic_pathways”,
“cardiotoxic_pathways”, “cardiac_therapy_pathways” contain
the raw results obtained directly from the worflow. They
consist of the ChEMBL identifier for the compound, the
concatenated, tissue-specific target list, the name of the
pathways, FDRs and pValues, and the Reactome identifiers of
the pathways.

Compound-Pathway Data in Reactome
Reactome (https://reactome.org) is also a repository for
downloadable pathway-related data. The data contain ChEBI
(Chemical Entities of Biological Interest) compound relations
to pathways based on compound-protein interactions. ChEBI
(https://www.ebi.ac.uk/chebi/) is a dictionary of molecular
entities focused on small chemical compounds (Hastings et al.,
2015). We filtered out the non-human pathways from the
Reactome data, translated the ChEBI IDs to CHEMBL IDs,
and used this data to see if novel connections were detected
by our workflow.

RESULTS

With our analysis of the three compound groups, we intended to
highlight differences between pathways that are modulated by
cardiotoxic, hepatotoxic, and cardiac therapy compounds, to

characterize pathways that are specific for the cardiotoxic
group. Furthermore, the results derived by our workflow were
compared with compound-pathway connections based on
compound-protein interactions annotated by Reactome. In this
first general evaluation, we could see that the workflowwas able to
find most of the connections presented by Reactome and many
novel connections. Additionally, the workflow uncovered
pathway connections for several compounds, which are not
yet present in the Reactome data.

Comparison of Toxicity Classes
The results of cardiotoxic and hepatotoxic compounds were
compared at target, as well as pathway level to identify toxicity
specific targets and pathways.

Target Profile Comparison of Cardio-and Hepatotoxic
Drugs
After building the target profile and applying the tissue filtering,
tissue-specific target proteins were found for 54 hepatotoxic and
41 cardiotoxic compounds. 145 proteins were connected to the
hepatotoxic and 68 to the cardiotoxic compounds. As expected,
based on the different expression patterns of the two tissues, there
are only a limited number of shared target proteins. The most
relevant targets connected to the two toxicity classes were
identified by finding the most often occurring target proteins.
Unsurprisingly, many CYP enzymes and the bile salt export
pump (ABCB11) are part of the liver pathway list for
hepatotoxic compounds, and HERG (KCHN2) is part of the
list for cardiotoxic compounds. Proteins, such as Prelamin-A/C
(LMNA) are part of both lists (see Supplementary Material).

Pathway Profile Comparison of Cardio-and
Hepatotoxic Drugs
In Reactome, the pathways are organized hierarchically. For the
pathway comparison, the lower-level pathways were considered,
which present a more detailed level of the pathway hierarchy.
Higher-level pathways such as Cell Cycle or Autophagy are
collective terms and were excluded from the analysis because
of their generality. An FDR cut-off of 0.05 was applied to filter
out less significant pathways. After applying these filtering
steps, 382 pathways for 54 hepatotoxic compounds and 420
pathways for 38 cardiotoxic compounds were found. To find
the most important pathways, we compared those affected by
at least 10% of the cardiotoxic or 10% of the hepatotoxic
compounds, and further those affected by at least 20% of the
compounds.

TABLE 1 | Example of the workflow output for cardiotoxic compound CHEMBL1729 (Cisapride) showing top 5 pathways. The output table consist of the compound
identifier, pathway names, pathway identifiers, and statistical values such as fdrs and pValue for all significantly modulated pathways.

molecule_chembl_id Names stIds fdrs pValues

CHEMBL1729 Phase 3 - rapid repolarisation R-HSA-5576890 0.0037 0.0006
CHEMBL1729 Voltage gated Potassium channels R-HSA-1296072 0.0090 0.0030
CHEMBL1729 Potassium Channels R-HSA-1296071 0.0097 0.0073
CHEMBL1729 Cardiac conduction R-HSA-5576891 0.0097 0.0097
CHEMBL1729 Muscle contraction R-HSA-397014 0.0152 0.0152
CHEMBL1729 Neuronal System R-HSA-112316 0.0340 0.0340
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FIGURE 2 | Schematic representation of data flow in Path4Drug KNIME workflow for (A) hepatotoxic drug tolcapone (CHEMBL1234, https://www.ebi.ac.uk/
chembl/compound_report_card/CHEMBL1324/) and (B) cardiotoxic drug rosiglitazone (CHEMBL121, https://www.ebi.ac.uk/chembl/compound_report_card/
CHEMBL121/) with the harmonized target list represented by UniProt IDs, the tissue-specific sub-list after filtering, and the biological pathways connected to the
compound symbolized by Reactome IDs. As described in the methods section, in step 1,2 the targets were obtained from five different databases and harmonized,
in step 3 a tissue-specific filtering was applied and in step 4 pathway overrepresentation test was performed using Reactome.
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As Figure 3C implicates, there is no overlap between the most
frequently hit pathways by hepatotoxic and the most frequently
hit pathways by cardiotoxic compounds. 10 of the most
frequently found pathways by each group are summarized in
Figure 3D.

