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The purpose of this experiment was to investigate the effects of different sources of
calcium on immune performance, diarrhea rate, intestinal barrier, and post-intestinal
flora structure and function in weaned piglets. A total of 1,000 weaned piglets were
randomly assigned to five groups 10 replicate pens per treatment, 20 piglets per pen
and fed calcium carbonate, calcium citrate, multiple calcium, and organic trace minerals
of different concentrations of acidifier diets. The results of the study showed that the
replacement of calcium carbonate with calcium citrate and multiple calcium had almost
no significant effect on immune indexes (IL-1β, IL-6, IL-10, TNF-α) of piglets compared
with the control group (p > 0.05). The five groups did not show a change in the diarrhea
rate and diarrhea index (p > 0.05). The diet containing multiple calcium dramatically
decreased the TP compared to the C and L diet (p < 0.05). No significant difference
in HDL was noted in the five groups (p > 0.05). However, the concentration of LDL
in blood in the multiple calcium group was significantly higher than that in groups L
and D (p < 0.05). Moreover, the concentration of Glu in blood in the multiple calcium
group was significantly higher than that in group C (p < 0.05). Compared with the
control group, calcium citrate plus organic trace minerals diet markedly increased
UCG-005 abundance in the colon (p < 0.05). In addition, the relative abundance
of Prevotellaceae_NK3B31_group had an upward trend in the colon of the M group
compared to the D group (p = 0.070). Meanwhile, calcium citrate plus organic trace
minerals diet markedly increased Clostridium_sensu_stricto_1 abundance in the colon
(p < 0.05). Metagenomic predictions by PICRUSt suggested that the colonic and fecal
microbiota was mainly involved in carbohydrate metabolism, amino acid metabolism,
energy metabolism, and metabolism of cofactors and vitamins.
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INTRODUCTION

The immune system of newborn piglets is not mature enough,
and it mainly depends on the protection of maternal antibodies
in pig milk before weaning (1). Antibiotics are often added
to pigs’ feed to reduce the occurrence of diseases, such as
diarrhea, and to improve growth performance. However, there
are growing concerns about the risk of antibiotic-resistant
bacteria and the residual effects of antibiotics in meat products.
Subsequently, the use of antibiotics as growth promoters for sub-
therapeutics has been banned in Europe since 2006 (Council
Regulation EC 70/524/EEC). Therefore, there are growing
interests in finding suitable alternatives to antibiotics. The
weaning transition in piglets is a stressful process associated
with decreased feed intake, poor performance, and increased
susceptibility to infection, including post-weaning diarrhea (2,
3). After weaning, due to changes in the feeding environment
and diet, pathogenic microorganisms, such as bacteria, viruses,
and fungi, can damage immune organs and cells, interfere with
antigen presentation, and inhibit or block the production of
antibodies, resulting in a decline in the ability of piglets to
resist disease and cause immunosuppression (4–6). An earlier
study showed that in-feed antibiotic supplementation in weaned
pigs reduced the microbiota diversity of colonic digesta (7).
Minerals and vitamins are trace substances essential for the
normal physiological function of animals, but their effects on
intestinal flora are not well understood. Calcium is an essential
element in biology; participates in the construction of tissues,
such as bones, muscles, nerves, and body fluids; and is involved
in important physiological processes, such as nerve transmission,
muscle contraction, and hormone secretion (8). As a second
messenger, calcium ions are involved in the signal transmission
between immune cells, such as B lymphocytes, T lymphocytes,
macrophages, and mast cells (9). Phosphorus is also an important
element in the process of metabolism and signal transduction
and is involved in bone metabolism and immune regulation
together with calcium (10). Dietary supplementation with P
and Ca has been suggested as a potential strategy to modulate
the gastrointestinal tract microbiota in pigs based on studies
with rats (11), where a decreased abundance of pathogens and
promotion of lactobacilli in the small intestine in Ca- and P-rich
diets have been observed (12). Studies have shown that calcium
supplementation can significantly relieve colon inflammation
and immune response caused by high-fat diet (13); increasing
the concentration of intracellular calcium ions can significantly
increase the function of cytotoxic T lymphocytes and natural
killer cells (14). Therefore, according to previous research results,
it is speculated that appropriate calcium supplementation can
help improve the immune function of the body and alleviate the
impact of immunosuppression on the growth and development
of piglets, but there is a lack of relevant research at present.

Animal bodies, especially the digestive, urinary, respiratory,
and reproductive tracts, are permanently colonized by millions
of phylogenetically and metabolically diverse microscopic life
forms (microbiota) (15). These microbes are critical for many
key biological processes in their hosts, such as immune
processes and digestive pathways, that are necessary for the

maintenance of health and wellbeing (16, 17). The number of
genes present in the microbial genome of the digestive tract
of monogastric animals is about 100 times that of the body
itself (18). Due to the large number and complex functions of
microorganisms in the digestive tract, they are regarded as a
“mobile organ” in animals, mediating or affecting physiological
processes, such as host nutrient metabolism and immunity (19).
This close microbiota–host relationship is the result of the
synchronized evolution of these two life forms over millions
of years, a complex process known as co-evolution (20, 21),
in which microbes evolve according to host characteristics,
such as diet and gut type, to establish communities and are
closely linked to the immune system (22, 23). Mammalian
gut microbial community is a heterozygous ecosystem and
composed of thousands of microbial species (24). Gut microbiota
influences many important host physiological functions, such
as modulation of food intake, metabolism, immune system
activation, epithelial cell proliferation, and resistance to infection
(25). The microbiota structure in the cecum is well studied,
while the colon and feces are poorly understood. Cecum is
the place with the most abundant microorganism species and
content in single-stomach animals. The number of microbes
per gram of intestinal content in pigs is 1012

