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Abstract 
Network neuroscience refers to the investigation of brain networks across different spatial and temporal scales, 
and has become a leading framework to understand the biology and functioning of the brain. In neuro-oncology, 
the study of brain networks has revealed many insights into the structure and function of cells, circuits, and the 
entire brain, and their association with both functional status (e.g., cognition) and survival. This review connects 
network findings from different scales of investigation, with the combined aim of informing neuro-oncological 
healthcare professionals on this exciting new field and also delineating the promising avenues for future transla-
tional and clinical research that may allow for application of network methods in neuro-oncological care.
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Background

A fascinating parallel thread runs through recent neuroscience 
and oncology research. Neuroscience has shifted from local-
izing brain function at specific brain regions to a connectivity-
based view of how behavior comes about through orchestrated 
patterns of activity in anatomically distributed networks.1 
Similarly, oncological research has uncovered different types 
of bidirectional cross-talk between cancer cells and other or-
gans, systems, and cells, and particularly the nervous system.2 
In neuro-oncology, the brain tumor clearly interacts with the 
networked nature of the brain. Although the clinical applica-
tion of such network insights is still a future perspective, there 
are lines of evidence pointing toward its potential to help better 
diagnose, monitor, and treat neuro-oncological patients. Now 
is the time to integrate fundamental, translational and applied 
research to ensure that network insights will benefit clinical 
practice in the future. This review, therefore, starts off with a 
crash course into network theory and how it can be applied 
to the brain at multiple scales, aimed at unlocking knowledge 
on this approach for clinicians and researchers alike. We then 
capture the current state-of-the-art research on the multiscale 
brain network in the presence of a tumor. We finish with future 

perspectives of this exciting field and delineate what is needed 
to work toward clinical application of its findings.

The Origins of Network Theory

Leonhard Euler (1707–1783), a polymath delving into math-
ematics and physics, formulated the inaugural theorem of 
graph theory. He solved the standing mathematical question 
of whether a path across 2 islands and the banks of the river 
Pregel in the city of Königsberg could be found with the same 
starting and end point without using any of the 7 bridges more 
than once. Euler represented each island and each river bank 
as nodes, or “vertices” in graph-theoretical jargon (see Table 
1 for a glossary of terms), and connected the nodes that had 
a bridge between them with a link, or “edge”, creating the first 
graph or network representation of a system. He was then able 
to prove that such a route was not possible.

In the centuries that followed, graph theory has been 
used in many fields ranging from chemistry and physics 
to biology and sociology. All that is needed to apply the 
wealth of theoretical knowledge and plethora of algorithms 
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from graph theory is a relevant definition of nodes and 
links. Nodes are typically canonical units of the system 
at hand, such as people in a social network, proteins in 
a pathway interaction network, or cities in a country. 
Links can be defined in different ways, depending on the 
problem that needs solving. In sociology for instance, 
one of the first seminal network studies used letters sent 
through postal mail to draw links between people, with 
the aim of assessing the veracity of the phrase “it’s a 
small world” through graph theory.3 In this case, a letter 
was either sent or not, so each link was either set to 1 or 
0. Moreover, the letters went unidirectionally from one 
person to the other, not the other way around, rendering 
this a binary, directed network. Conversely, the number 

of texts or emails sent back and forth between pairs of 
people could be counted to represent links in a weighted, 
undirected communication network. Another difference 
between these two networks could be the structural 
versus functional link definition: a letter exists as an ob-
ject in the physical world, but digital communication 
much more reflects the functional transfer of information 
without in itself reflecting a physical entity. So, structural 
links are usually physical entities, whereas functional 
links may have structural counterparts, but could also re-
flect a number of potentially indirect physical processes 
at the same time.