Comparison of Drugs for Cardiac Disorders
and Cardiotoxic Drugs
To support our concept of applying this approach for identifying
pathways that could play a role in cardiotoxicity, the
workflow was in addition run with drugs used to treat
cardiac disorders. Having these two groups allowed a
comparison between a toxic and non-toxic group
connected to the same tissue, supporting the interpretation
of the findings of the toxicity group.

Target Profile Comparison Between Cardiotoxic Drugs
and Therapeutic Drugs for Cardiac Disorders
For 14 drugs for the treatment of cardiac disorders, 34 tissue-
specific target proteins were found. 14 of them overlap with the
cardiotoxic class, and 20 are exclusive for the cardiac therapy
group. The most often occurring targets for the cardiac therapy
group are sub-units of the Sodium/potassium-transporting
ATPase. The hERG potassium channel, which is a known off-
target (Kalyaanamoorthy et al., 2018) is not on the list (see
Supplementary Material).

Pathway Profile Comparison of Cardiotoxic Drugs and
Drugs for Cardiac Disorders
Our goal was to establish which pathways that are connected to
cardiotoxic compounds can be specific for the toxicity class. For
that purpose, we compared the distribution of pathway
connections among the toxic and non-toxic groups.

The cardiotoxic drugs can be connected to 420 pathways
altogether. 221 of these pathways also can be connected to
compounds used to treat cardiac disorders (Figure 4).
However, for the pathways connected to at least 10% of the
compounds, there are only 24 overlapping pathways (Figure 5B).
This number is further reduced to two pathways when refining
the list to pathways with a connection to at least 20% of the
compounds. From these frequently hit pathways, eight pathways
are exclusively connected to cardiotoxic compounds (Figure 5C).
The distribution of these eight pathways in the cardiotoxic and
cardiac therapy categories is summarized in Figure 6.

DISCUSSION

A data science pipeline was constructed to connect compounds to
pathways by building their tissue-specific target protein profiles
and performing an overrepresentation-test with these proteins.
The output of the overrepresentation test is a list of pathways that
can be connected to the compounds. The application of an FDR
cut-off ensured that our list contains only statistically significant

FIGURE 3 | Comparison of pathways connected to hepatotoxic and cardiotoxic drugs (A): Number of pathway connections with an FDR cut-off of 0.05 of the
hepatotoxic (blue) and cardiotoxic (purple) group, (B): Number of pathways affected by at least 10% of hepatotoxic (blue) and at least 10 % of cardiotoxic (purple)
compounds, 11 common pathways (C): Number of pathways affected by at least 20% of hepatotoxic (blue) and at least 20 % of cardiotoxic (purple) compounds, no
common pathways (D): 10 of the most often occurring pathways connected to hepatotoxic (left) and to cardiotoxic (right) compounds.
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pathways. As a use case hepato-and cardiotoxic compounds were
analyzed.

In the case of the hepatotoxic compounds, pathways of
maresins and other SPMs (specialized proresolving
mediators) seem to be frequently affected. SPMs are keys
for inflammation determination and for maintaining normal
metabolic homeostasis in the liver (Musso et al., 2018).
Maresins were already mentioned in connection to the
mitigation of liver injuries (Laiglesia et al., 2018; Li et al.,
2016). Based on this information, a hypothesis can be built that
these pathways could have a crucial role in the organism’s
attempt to reduce/avoid hepatotoxic events. Since there are
many metabolism pathways modulated, it is plausible that
some of the toxic events can be connected to the produced
metabolites (Shah et al., 2019).