∼1013 CFUs and
composed of 400∼500 species of microorganisms, which mainly
consist of Bacteroides (8.5∼27.7%), clostridium X and IV of
Firmicutes (10.8∼29.0%), and clostridium IV (25.2%) as the
predominant flora (26–28). The stable intestinal microbial flora
can form a bacterial membrane barrier on the surface of intestinal
epithelial cells to help the host resist harmful foreign bacteria or
inhibit the invasion and reproduction of intestinal pathogenic
bacteria by competing for nutrients (29). At the same time,
the stable microbial flora in the intestine participates in the
host’s nutrient metabolism through fermentation, degradation
of polysaccharides, and synthesis of vitamins (30, 31). The
main objective of the current study was to evaluate the
effect of different combinations of post-weaning calcium and
acidifier supplementation on immune performance, diarrhea
rate, intestinal barrier, and post-gut microbial structure and
function of weaned piglets.

EXPERIMENTAL DESIGN

The studies were approved by the Laboratory Animal Welfare
and Animal Experimental Ethical Inspection Committee at the
Guangxi University (Nanning, China).

Animals, Diets, and Management
Briefly, a total of 1,000 piglets (Yorkshire × Landrace), weaned
at the age of 21 days with a mean body weight (BW) of
6.09 ± 0.26 kg, were randomly assigned to one of five dietary
treatments with 20 replicate pens (50 piglets per replicate pen)
for 42 days. Water and feed were provided ad libitum. Diarrhea
in piglets in each group was recorded every day.

The compositions of the basal diets are given in Table 1.
Experiment diet (Table 2) was formulated to provide different
dietary concentrations of calcium from calcium carbonate,
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TABLE 1 | Ingredients and composition of the basal diet for C (control).

Ingredients,% 0–14 days 14–42 days

Corn 61.43 65.02

Soybean meal 6.41 8.21

Extruded soybean 6.12 4.25

Whey powder 12.00 10.00

Fish meal 5.00 4.00

SDPP 5.00 3.00

Limestone 0.90 0.80

Dicalcium phosphate 0.40 0.54

Salt 0.35 0.30

L-lysine HCl (98%) 0.33 0.45

DL-Methionine 0.11 0.07

L-Threonine 0.11 0.13

L-Tryptophan 0.01 0.03

Soy oil 1.28 2.76

ZnO 0.20 0.04

Vitamin and mineral premixa 0.35 0.40

Nutrient composition (%)

DE (Kcal/kg) 3455 3452

CP 19.41 19.06

Calcium 0.85 0.84

Phosphorus 0.32 0.32

SDPP, spray-dried plasma protein; avitamin–mineral premix supplied per kg of feed:
100 mg of Fe (FeSO4), 100 mg of Zn (ZnSO4), 30 mg of Mn (MnSO4), 25 mg of Cu
(CuSO4), 0.5 mg of I (KIO3), 0.3 mg of Co (CoSO4), 0.3 mg of Se (Na2SeO3), and
0.5 mg of ethoxyquin, 10,500 IU of vitamin A, 200 IU of vitamin D3, 60 IU of vitamin
E, 2.0 mg of vitamin K3, 0.03 mg of vitamin B12, 12 mg of riboflavin, 30 mg of
niacin, 25 mg of D-pantothenic acid, 0.18 mg of biotin, 1.5 mg of folic acid, 3.0 mg
of thiamine, 2.25 mg of pyridoxine, and 500 mg of choline chloride.

calcium citrate, or multiple calcium. Calcium carbonate
(Ca ≥ 36.65%), calcium citrate (Ca ≥ 23.4%), and multiple
calcium (Ca≥ 24%) used in this experiment were all provided by
Nanning Zeweier Feed Co., Ltd. The formula of diet should meet
or exceed the nutritional needs of weaned piglets (32). L = C
(control) plus 5/1,000 calcium citrate replace calcium carbonate;
D = L plus 1/1,000 organic trace minerals; M = D minus half
of the acidifier; P = C (control) plus 5/1,000 multiple calcium
replace calcium carbonate. The diarrhea index score of feces is

given in Supplementary Table 1. Piglets should be housed on a
12 h light/12 h dark cycle with free access to water, and the barn
temperature was maintained at 30◦C.