After defining the nature, presence, weight, and direc-
tionality of links between all pairs of nodes in a system, 

Table 1.  Alphabetized glossary of relevant terms and abbreviations as used in this review

Term or abbreviation Meaning or definition

Adjacency matrix Matrix representing all nodes and links in a network in a numeric form

AMPA receptor Receptor for the excitatory neurotransmitter glutamate

Average path length
Brain cell cultures

Average number of minimal steps it takes to get from each node to each other 
node in the network
The culturing of a population of brain cells in a dish

Betweenness centrality Total number of shortest paths running through a node, reflecting its impor-
tance or hubness

Binary network Network in which links are either present or not, and thus have value 0 or 1

Clustering coefficient Number of actual connections between a node’s neighbors divided by the 
possible number of connections between neighbors

Degree centrality Total number of connections of a node, reflecting its importance or hubness

Directed network Network in which links have direction and thus go more from one node to the 
other, instead of in both directions equally

dMRI Diffusion MRI

Edge
Ex vivo brain slices

Connection or link between nodes in a network
Maintaining a slice of brain tissue intact and alive outside of the body

Functional connectivity Level of statistical interdependency between time series of brain activity from 
two different nodes

GABA Most frequently occurring inhibitory neurotransmitter

Global efficiency Inverse of path length

Macroscale At the brain region or whole-brain level

MEA Multi-electrode array, used to measure cellular activity

MEG Magnetoencephalography

Mesoscale At the level of groups and/or circuits of cells

Microscale At the level of individual cells

Modularity or community detection Subdividing the network into subgroups of more highly inter-connected 
nodes

Neurogliomal synapse Glutamate-dependent synapse connecting neurons to tumor microtube net-
works

Neuroligin-3 (NLGN3) Protein relevant for synaptic functioning

NMDA receptor Receptor for the excitatory neurotransmitter glutamate

Resting-state fMRI (rsfMRI) Functional MRI acquired during a no-task condition

Small-world network A type of network that combines high local segregation (ie, high average clus-
tering coefficient) with high global integration (ie, short average path length)

Undirected network Network in which links are equally bidirectional

Vertex Node in a network

Weighted network Network in which links have different weights
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the visual graph representation of the system reveals itself 
(see Figure 1A for an overview of graphs with different link 
types). Coupled with each graph is its algebraic represen-
tation: the adjacency or connectivity matrix (Figure 1B). 
The matrix rows and columns represent nodes. Each ma-
trix element represents a link, for instance, linki-j between 
nodei and nodej. The matrix is the basis for all further graph 
analyses.

One can use graph measures to assess different network 
properties, also referred to as “network topology,” which 
can largely be summarized into 3 main categories. The 
first is integration, which captures the extent to which the 
network is globally traversable. In the small-world experi-
ment, the average number of times the letter needed to be 
forwarded to get from any starting person to a particular 
target was calculated, which is known graph theoretically 
as the average path length (Figure 1C).4 The average path 
length of the mail network was found to be 6 confirming 
not only the idea that it is a small world after all, but also 
coining the concept of “6 degrees of separation.” This 
phrase is still exploited by social network platforms such as 
LinkedIn. Global efficiency is also a network measure that 

captures the ease with which a network can be traversed.5 
Conceptually, the integration of a network is seminal for 
its coherent functioning. Complex systems that operate at 
some optimal level typically have relatively high integra-
tion to facilitate whatever overall process happens in the 
system, be it getting letters to a specific person or con-
necting job seekers to potential prospective employers.

Segregation is the second important characteristic of 
most networks. Segregative graph measures capture the 
tendency of a network to cluster into smaller subparts, 
characterized by the high interconnectedness of its nodes. 
The clustering coefficient, for instance, is calculated by di-
viding the number of connections between any network 
neighbors of a node, by the total number of possible con-
nections between those neighbors (Figure 1C).4 Networks 
having both high average clustering coefficient and short 
average path length are coined “small-world” networks, 
due to their optimal topology toward information transfer. 
Modularity is based on the same idea of specialization of 
groups of nodes: modularity or community detection al-
gorithms assess the presence and location of subgroups 
of nodes that are more connected to each other, than to 