For cardiotoxic compounds, we compared the list of pathway
connections with those of hepatotoxic compounds and of drugs
used to treat cardiac disorders. This should allow the estimation if
the distinction of cardiotoxic from cardiotonic compounds is
possible based on the pathway interaction profiles. This step was
completed only for the cardiotoxic category because CHEMBL
has the cardiac therapy category in their description list for drugs,
making a comparison possible. There is no category across

ChEMBL compounds, which can be unambiguously connected
to treat liver disorders.

The two pathways namely “Phase 3 - rapid repolarisation”,
and “Voltage gated Potassium channels” were most frequently
connected to the cardiotoxic compounds, significantly less
connected to the cardiac therapy compounds, and not
connected to hepatotoxic compounds.: “Phase 3—rapid
depolarisation” refers to the third phase of the cardiac action
potential, where the potassium ion efflux occurs. The
involvement of these two pathways implicates that a change in
the action potential causes toxicity by disturbing the potassium
ion release. The role of potassium channels in QT prolongation is
a known mechanism of cardiotoxicity (Paakkari 2002).

The third most common pathway among the cardiotoxic
compounds is “Phase 0—rapid depolarisation”. It is related to
the phase of the cardiac action potential, where the influx of
sodium ions occurs. For this pathway, the difference of the
association to cardiotoxic compounds and cardiac therapy
compounds is rather insignificant. This might be, since class I
antiarrhythmic agents dominantly affect this part of the cardiac
action potential, which comes with the risk of re-entry
arrhythmias. Thus, in this group of antiarrhythmic drugs,
cardiotoxicity is a frequently observed side effect.

FIGURE 4 | Visualization of the network of cardiotoxic and cardiac therapy compounds and associated pathways.
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Furthermore, almost every cardiotoxic compound, which can
be connected to “Phase 0” can also be connected to “Phase 3”.
There are two exceptions, one of them is encainide, which is an
antiarrhythmic drug of the Ic class. Ic class antiarrhythmic agents
are potent Sodium channel blockers (Pantlin et al., 2020).

Encainide was withdrawn from the market due to fatal
proarrhythmic side effects (Echt et al., 1991).

There is no non-toxic drug, which can only be connected to
“Phase 3” but not to “Phase 0”, which is another indicator for the
crucial role of “Phase 3” in cardiotoxicity. Those cardiotoxic

FIGURE 5 | Comparison of pathways connected to cardiac therapy drugs and cardiotoxic drugs (A): Number of pathway connections with an FDR cut-off of 0.05
between the cardiac therapy (light pink) and the cardiotoxic (purple) groups, (B): Number of pathways affected by at least 10% of cardiac therapy (light pink) and at least
10 % of cardiotoxic compounds (purple), 24 common pathways (C): Number of pathways affected by at least 20% of cardiac therapy (light pink) and at least 20% of the
cardiotoxic (purple) compounds, 2 common pathways (D):10 of the most often occurring pathways connected to cardiac therapy drugs (left) and to cardiotoxic
drugs (right).

FIGURE 6 | Percentage of compounds from the toxic and non-toxic groups which are associated with those pathways that are connected to at least 20 % of the
cardiotoxic compounds, yet less than 20% of the cardiac therapy compounds. Y-axes: compound-percentage, x-axes: pathways illustrated by Reactome terms.
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compounds that are not connected to “Phase 3”, “Phase 0” or
“Voltage gated Potassium channels” pathways (18 compounds
altogether) have diverse pathways profiles (see Supplementary
Material).

To further verify the significance of these results, compounds
with cardiovascular toxicity from the withdrawn database were
tested. This test set is small since our dataset and the withdrawn
database have considerable overlap in compound information.
However, the profile of the four external compounds also
implicates the significant involvement of the above discussed
pathways, such as “Phase 3—rapid repolarisation” (see
Supplementary Material).

Our dataset was relatively small, but the Path4Drug workflow
was built with the possibility to apply it to larger sets of drugs and
increase the toxicological relevance of the findings. Based on these
findings, one could define unfavorable pathway profiles and use
them as a warning for possible toxic events. Furthermore, our
workflow can be used to find other drug-target-pathway relations,
regardless of toxicity to create an overview of the systemic effect
of drugs and use this knowledge for instance for drug
repurposing. Path4Drug is available on KNIME Hub and
modifiable. Consequently, our workflow aims to support
pathway-oriented analyses and pathway-driven toxicology
approaches.
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