Sampling and Collection
At the end of the experiment on day 42, two blood samples
were collected using heparin tubes from the front cavity vein of
eight weaned piglets in five group separately. Collected plasma
samples were centrifuged at 1,000 g for 15 min at 4◦C and
stored at −20◦C for further analysis. Four weaned piglets were
euthanized in each group, and intestinal and fecal samples were
subsequently collected. The colonic chyme and fecal sample were
gathered and stored separately at−80◦C for DNA extraction. The
segments of the duodenum, jejunum, and ileum were taken for
observation of intestinal tissue morphology. The samples of the
duodenal, jejunal, and ileal segments from weaned piglets were
fixed in formalin, and the tissues were dehydrated and embedded
following standard procedures; specimens in paraffin block were
cut into 5 µm sections and stained with hematoxylin and eosin.
The representative photographs of the duodenal, jejunal, and ileal
morphology were collected using an optical microscope with a
Pannoramic Scannera computer-aided morphometry system. In
the present study, we used a pre-defined method reported by
Wang et al. (33) to define the lesion. In each section, the villus
height (VH) and crypt depth (CD) were measured using a light
microscope with a computer-assisted morphometric system. The
VH was defined as the distance from the villus tip to the crypt
mouth, and the CD from the crypt mouth to the base.

Metabolite Measure in the Plasma
Two piglets were selected in each repeat of five groups (40
piglets in all), and a total of 40 plasma samples were used for
analysis. The plasma biochemical components, including total
protein (TP), albumin (ALB), low-density lipoprotein (LDL),
high-density lipoprotein (HDL), triglyceride (TG), glucose (Glu),
blood urea nitrogen (BUN), interleukin 1β (IL-1β), interleukin 6
(IL-6), interleukin 10 (IL-10), and tumor necrosis factor α (TNF-
α), were detected using the enzyme-linked immunosorbent assay
(ELISA) kits (Jiangsu Meimian industrial Co., Ltd, Yancheng,
China) following the manufacturer’s instructions.

TABLE 2 | Experimental diets for one thousand weaned piglets.

Items Groups

C (n = 200) L (n = 200) D (n = 200) M (n = 200) P (n = 200)

Calcium carbonate (kg) normal – – – –

Calcium citrate (kg) – 5/1,000 5/1,000 5/1,000 –

Acidifier (kg) 1/1,000 1/1,000 1/1,000 0.5/1,000 1/1,000

Organic trace minerals (kg) – – 1/1,000 1/1,000 1/1,000

Multiple calcium (kg) – – – – 5/1,000

C, Basal diet (Calcium carbonate + 1/1,000 g/kg of acidifier);
L, 5/1,000 Calcium citrate diet + 1/1,000 g/kg of acidifier;
D, 5/1,000 Calcium citrate diet + 1/1,000 g/kg of acidifier + 1/1,000 g/kg organic trace minerals;
M, 5/1,000 Calcium citrate diet + 0.5/1,000 g/kg of acidifier + 1/1,000 g/kg organic trace minerals;
P, 5/1,000 Multiple calcium diet + 1/1,000 g/kg of acidifier + 1/1,000 g/kg organic trace minerals.
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Colon and Feces Content of Microflora
by 16S rRNA Sequencing
Totally, 20 piglets were selected in each repeat of five
groups for colon microbiota analysis, and 40 piglets were
selected in each repeat of five groups for feces microbiota
analysis. Microbial DNA was extracted from approximately
0.25 g of each intestinal sample and fecal sample using a
QIAamp DNA Stool Mini Kit, following the manufacturer’s
instructions (34). DNA isolation was performed by 2% agarose
gel electrophoresis. The bacterial universal V3–V4 regions of
the 16S rRNA gene were amplified according to PCR-barcoded
primers 338F (5′-ACTCCTACGGGAGGCAGCAG-3′) and the
reverse primer 806R (5′-GGACTACHVGGGTWTCTAAT-3′).
The specific sequencing method was used as previously
reported (35). The thermal cycle procedure is as follows:
initial denaturation step, 95◦C, 3 min; denaturation, 27
cycles, 95◦C, 30 s; annealing, 55◦C, 30 s; elongation, 72◦C,
45 s; and final extension, 72◦C, 10 min. Briefly, paired-end
sequenced on an Illumina MiSeq platform (PE300) platform
(Illumina, United States) at the Majorbio Bio-Pham Technology
(Shanghai, China). The 16S rRNA amplified sequences have
been deposited in the National Center for Biotechnology
Information (NCBI) Sequence Read Archive (SRA)1 under
accession number PRJNA815982.

Microbiome Analysis
Quality filters were applied to trim the original sequences
according to the criteria: (I) reads with an average quality score
<20 over a 10-bp sliding window were removed, and truncated
reads smaller than 150 bp were discarded and (II) truncated
reads containing homopolymers longer than eight nucleotides
in length, more than 0 base in barcode matches, or more
than two different bases in primers were removed from the
dataset. Checking and removing possible chimeras by USEARCH
using the chimera layer “gold” database described by Edgar
et al. (36). Clustering of OTUs with a similarity cutoff of 97%
using USEARCH (37), and abundance-defining representative
sequences for each OTU were identified using PyNAST (38)
and the SILVA bacterial database (39). The rarefaction analysis
was performed by Mothur v.1.39.5 (40) to reveal diversity
indexes, including the Chao index and Shannon index. PCoA was
performed using Canoco 4.5. Venn diagrams were implemented
by Venn diagrams, and community diagrams were generated by
R tools from the data in the files “tax. phylum.xls, tax.family.xls,
and tax. genus.xls.”