(un)weighted and (un)directed networks

matrix

A

B hubness

high link
weight

high
hubness

low
hubness

low link
weight

Dintegration & segregationC

Figure 1.  Networks and their most important features. In (A), different types of networks consisting of 5 nodes (eg, nodei and nodej) are indi-
cated. The left network has binary (present or not) and undirected (bidirectional) links. The middle network has binary links as well, but these are 
directed as indicated by the arrow heads. The right network has weighted links, with the colormap indicating that bright yellow links have a high 
weight, and darker purple links have low weight. The thickness of the lines also represents the weight in this figure. (B) depicts the matrix rep-
resentation of the weighted network at the top right with the same color scale. Each row and each column represent the nodes in the network, 
while each element captures the weight of the link between pairs of nodes. The diagonal of the matrix, that is, the connection between a node 
and itself, is drawn in black to reflect that self-loops are not considered in this network. Moreover, other elements are black if a connection is not 
present according to the left-most network of panel A. (C) Schematically reflects integration between 2 exemplar orange nodes, as indicated by 
the dotted orange line with a path length of 2. The clustering coefficient of the purple node is calculated by dividing the total number of connec-
tions present between the neighbors (one solid purple line in this case) by the total number of possible connections between a node’s neighbors 
(3 in this case, as indicated by all purple lines, also the dotted nonpresent links), which yields a value of 0.33. In (D), the hubness (i.e., total summed 
weight of a node’s connections which reflects node strength) of each node is indicated through its color code.



509Maas and Douw: Multiscale network neuroscience in neuro-oncology
N

eu
ro-

O
n

colog
y

N
eu

ro-O
n

colog
y 

P
ractice

nodes in the rest of the network.6 The presence of clusters, 
modules, communities, or cliques is evident in almost all 
complex systems: our social networks are grouped by joint 
hobbies or interests, while railway systems typically have 
lots of local or commuter trains connecting neighboring 
towns and cities, in addition to the express service trains 
that support global integration.

The final category of often-used graph measures is 
that of nodal importance or “hubness.” A hub is a node 
that is deemed more influential than others (Figure 1D), 
for instance through having a high number of total con-
nections reflected by the graph measure of degree cen-
trality, through having a large number of shortest paths 
between all nodes in the network running through it 
(i.e., betweenness centrality), or through connecting dif-
ferent modules (i.e., participation coefficient or connector 
hubness). Such hub nodes orchestrate what happens in the 
network as a whole. Moreover, hub nodes failing is a much 
bigger issue for network resilience than when problems 
arise in other nodes: just imagine the difference in impact 
of outages of Google versus the Neuro-Oncology Practice 
journal website on overall internet traffic.

As is clear from the real-life examples provided in this 
section, network theory offers a quantitative way of as-
sessing the structure and function of many different types 
of complex systems. One of the most elegant features of 
the approach is that it is based on a solid theoretical foun-
dation, yet it is still data driven. Moreover, the variety of 
network measures available makes it possible to assess 

the global properties of the system. At the same time, net-
work theory can also be used to investigate and poten-
tially manipulate individual nodes according to the more 
localizationist tradition, while also taking the rest of the 
network into account.

Network Neuroscience

The brain consists of a network of interconnected and elec-
trically active neurons and glial cells that are organized in 
specialized, but connected, brain regions. These features 
make the brain especially suited for network analysis 
across different spatial scales (see Figure 2). The first brain 
network analysis was done on the complete neural net-
work of the nematode worm C. Elegans.4,7  This analysis re-
vealed high clustering combined with a short average path 
length and the worm’s brain was therefore deemed to have 
a small-world network topology.

Since then, network analyses have been performed on 
the brain at several scales. The most favored technique 
to study network features of brain cell cultures is the use 
of multi-electrode arrays. Here, electrical activity of the 
network is measured using multiple electrodes that can 
record the activity of a single cell or of several cells in the 
electrode’s vicinity. Such recordings in neuron and glial 
cell cultures obtained from prenatal rat cortex revealed 
that cellular networks evolve over time.8 Younger cultures 

scale structural network methods

anatomical MRI
covariance between
morphological features
of region pairs

A

B

C

diffusion MRI

diffusion MRI

reconstruction of
(probability of) white
matter bundles

functional network methods

(resting-state) EEG/MEG/fMRI
correlation or other connectivity
measure calculated between brain
activity time series from region pairs

intracranial single-cell recordings

(resting-state) fMRI
intracranial single-cell recordings
intracranial EEG/MEA recordings

spike sorting and subsequent correlation
calculated between spike trains of region
pairs

correlation or other connectivity measure
calculated between activity time series
calcium imaging recordings