Predictive Functional Profiling of
Microbial Communities
PICRUSt has been used as a bioinformatics tool to predict
the functional potential of metagenomes using 16S rRNA
genetic data (41). Subsequently, by referencing the KEGG
database, the OTU table was imported into PICRUSt for
functional gene prediction. PICRUSt utilizes 16S copy number
prediction to normalize the OTU table so that OTU abundance

1http://www.ncbi.nlm.nih.gov/bioproject/815982

more accurately reflects the true abundance of the underlying
organism. We then looked for the precomputed genome content
of each OTU, multiplied the normalized OTU abundance by
each KEGG abundance in the genome, and summed these
KEGG abundance for each sample to predict the metagenome.
This prediction calculates the KEGG abundance for each
metagenomic sample in the OTU table. For those optional
organism-specific predictions, each organism abundance per
KEGG is kept and annotated. We focused our exploration of
metagenomes at levels 2 and 3. These pathways related to
organismal systems, human disease, and drug development were
filtered out because they do not reflect microbial function.

Statistical Analyses
Statistical analyses between the means of each group were
analyzed by using one-way analysis of variance (ANOVA),
followed by multiple comparisons using a post hoc test of S-N-K
through SPSS 22.0. Statistical significance was set at p < 0.05.

RESULTS

Intestinal Histomorphological Analysis
Cross-sections of intestinal tissue samples were stained with
hematoxylin and eosin and observed under a light microscope.
The duodenal, jejunal, and ileal tissue morphologies under five
different dietary treatments are shown in Figure 1A. The addition
of calcium carbonate to the diet of weaned piglets resulted in a
lower villus height in the duodenum than other calcium sources,
and the crypt depth of the piglets in the diet supplemented
with calcium carbonate was higher. From Figure 1B, it can be
concluded that dietary replacement of different calcium sources
had no significant effect on the jejunal villus height and crypt
depth, and the ratio of villus height to crypt depth in weaned
piglets (p > 0.05). Compared with the control group, the D
group significantly increased the villus height and significantly
decreased the crypt depth (p < 0.05). At the same time, the
M group significantly reduced the crypt depth of the ileum
compared with the control group (p < 0.05). Finally, the ratio
of villus height to crypt depth of the duodenum in group D was
significantly higher than that of the other four groups (p < 0.05),
and the ratio of villus height to crypt depth in group M was also
significantly higher than that of the control group (p < 0.05).

Diarrhea Rate and Diarrhea Index
As shown in Table 3, compared with basal diet, diet of D varied
with the decreasing diarrhea rate of weaned piglets on days 1–14
(p = 0.083). However, there was no significant difference between
different treatment groups during the whole experimental period
(p > 0.10). Correspondingly, there was no significant difference
in the diarrhea index under the treatment of five diets during the
whole experimental period (p > 0.10).

Biochemical Parameters in the Plasma
Variation in the biochemical index in the plasma is given in
Table 4. Diet of multiple calcium dramatically decreased the
TP compared to the C and L diet (p < 0.05). There were no
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FIGURE 1 | Effects of different diet on intestinal morphology in weaned piglets. (A) Effects of different diets on epithelial morphology of the duodenum, jejunum, and
ileum. (B) Effects of different diets on the villus length and crypt depth of the duodenum, jejunum, and ileum. C, Basal diet (Calcium carbonate + 1/1,000 g/kg of
acidifier); L, 5/1,000 Calcium citrate diet + 1/1,000 g/kg of acidifier; D, 5/1,000 Calcium citrate diet + 1/1,000 g/kg of acidifier + 1/1,000 g/kg organic trace minerals;
M, 5/1,000 Calcium citrate diet + 0.5/1,000 g/kg of acidifier + 1/1,000 g/kg organic trace minerals; P, 5/1,000 Multiple calcium diet + 1/1,000 g/kg of
acidifier + 1/1,000 g/kg organic trace minerals.

TABLE 3 | Effects of different calcium sources on diarrhea rate and diarrhea index of weaned piglets.

Items Groups

C (n = 200) L (n = 200) D (n = 200) M (n = 200) P (n = 200)

Diarrhea rate

Day 1–14 1.78 ± 0.87 1.38 ± 1.02 0.93 ± 0.29 1.28 ± 0.42 1.03 ± 0.19

Day 15–28 1.65 ± 1.30 1.58 ± 1.47 1.18 ± 0.43 0.88 ± 0.73 1.08 ± 0.34

Day 29–42 5.03 ± 1.23 4.73 ± 1.18 4.93 ± 1.88 5.33 ± 1.62 5.15 ± 0.77

Diarrhea index

Day 1–14 0.68 ± 0.28 0.52 ± 0.32 0.39 ± 0.14 0.39 ± 0.24 0.39 ± 0.14

Day 15–28 0.55 ± 0.43 0.55 ± 0.49 0.36 ± 0.12 0.30 ± 0.26 0.32 ± 0.12

Day 29–42 1.11 ± 0.18 0.91 ± 0.07 0.96 ± 0.33 1.04 ± 0.19 1.04 ± 0.04

Diarrhea rate (%) = the number of diarrhea pigs × diarrhea day/(the total number of pigs × experiment days); in the same row, values with no letter or the same letter
superscripts mean no significant difference (p > 0.05), while values with different small letter superscripts mean significant difference (p < 0.05).