MEA recordings

single-cell recordings

calcium imaging recordings

correlation or other connectivity measure
calculated between activity time series
from cells

morphology

morphology

reconstruction of cells
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Figure 2.  Schematic figure on network analysis of the brain across scales. Brain networks can be assessed in (A) humans at the macroscale 
using imaging techniques (structural, diffusion, and functional MRI), or neurophysiological recordings (magnetoencephalography or electroen-
cephalography), in (B) rodent models using MRI, EEG, MEA, in vivo, or ex vivo calcium imaging or electrophysiology recordings, or in (C) brain 
cell cultures using MEA, calcium imaging recordings or electrophysiology.
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exhibited more random network features, while mature 
cell networks had a small-world topology. These findings 
have been robustly replicated across various culture con-
ditions. Interestingly, in primary hippocampal cultures, 
small-world characteristics of the network diminished after 
inducing epileptic-like neuronal activity with glutamate, 
highlighting the clinical relevance of network disturbances 
at the cellular level.9

Moving from the micro- to the mesoscale, small-world 
properties have also been established within ex vivo brain 
slices (i.e., maintaining a slice of brain tissue intact and 
alive outside of the body). A calcium imaging study of 
cornu ammonis 3 (CA3) hippocampal slices demonstrated 
that GABA-ergic neurons play a key role in shaping the ac-
tivity of local small-world brain networks.10 In vivo record-
ings of local neural networks have also been performed. 
For example, MEA recordings in the monkey visual cortex 
have revealed that the visual cortex network also pos-
sesses small-world features.11

Since micro- and mesoscopic networks are diffi-
cult to study in the (living) human brain, most network 
neuroscientific work is based on macroscale neuroim-
aging and neurophysiology. Nodes are typically chosen 
according to a brain atlas or parcellation, for instance, 
based on cytoarchitectonic similarity (see Figure 2A).12 
Structural links can be measured through diffusion MRI 
(dMRI), which allows for reconstruction of the white 
matter tracts connecting different regions (Figure 2B). 
Another structural link definition is based on a volumetric 
or morphological similarity between regions according 
to structural MR images, based on the evidence that re-
gions with covarying volume or morphology are indeed 
connected.13,14 Functional links in human brain networks 
are typically based on statistical dependencies between 
regional activity patterns, termed functional connec-
tivity.15 Brain activity can be measured through func-
tional MRI (fMRI), electroencephalography (EEG), and 
magnetoencephalography (MEG), after which some sort 
of correlative analysis of the resulting regional time series 
is used to obtain a functional network.

Although networks in brain cells, animal brains, and 
the human brain are mainly studied in isolation, there is 
remarkable similarity in brain connectivity and network 
features across scales of measurement. Animal studies 
have revealed that brain regions characterized by larger 
neurons, longer axonal lengths, and higher synaptic den-
sity at the micro- and mesoscales also typically have a 
higher number of links and more integrative connec-
tions in the macroscale brain network.14,16,17 In humans, 
postmortem work has revealed similar multiscale net-
work properties, whereby relevant cellular characteristics 
go hand in hand with structural network features.18–20 It, 
therefore, seems that brain networks spanning the micro-, 
meso-, and macroscales share similar features, which are 
also conserved across species.21

Ultimately, these multiscale network topological fea-
tures of the brain give rise to its functioning.22,23 Across 
macroscale modalities, early network neuroscientific 
studies have reported on the relevance of high global inte-
gration, ample local segregation, and the presence of hub 
nodes for normal cognitive functioning.24–26 Recent studies 
connecting these large-scale networks to the microscale 

have shown similar relevance of cellular features for cog-
nition. Dendritic complexity and action potential kinetics 
of a region in the temporal lobe, for instance, have been 
positively correlated to intelligence in patients undergoing 
surgical resection to mitigate severe epilepsy.27 Another 
study using both fMRI and MEG acquired in these same 
patients revealed the well-known association between 
verbal memory and the extent of functional network cen-
trality of the same temporal region as part of the default 
mode network (DMN; one of the most frequently investi-
gated subnetworks or modules in functional brain net-
works28).29 Moreover, microscale integrative properties 
of the neurons within the investigated DMN region went 
hand in hand with the cognitively relevant macroscale net-
work centrality.