significant effects of including different sources of calcium in
diets with normal or halved acidifier fed piglets on ALB in
6 weeks (p > 0.05). Meanwhile, no significant difference in HDL
was noted among the five groups (p > 0.05). However, the
concentration of LDL in blood in the multiple calcium group
was significantly higher than that in groups L and D (p < 0.05).
Moreover, the concentration of Glu in blood in the multiple
calcium group was significantly higher than that in group C
(p < 0.05). It was proved that piglet feed calcium carbonate,
calcium citrate, multiple calcium, or different amount of acidifier
had no influence on the content of TG and BUN (p > 0.05).
A similar case occurs in immune function of blood (Figure 2);
there was no significant difference in immune indexes (IL-1β, IL-
6, IL-10, and TNF-α) among different treatments after weaning
6 weeks for piglets (p > 0.05).

Diet and Gastrointestinal pH
Effects of different calcium sources on diet and gastrointestinal
pH of weaned piglets are shown in Table 5. Diet pH of
weaned piglets did not differ among the five dietary treatments
in 6 weeks (p > 0.05). After the weaned piglets were
slaughtered after feeding for 6 weeks, there was no significant
difference in the pH values of the stomach, small intestine, and
large intestine.

Colonic and Fecal Bacterial Diversity and
Similarity
The rarefaction curves reached a plateau, suggesting that the
selected sequences were reasonable and fully measured most
of the bacterial diversity (Figure 3A). The OTU community
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TABLE 4 | Effects of different calcium sources on plasma biochemical indexes of weaned piglets.

Items Groups

C (n = 8) L (n = 8) D (n = 8) M (n = 8) P (n = 8)

TP (µg/L) 0.986 ± 0.175a 1.003 ± 0.156a 0.908 ± 0.212ab 0.940 ± 0.211ab 0.779 ± 0.120b

ALB (µg/ml) 107.0 ± 16.6 105.1 ± 17.8 104.0 ± 10.5 103.9 ± 15.5 116.9 ± 18.9

LDL (µmol/L) 244.9 ± 38.0ab 227.1 ± 20.1b 227.6 ± 44.1b 246.9 ± 18.6ab 264.6 ± 23.9a

HDL (µmol/L) 56.19 ± 6.96 58.21 ± 3.99 57.92 ± 7.15 61.88 ± 4.96 56.29 ± 5.78

TG (µmol/L) 421.4 ± 92.6 388.0 ± 46.6 390.1 ± 90.3 451.0 ± 77.8 424.9 ± 81.4

Glu (µmol/L) 109.3 ± 14.2b 122.6 ± 18.1ab 123.8 ± 19.0ab 118.5 ± 19.9ab 130.8 ± 16.5a

BUN (mol/L) 1.32 ± 0.28 1.44 ± 0.29 1.42 ± 0.28 1.40 ± 0.29 1.33 ± 0.23

TP, total protein; ALB, albumin; LDL, low-density lipoprotein; HDL, high-density lipoprotein; TG, triglyceride; Glu, glucose; BUN, blood urea nitrogen. In the same row,
values with no letter or the same letter superscripts mean no significant difference (p > 0.05), while values with different small letter superscripts mean significant difference
(p < 0.05).

comparisons by partial least squares-discriminant analysis (PLS-
DA) of colonic digestive and fecal bacterial communities showed
that 60 samples from colon and feces were well separated in some
groups (Figure 3B). From the colonic samples, we could see only
the coM and coP groups did not show a good separation, and
groups stayed away in the other three groups. The faM and faP
groups showed a separation, and the other three sets of samples
were mixed together (Figure 3B).

As shown in Figure 3C, the overall OTU numbers classified
at the distance level of 0.03 (97% similarity) were 1,477 detected
in the colonic samples, most abundance with 1,204 OTUs was

FIGURE 2 | Effects of different diets on the blood immune index in weaned
piglets. IL-1β, interleukin 1β; IL-6, interleukin 6; IL-10, interleukin 10; TNF-α,
tumor necrosis factor α .

observed in the D group, and the control group had the least
1,145 OTUs, and 888 were shared in five group. The fecal OTU
numbers were more than colon OUTs and had 1,557 OTUs
(Figure 3D). Similarly, the control group of the feces had the least
OTU number, and 1,051 OTUs were shared in the feces by five
diet treatments.

The bacterial community of the M group had the higher
Chao1 estimator and Shannon diversity index than the other four
groups, and the D group showed the lowest Chao1 estimator
in the colon (Figures 4A,B). However, there was no significant
difference in the two indicators among the five groups (p > 0.05).
In fecal samples, the C group showed the lowest Chao1 estimator
than the other four diet treatment groups (Figure 4C), and there
was a significant difference for the Chao1 estimator in the control
group compared to the other four groups (p < 0.05). Meanwhile,
as shown in Figure 4D, groups L, D, and P had markedly
improved Shannon index than the control group (p < 0.05), and
there was no significant change in the Shannon index in groups
C and M (p > 0.05).

Taxonomic Composition by Illumina
MiSeq Sequencing Analysis
As shown in Figure 5A, Firmicutes, Bacteroidota,
Actinobacteriota, and Spirochaetota were dominant phyla
in the colon of weaned piglets, accounting for more than
98% of the colonic total bacterial community. Although some
bacterial communities of phyla proportion varied with the
different sources of calcium added to the diet, there was no
significant difference between the main bacterial communities
at the phyla level in the colon (p > 0.05). Downward to genus
levels, Streptococcus, Lactobacillus, norank_f_Muribaculaceae,
norank_f_norank_o_Clostridia_UCG-014, and UCG-002 were
the predominant genera in the colon in the five groups
(Figure 5B). Compared to the colon, the most abundant
bacterial community in the feces at the phylum level was
Firmicutes, followed by Bacteroidota, Actinobacteriota, and
Spirochaetota, from most to least (Figure 6A). Similarly,
no relative abundance of bacteria at the phylum level was
significantly changed in the feces of the five groups (p > 0.05).
Downward to the genus level, Streptococcus, Lactobacillus,
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TABLE 5 | Effects of different calcium sources on diet and gastrointestinal pH of weaned piglets.

Items Groups

C L D M P

Diet

2 weeks 5.44 5.71 5.72 5.74 6.01

4 weeks 5.78 5.86 5.87 5.88 6.21

6 weeks 5.66 5.61 5.64 5.65 6.08

Gastrointestinal tract

Stomach 6.48 ± 0.34 6.21 ± 0.41 6.22 ± 0.48 6.04 ± 0.89 5.31 ± 1.31

Duodenum 6.41 ± 0.31 6.38 ± 0.19 6.40 ± 0.35 6.38 ± 0.15 6.88 ± 0.43

Jejunum 6.41 ± 0.21 6.39 ± 0.36 6.59 ± 0.11 6.73 ± 0.39 6.65 ± 0.16

Ileum 6.83 ± 0.36 6.70 ± 0.27 6.75 ± 0.21 6.78 ± 0.19 6.90 ± 0.22

Colon 6.56 ± 0.11 6.67 ± 0.33 6.42 ± 0.33 6.66 ± 0.09 6.34 ± 0.08

In the same row, values with no letter or the same letter superscripts mean no significant difference (p > 0.05), while values with different small letter superscripts mean
significant difference (p < 0.05).
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FIGURE 3 | Bacteria richness and OTU composition analysis. (A) Rarefaction curves of observed bacterial sequences in the colonic contents and feces of piglets.
(B) Partial least squares-discriminant analysis (PLS-DA) of colonic digestive and fecal bacterial community. (C) Venn diagram of the OTUs in the colon by different
treatments. (D) Venn diagram of the OTUs in the feces by different treatments.

Clostridium_sensu_stricto_1, norank_f_Muribaculaceae, and
norank_f_norank_o_Clostridia_UCG-014 were the predominant
genera in feces in the five groups (Figure 6B).

As shown in Figure 7A, compared with the results
of the control group, calcium citrate plus organic trace
mineral diet markedly increased UCG-005 abundance in the
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FIGURE 4 | Alpha-diversity of colonic and fecal bacterial communities of piglets. (A) Bacterial richness in the colon estimated by the Chao 1 value. (B) Bacterial
diversity in the colon estimated by the Shannon index. (C) Bacterial richness in the feces estimated by the Chao 1 value. (D) Bacterial diversity in the feces estimated
by the Shannon index.

colon (p < 0.05). In addition, the relative abundance of
Prevotellaceae_NK3B31_group had an upward trend in the
colon of the M group compared to the D group (p = 0.070)
(Figure 7B). As can be seen from Figure 7C, replacing
calcium citrate with multiple calcium significantly reduced
the abundance of Clostridium_sensu_stricto_1 (p < 0.05), and
calcium citrate plus organic trace minerals diet markedly
increased Clostridium_sensu_stricto_1 abundance in the colon
(p < 0.05). The addition of multiple calcium, instead of calcium
citrate and the acidifier with half reduction, could significantly
reduce the related abundance of Terrisporobacter (p < 0.05)
(Figure 7D). From Figures 7E,F, we could see that the addition
of five thousandths of calcium citrate plus one thousandth of
acidifier in the diet significantly increased the related abundance
of Phascolarctobacterium and unclassified_f_Lachnospiraceae
compared with the calcium carbonate diet (p < 0.05).

Biofunction Prediction of Intestinal and
Fecal Microbial Flora
In the study, PICRUSt was used to analyze the microbiota
function of the ileum and cecum. The 16S rRNA sequencing
results combined with genomic databases could be used to
predict macrogenomic information (41). The predictable results
can be enriched at two different levels of the KEGG pathways
in the colon, where 2 and 3 level impressions are used for
histograms (Figure 8). As shown in Figure 8A, within the top
10 KEGG pathways, membrane transport and signal transduction
pathway were associated with environmental information

processing. Five other pathways, including the metabolism of
carbohydrates, amino acids, energy, cofactors and vitamins,
and nucleotides, were associated with nutrient metabolism.
Translation, replication, and repair were associated with genetic
information processing. The cellular community prokaryotes
were associated with cellular processes. In total, 318 individual
pathways were predicted, and the top 10 most abundant pathways
included three pathways related to carbohydrate metabolism (as
shown in Figure 8B), including amino sugar and nucleotide sugar
metabolism (ko00520), glycolysis/gluconeogenesis (ko00010),
and starch and sucrose metabolism (ko00500). The highest
abundance was ABC transporters (ko02010), and it belonged
to membrane transport. In addition, both of aminoacyl-tRNA
biosynthesis (ko00970) and ribosome (ko03010) belonged to
translation, and 342 individual pathways were totally predicted
in the feces. As shown in Figure 8C, the prediction results on
level 2 of the KEGG pathway in the feces was similar to those in
the colon, only the proportion is slightly different. The abundant
KEGG pathway of glycolysis/gluconeogenesis (ko00010) in the
feces was higher than pyrimidine metabolism (ko00240), which
was contrary to the result in the colon (Figure 8D). Lastly, there
was no significant difference in the 2 and 3 levels of the top 10
KEGG pathways in the colon and feces (p > 0.05).