Networks in Neuro-Oncology

In recent years it has become clear that gliomas do not 
consist of cells growing in isolation, but rather that within 
gliomas, tumor cells form an electrically active network 
that is integrated into the brain network by neuron-tumor 
synapses. This complex interplay between the tumor and 
brain networks may render glioma the ultimate network 
disease, which is further highlighted by the fact that glioma 
patients present with symptoms that relate not just to the 
tumor and its location, but also to cognitive impairments 
that may indicate disruptions in the spatially distributed 
brain network.

Glioma cells form a functional cellular network via tumor 
microtubes; cellular protrusions that connect neighboring 
tumor cells.30 Gap junctions between tumor cells and 
microtubes allow calcium waves to propagate and con-
tribute to tumor growth. In glioblastomas, the most ma-
lignant type of glioma, approximately half of all tumor 
cells are involved in such microtube networks, while these 
numbers are significantly lower in oligodendrogliomas 
and variable in astrocytomas.31,32 Interestingly, a recent 
study investigated the network topology of glioma tumor 
cell networks in vitro and in vivo in a mouse xenograft 
model.33 A small subset of so-called “hub cells” proved 
to be highly interconnected and thus important within the 
tumor network, which also has small-world properties.33 
This is probably why therapies that only eliminate a subset 
of tumor cells (e.g., tumor resection, chemotherapy, and 
radiotherapy) cannot effectively destroy the entire tumor 
network: one might have to effectively target particularly 
all hub cells to do real damage. This study highlights the 
important role that network theory can play in the devel-
opment of effective strategies for the treatment of glioma.

Apart from connections with other tumor cells, glioma 
cells are also integrated into the broader brain network. 
Via (peri)synaptic contacts with neurons, glutamatergic 
signaling from neurons onto glioma tumor cells encour-
ages tumor growth.34 Glioma cells can also benefit from 
signaling molecules secreted by surrounding neurons. 
For instance, neuroligin-3 and brain-derived neurotrophic 
factor are known to stimulate tumor growth.35,36 Contacts 
between tumor cells and neurons do not only occur at 
the tumor rim but have also been identified in tumor cells 
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that have migrated away from the tumor, further into the 
brain. It may therefore not come as a surprise that brain 
tumors are more frequently found in brain regions with 
inherently high neuronal activity.37 On top of being reac-
tive to glutamate secreted by neurons, glioma cells them-
selves also secrete glutamate. This, in combination with 
the fact that glioma glutamate secretion leads to high 
peritumoral glutamate levels rendering the peritumoral 
tissue hyperexcitable, creates a positive feedback loop that 
stimulates tumor growth.38

Intuitively, pathologically high activity of the peritumoral 
area affects distributed functional brain networks. There is 
only one animal study to date in which the effects of a brain 
tumor on brain networks were investigated.39 Mice with 
xenografted glioblastomas showed functional connectivity 
changes within the ipsilateral hemisphere, both around the 
tumor and at a distance. Of note, although glioma presents 
with direct mechanisms between the glioma network and 
neuronal activity, the phenomenon of hyperexcitability 
and widespread hyperconnectivity has been established 
in many other neurological conditions, such as Alzheimer’s 
disease.40,41 These cross-disease findings underline the 
need for further preclinical investigations into how cellular 
networks interact with the large-scale connectivity disturb-
ances that may ultimately cause symptoms.

A large proportion of the macroscale network literature 
has used MEG to report on frequency-dependent differ-
ences in network topology of glioma patients. In the lower 
frequency bands (delta to alpha), higher local functional 
connectivity and network segregation have consistently 
been reported, while global integration of the network is 
lower than in healthy controls.42–48 With rsfMRI, studies 
have uncovered pathologically high connectivity as well, 
particularly between the hubs of the brain (e.g., regions 
in the DMN) and the more peripheral regions,49 as well as 
global efficiency losses and DMN disintegration, which 
seem just as present in the contralateral hemisphere as 
on the ipsilateral side.50–53 Structural network topology 
is also different in brain tumor patients as compared to 
healthy controls, with differences also not being limited to 
the peritumoral region or even the hemisphere containing 
the tumor.54,55 Of note, most macroscale network studies 
on brain tumors have been performed in glioma patients, 
but similar results have been reported in patients with 
meningiomas56 and brain metastases.57

Network topology is relevant for disease course: func-
tional network connectivity has been shown to predict 
(progression-free) survival, whether it concerns local 
connectivity58–60 or more global fMRI network topology.49 
The extent to which the tumor region itself is connected 
to and integrated into the global brain network has also 
been found relevant for survival.60,61 Moreover, patients’ 
network topology harbors correlations to their functional 
status and cognition. The higher the segregative properties 
of the functional brain network, the higher patients’ seizure 
frequency,45,46 and the poorer their cognitive functioning, 
especially when overall integration is also low.43,52,57,62–65 A 
particularly interesting relationship exists between brain-
wide functional connectivity of the tumor region itself, and 
postoperative outcomes in terms of cognition: resection 
of low connectivity areas within and around the tumor 
seldomly results in postoperative cognitive decline, while 

(peri)tumor voxels with high connectivity to the rest of the 
brain are best left behind to preserve cognition.66–69

As hinted at before, there are indications that the spatial 
preference of tumors to occur in particular brain areas (e.g., 
frontotemporally) relates to healthy or intrinsic variations 
in local activity and network connectivity,37,70,71 potentially 
due to spatial variations in for instance transcriptomics un-
derlying both regional network topology and vulnerability 
to neoplasms.72 Furthermore, glioma patients with tumors 
in regions that are normally characterized by high local 
clustering tend to have nonpathological network topology, 
while those patients with more uncommonly situated 
gliomas in areas of low clustering do show large differ-
ences in global network topology compared to controls.70 
Particularly complex is the fact that although mesoscale 
connectivity, as measured with MEG, is predominantly 
high around the tumor in a seemingly distance-dependent 
manner,44 macroscale regional network topological meas-
ures such as local clustering and centrality deviate from 
healthy controls in varying directions.73,74

In summary, a rich collection of multiscale network 
interactions has been revealed, which link cellular brain-
tumor cross-talk to global network topology to behavior 
in multiple ways (see Figure 3 for a schematic overview 
connecting these findings across scales). How intrinsic 
multiscale spatial variations, tumor location and invasion, 
and dynamic network topological trajectories synergize 
and thereby impact the disease course and patients’ func-
tional status remains to be seen.75

Clinical Perspectives

Potential future applications of network theory to clinical 
neuro-oncological practice are myriad (see Figure 4 for a 
schematic overview). At diagnosis, the association be-
tween the tumor, brain network topology, and disease 
course may be particularly relevant for prognostication. As 
reviewed in the previous section, tumors that are located 
in regions with intrinsically high local and integrative con-
nectivity, and that themselves show functional integration 
with the rest of the brain have a less favorable disease 
course, both in terms of survival and functional and cog-
nitive decline.58–61,68 Adding markers of activity, local con-
nectivity, and global integration to the diagnostic workup 
through rsfMRI or MEG/EEG may help health care profes-
sionals guide patients in this difficult phase of the disease, 
and may in the future aid in delineating which patients are 
most at risk of short survival and/or low quality of life. When 
predicting progression-free survival (PFS), for instance, 
high local functional connectivity as measured with MEG 
has a hazard ratio of ~2, after adjusting for other predictors 
of PFS.58 Large cohort studies, preferentially stratified for 
molecular tumor subtype and other predictors of survival, 
would be necessary to accurately assess the added clin-
ical value of such markers. Importantly, although several 
of these promising studies have used MEG, the clinical ap-
plicability of any markers based on this neurophysiological 
modality is likely limited. Only a small number of hospitals 
is equipped with an expensive and expertise-dependent 
MEG system. Ideally, these larger cohort studies (also) 
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include EEG, as this is a low-cost, widely available tech-
nique with potentially comparable promise. Indeed, high 
local functional connectivity has also been reported in EEG 
recordings of glioma patients,44 high local connectivity 
has been related to poorer cognitive functioning,76 and 
visual assessment of higher local EEG hyperexcitability 
has been related to shorter survival.77 Luckily, for patients, 
undergoing MEG or EEG is typically less burdensome than 
MRI, particularly for those who feel uncomfortable in the 
small MRI bore or find the loud MR acquisition unpleasant. 
Ultimately, most useful would be to have fMRI, MEG, and 
EEG data available in the same large cohort of patients, to 
facilitate a comparison across modalities.