DISCUSSION

Premature weaning of piglets can cause stress, most commonly
diarrhea, resulting in huge economic losses in pig production. In
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FIGURE 5 | Effects of different diets on the colonic bacterial community structure in weaned piglets. (A) Distribution of colonic bacteria at the phylum level in weaned
piglets. (B) Distribution of colonic bacteria at the genus level in weaned piglets.
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FIGURE 8 | Effects of different diets on predicted metagenomic functions of the KEGG pathway in weaned piglets. (A,B) Top 10 predicted metagenomic functions at
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recent years, studies have found that regardless of causes of piglet
weaning diarrhea, the diversity of intestinal flora will decrease
and the structure will change. A stable gut flora not only protects
against diarrhea-causing pathogens, such as ETEC, Clostridium
difficile, Salmonella typhimurium, and other diarrhea-causing
pathogens (42), but also plays an important role in regulating
animal health, such as immune response, intestinal barrier,
intestinal muscle reflex, and endocrine (43).

The small intestine is an important place for the body to
absorb nutrients. Villus height and crypt depth are important

indicators to measure the digestion and absorption function of
the small intestine. The depth of the crypts reflects the rate
of cell formation, while shallower crypts indicate an increased
rate of cell maturation and enhanced secretory function. The
height of villi and the depth of crypts can comprehensively
reflect the functional status of the small intestine (44). In the
present study, after weaned piglets were fed different calcium
sources and different ratios of acidifier for 6 weeks, the structure
of the small intestinal epithelium of piglets fed calcium citrate
and organic trace elements was significantly changed. Different
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calcium sources did not significantly alter the villus height and
crypt depth of the jejunum. The use of calcium citrate plus
organic trace elements and half the acidifier only caused a
decrease in the ileal crypt depth compared to the control group
but had no effect on the villus height. The duodenum of the four
experimental groups had higher villus height and lower crypt
depth than the control group. Overall, the results of the study
showed that the small intestine of piglets fed a diet with calcium
citrate and organic trace elements had a better effect. Therefore,
these findings suggest that calcium citrate diets are superior to
calcium carbonate diets for piglets.

Gastrointestinal acidity is one of the important indicators to
judge the digestive environment of the animal gastrointestinal
tract, and it is also an important factor to ensure the normal
physiological function of gastrointestinal microorganisms.
Beneficial bacteria, such as Lactobacillus, are suitable for growth
in an acidic environment, while pathogenic microorganisms,
such as ETEC and Salmonella, can survive in a neutral alkaline
(pH 6.0–8.0) environment. After early weaning of piglets, due to
the decrease in the concentration of lactic acid bacteria in the
digestive tract, the pH of the gastrointestinal tract will increase
compared with that before weaning, which is likely to cause a
decrease in intestinal acidity and the activity of digestive enzymes
in the small intestine (45). Coupled with the stress caused by
changes in the diet and environment, this is conducive to the
proliferation of pathogenic bacteria, resulting in nutritional
or pathogenic diarrhea in piglets (46). Li et al. showed that
reducing the level of E. coli in the gut microbiota can reduce
the incidence of diarrhea in piglets (47). Organic acids have
long been used to support piglet’s growth, especially at weaning,
and have recently become the preferred alternative to growth
promoters that increase piglet’s productivity (48). Organic acids
in feed have been reported to be effective growth promoters in
pigs throughout the production cycle, although due to the type
and dosage of organic acids used, timing of supplementation,
type of diet, buffering capacity, hygiene and welfare standards,
health status, animal age, and other factors, the response is quite
different (49). This experiment proved that the diarrhea rate and
diarrhea index of piglets did not change significantly with the
addition of different calcium sources and the use of acidifiers.

Blood physiological and biochemical indicators can not only
reflect the health of the animal body and the strength of immune
function but also reflect the biological characteristics of different
animals (50). The level of serum TP content will reflect the
strength of animal immunity, which will affect the absorption
and utilization of animal nutrients. In this study, the addition of
multiple calcium decreased the TP content of piglets compared
with the other four treatments, indicating that multiple calcium
may be detrimental to the growth and development of piglets.
ALB is the most important protein in plasma, which can maintain
the body’s nutrition and osmotic pressure, and has a significant
role in promoting the transport of nutrients, and ALB can
play a protective role in immunoglobulin, thereby exerting its
immune effect (51). Treatment with different calcium sources
and acidulants did not affect albumin in the current study.
Hypercholesterolemia occurs when there is an elevated level of
TC in the bloodstream. This can result from high levels of LDL
as compared to HDL (52). Replacing calcium carbonate with

calcium citrate in this study could reduce LDL in piglet blood,
it indicated that calcium citrate supplementation is superior to
calcium carbonate in piglet diets. In this study, the addition
of various calcium sources and acidulants did not significantly
improve the interleukin and tumor necrosis factor of weaned
piglets, and therefore could not simultaneously modulate the
immune system of piglets.

The microbiome consists of trillions of microbial cells with
high inter- and intra-species variability, which makes it difficult
to define a healthy gut microbiome in terms of species in the gut
(53, 54). However, microbial functional genes and metabolites
may have lower variability (54, 55). To study the complex
relationship between the host and microbes, it is crucial to better
understand the crosstalk between host and gut microbes. This can
be achieved by measuring the molecules that contribute to this
interaction, especially the metabolites formed by the microbiota
that are available for uptake by the host. Gut microbes play a
key role in animal health, including digesting food, metabolism,
regulating immunity, and defending against invading pathogens
(56–58). The composition of different microbial communities in
the digestive tract of animals is different, and the diversity and
density of microbial communities increase gradually from the
stomach to the hindgut (59). We explored the effects of different
calcium sources and acidulant use on gut microbial diversity in
weaned piglets, using Chao1 to represent bacterial richness and
the Shannon index to reflect bacterial diversity. In this study, it
can be concluded that different calcium sources had no effect
on the colonic microbial abundance and diversity of piglets, and
both the addition of calcium citrate and organic trace elements
increased the fecal microbial abundance and diversity of piglets
compared with calcium carbonate diets, indicating that calcium
citrate and organic trace elements are better for gut health than
calcium carbonate.

The microorganisms in intestines of pig are mainly anaerobic
bacteria and facultative anaerobic bacteria, of which Firmicutes
and Bacteroidetes account for more than 90% and play an
important role in maintaining body health and improving
body immunity, nutrient absorption, and metabolism (60). This
study reached similar conclusions in the colon of piglets. Much
evidence suggests that Firmicutes and Bacteroidetes are the
predominant phyla in pig fecal samples (61–64), and this study
supports this conclusion. Diet represents one of the major factors
contributing to intestinal microbial colonization (65). Similarly, a
gradual taxonomic and functional rearrangement of the bacterial
community in feces after feeding four different diets varying
in protein source, calcium, and phosphorus concentration has
been recorded (66), which indicates the importance of diet on
microbial population modulation. The largest and most dynamic
change in microbiome transition, however, is during the weaning
period (67). Bacteria in Firmicutes are capable of producing
short-chain fatty acids (SCFA) from dietary compounds (68).
Li et al. reported that the intestinal community of rats had
similar cecal contents and feces (69), and we found that this
phenomenon was also present in the colon and feces of piglets.
Previous studies have shown that some Clostridium species are
causative agents of intestinal diseases (70), which can alter
the intestinal barrier in animals (71). Our study confirmed
that the addition of multiple calcium to piglet diets reduced
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Clostridium_sensu_stricto_1 abundance. A study reported that
2 days post-weaning of piglets, intestinal Lactobacillus decreased
sharply, while the number of coliforms increased (72). Bacteria in
the genus Lactobacillus (phylum Firmicutes) are beneficial to the
intestine, producing bacteriocins, organic acids, and hydrogen
peroxide (73); no changes in Lactobacillus were found among
the five treatments in this study. Replacing calcium carbonate
with calcium citrate, unclassified_f_Lachnospiraceae abundance
increased and was not affected by acidifier concentration.
This suggests that the calcium citrate diet affects the gut
microbial composition of weaned piglets. Likewise, multiple
calcium can also alter the microbes in piglet manure compared
to calcium citrate. In addition, calcium citrate and multiple
calcium, instead of calcium carbonate, increased the abundance
of Phascolarctobacterium. Different dietary components have
different microbiota, which may be an explanation, as it is known
that the composition of gut microbiota is related to diet type (74).
High-throughput sequencing technology has many advantages.
It can not only accurately analyze the structure and diversity of
gut microbiota but also further predict the gene function and
metabolic pathways of gut microbes. PICRUSt was used to predict
the functional composition of a metagenome using marker gene
data and a database of reference genomes obtained from 16S
rRNA sequencing. The results of gut microbiota showed that
the microbes were mainly involved in carbohydrate metabolism,
amino acid metabolism, energy metabolism, and metabolism of
cofactors and vitamins. Lamendella et al. showed that Firmicutes
and Bacteroidetes in the intestinal microorganisms of pigs are
related to carbohydrate metabolism in the body (75). According
to the results of intestinal microbial function prediction, we
anticipated that different calcium sources would not widely alter
gut and fecal microbiota function.

CONCLUSION

In conclusion, this study showed that different calcium
supplementation in weaned piglet diets could affect the small
intestinal barrier of piglets, but different calcium had no effect on
the immune performance of piglets. At the same time, although
the diarrhea of piglets was not affected by different calcium
sources, the structure of fecal flora of piglets was significantly
changed by different calcium sources. Our study provides a more

comprehensive understanding of gut barrier in weaned piglets
to different calcium sources and intestinal and fecal microbial
responses, including gut and fecal bacterial composition and
functional potential.
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