Potentially the most promising avenue for clinical imple-
mentation of network approaches in neuro-oncology, is to 
use functional connectivity based on resting-state MEG to 
guide tumor resection. Several scientific publications from 
the team at University of California San Francisco (UCSF) 
on this topic show that preoperative MEG is able to reveal 

which parts of the tumor and its surroundings can be safely 
resected without causing postoperative deficits, since 
those regions are typically not functionally connected to 
other brain regions.66–69 Replication of these findings by 
others would be a next step toward potentially wider im-
plementation of this approach in neuro-oncological cen-
ters, particularly since most hospitals equipped with MEG 
have the same system, which could facilitate replication 
and subsequent clinical implementation. Although the 
limited availability of MEG remains an issue to be taken 
into account here, the application of this type of connec-
tivity mapping may not lend itself very well to EEG, due 
to its limited spatial resolution and need for a reference 
electrode. Moreover, the neurophysiological character-
istics of rsfMRI are very different from MEG/EEG signals, 
which renders its potential for this application less evident. 
There are, however, studies also showing a relationship 
between rsfMRI features describing areas to be resected 
or preserved as compared to intraoperative mapping,78,79 

A

B

C

D

clinical outcome
- inability to perform activities of daily living
- cognitive complaints
- seizures
- progression-free survival
- overall survival

whole-brain network abnormalities
- low global network efficiency
- low integration within the default mode network
- high brain activity and high local network clustering

neuronal hyperactivity around the tumor
- high neuronal firing rates
- high glutamate levels
- glutamate excretion by tumor cells

neuronal activation of tumor cells
- glutamatergic synapses from neurons onto tumor cellls
- perisynaptic contacts between neuronal synapses
  and tumor cells
- tumor cell activation by neuronal signaling molecules
- propagation of tumor cell activation via microtubes

Figure 3.  Multiscale network findings in neuro-oncology. (A) depicts clinically relevant outcomes in glioma patients. (B) reflects the types of 
global brain network abnormalities observed in glioma patients. In (C), a hyperactive neuronal network surrounding the tumor is displayed. The 
heightened neuronal activity leads to more secretion of glutamate around and within the tumor. Neurons in orange, tumor cells in blue, glutamate 
as orange circles and cellular activity in pink. In (D), neurons are shown to form synapses onto tumor cells where glutamate secretion activates 
tumor cells. The activation of one tumor cell gets propagated to neighboring tumor cells via tumor microtubes. The activation of tumor cells leads 
to glutamate excretion further enhancing tumor activity. Across all panels, arrows are drawn to indicate that findings from different scales may go 
hand in hand potentially due to causal relationships.
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although potentially at a lower spatial resolution.80 Studies 
that link the resection of these high connectivity hubs to 
intraoperative mapping and/or functional outcome could 

help determine whether rsfMRI yields similarly promising 
results for clinical application. In this context, it is also im-
portant to consider the potentially confounding effects of 

prognostication

- functional decline
- cognitive deterioration
- progression-free survival
- overall survival

- preoperative and peri-operative
  functional mapping
- determining the epileptogenic zone
- selection of patients for awake
  craniotomy

- (hyper)activity antagonists
- inhibitory (non-invasive) brain
  stimulation

- disease monitoring, e.g. differentiating
  between tumor progression and
  radionecrosis
- monitoring treatment efficiency

- tailored (non-invasive) brain stimulation
- response prediction of interventions
  aimed at symptom management
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Figure 4.  Schematic figure depicting potential future clinical applications of multiscale network neuroscience along the disease course. Brain 
network analysis studies might aid clinical practice at multiple stages ranging from prognostication, resective strategy, disease-modifying treat-
ment, disease and treatment monitoring to symptom management.
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using different MRI systems and different analysis pipe-
lines across different hospitals.81

Since local functional connectivity and integration be-
tween tumor cells and surrounding neurons at the micro- 
and macroscales relate to survival, it is worth investigating 
whether connectivity assessments could aid in moni-
toring tumor growth after initial resection of the tumor. 
Distinguishing real tumor growth from pseudoprogression 
with standard MRI is difficult, particularly in patients who 
undergo radiotherapy and who may therefore develop 
radionecrosis.82 One cross-sectional study in glioma pa-
tients undergoing primary treatment after tumor resection 
explored the value of MEG local connectivity in discerning 
between patients with a growing versus stable tumor ac-
cording to MRI.44 Results show that individual differences 
between patients were large and related to PFS, but not 
to tumor growth at the same time point, potentially due 
to the cross-sectional set-up of the study. As such, the pre-
dictive value of local connectivity may be limited to PFS 
at the group-level. For monitoring purposes, longitudinal 
research, preferably (also) using EEG, is necessary to in-
vestigate whether repeated measurements of local con-
nectivity could help differentiate between real tumor 
growth and pseudoprogression at any timepoint during 
clinical follow-up.

Since there is ample cross-talk between neuronal and 
tumor networks, treatments that impact brain activity 
in some way are of interest.83,84 Consider for instance 
perampanel, an anti-seizure medication that inhibits gluta-
mate action through AMPA antagonism. It reduces tumor 
proliferation and invasion in animal xenograft models, hy-
pothetically through inhibition of brain activity.85 Another 
potentially interesting drug is levetiracetam, which has 
generally been associated with altered brain activity86,87 
longer survival in some but not all studies,88 and improved 
cognition across conditions.87 In the future, non-invasively 
measured local brain activity and connectivity (EEG or 
MEG) may become relevant for monitoring the efficacy of 
such treatments, in order to assess whether the medication 
actually inhibits tumor-promoting brain processes and to 
what (spatial) extent.

Finally, there are indications that network neuroscientific 
methods may be useful for rehabilitation and symptom 
management. For instance, non-invasive brain stimulation 
is becoming increasingly interesting in glioma patients in 
different phases of the disease. Before tumor resection, 
such stimulation may be used for “prehabilitation.”89,90 
After tumor resection, rehabilitative interventions may be 
more effective when combined with non-invasive stimula-
tion.91 Moreover, stimulation may be relevant to alleviate 
cognitive impairments as well.92 Moreover, although seiz-
ures are always considered a potential side effect of brain 
stimulation, none of the studies performed in glioma pa-
tients so far reported seizures. It is important to note that 
most studies used a single stimulation session for mapping 
purposes,93 which could pose less risk for seizures than 
therapeutic (repeated) application of stimulation. However, 
a recent postoperative rehabilitation study stimulating 
multiple times a day for a week also did not report any seiz-
ures in a cohort of 31 glioma patients.91 Network measures 
may help target the stimulation to the most useful brain 
region in every individual patient: previous studies have 

shown associations between network connectivity of the 
stimulation target and behavioral outcome.94–96 Future clin-
ical studies are necessary to explore the efficacy of such 
network-based targeted therapies. In terms of choosing a 
modality, rsfMRI shows most evidence toward this applica-
tion: almost all studies into network targets of stimulation 
across conditions use rsfMRI,97 while this has also been 
specifically argued for in glioma patients.98

Conclusion

There is ample innovation in the scientific field where net-
work neuroscience and neuro-oncology meet. Gliomas 
contain networks of interconnected tumor cells, while 
there is extensive cross-talk between these tumor net-
works and the supposedly healthy brain around them, be 
it at the cellular, mesoscale, or macroscale network level. 
Although clinical implementation of network approaches is 
still scarce, there is promise in the realms of diagnosis and 
prognostication, surgical intervention, and both disease 
and treatment monitoring. Future interdisciplinary studies 
combining fundamental and/or preclinical approaches with 
translational and/or clinical outcome measures should be 
performed to deliver on these promises.
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